RESEARCH PAPER
An Interface Crack with Mixed Electro-Magnetic Conditions at it Faces in a Piezoelectric / Piezomagnetic Bimaterial under Anti-Plane Mechanical and In-Plane Electric Loadings
 
More details
Hide details
1
Department of Theoretical and Applied Mechanics, Oles Honchar Dnipro National University, Gagarin Av., 72, Dnipro 49010, Ukraine
 
2
Department of Computational Mathematics, Oles Honchar Dnipro National University, Gagarin Av., 72, Dnipro 49010, Ukraine
 
3
Université Clermont Auvergne, SIGMA Clermont (ex- IFMA, French Institute of Advanced Mechanics), Institut Pascal, BP 10448, F-63000 Clermont-Ferrand, France, CNRS, UMR 6602, IP, F-63178 Aubière, France
 
 
Submission date: 2017-09-22
 
 
Acceptance date: 2018-12-20
 
 
Online publication date: 2019-01-03
 
 
Publication date: 2018-12-01
 
 
Acta Mechanica et Automatica 2018;12(4):301-310
 
KEYWORDS
ABSTRACT
An interface crack between two semi-infinite piezoelectric/piezomagnetic spaces under out-of-plane mechanical load and in-plane electrical and magnetic fields parallel to the crack faces is considered. Some part of the crack faces is assumed to be electrically conductive and having uniform distribution of magnetic potential whilst the remaining part of the crack faces is electrically and magnetically permeable. The mechanical, electrical, and magnetic factors are presented via functions which are analytic in the whole plane except the crack region. Due to these representations the combined Dirichlet-Riemann and Hilbert boundary value problems are formulated and solved in rather simple analytical form for any relation between conductive and permeable zone lengths. Resulting from this solution the analytical expressions for stress, electric and magnetic fields as well as for the crack faces displacement jump are presented. The singularities of the obtained solution at the crack tips and at the separation point of the mention zones are investigated and the formulas for the corresponding intensity factors are presented. The influence of external electric and magnetic fields upon the mechanic, electric and magnetic quantities at the crack region are illustrated in graph and table forms.
REFERENCES (39)
1.
Beom H. G., Atluri S. N. (2002), Conducting cracks in dissimilar piezoelectric media, International Journal of Fracture, 118, 285–301.
 
2.
Chen H., Wei W., Liu J., Fang D. (2012), Propagation of a mode-III interfacial crack in a piezoelectric-piezomagnetic bi-material, Int. J. Solids Struct., 49, 2547–2558.
 
3.
Comninou M. (1977), The interface crack, Trans. ASME. Ser. E, J. Applied Mechanics, 44(4), 631–636.
 
4.
Fan C., Zhou Y., Wang H., Zhao M. (2009), Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials, Acta Mech. Solida Sinica, 22, 232-239.
 
5.
Feng W. J., Ma P., Pan E. N., Liu J. X. (2011), A magnetically impermeable and electrically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under concentrated magnetoelectromechanical loads on the crack faces, Sci. China Ser. G, 54, 1666-1679.
 
6.
Feng W. J., Ma P., Su R. K. L. (2012), An electrically impermeable and magnetically permeable interface crack with a contact zone in magnetoelectroelastic bimaterials under a thermal flux and magneto-electromechanical loads, Int. J. Solids Structures, 49, 3472-3483.
 
7.
Feng W. J., Su R. K. L., Liu J. X., Li Y. S. (2010), Fracture analysis of bounded magnetoelectroelastic layers with interfacial cracks under magnetoelectromechanical loads: plane problem, J. Intell. Mater. Syst. Struct., 21, 581-594.
 
8.
Govorukha V., Kamlah M., Loboda V., Lapusta Y. (2016), Interface cracks in piezoelectric materials, Smart Mater. Struct., 25, 023001 (20pp).
 
9.
Herrmann K. P., Loboda V. V. (2003), Fracture mechanical assessment of interface cracks with contact zones in piezoelectric bi-materials under thermoelectromechanical loadings, I. Electrically permeable interface cracks, Int. J. Solids and Structures, 40, 4191-4217.
 
10.
Herrmann K. P., Loboda V. V., Khodanen T. V. (2010), An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial, Archive of Applied Mechanics, 80(6), 651-670.
 
11.
Hu K., Chen Z. (2010), An interface crack moving between magnetoelectroelastic and functionally graded elastic layers, Appl. Math. Modelling, 38, 910-925.
 
12.
Kozinov S., Loboda V., Lapusta Y. (2013), Periodic set of limited electrically permeable interface cracks with contact zones, Mech. Res. Communic., 48, 32-41.
 
13.
Lapusta Y., Onopriienko O., Loboda V. (2017), An interface crack with partially electrically conductive crack faces under antiplane mechanical and in-plane electric loadings, Mech. Res. Commun., 81, 38–43.
 
14.
Li R., Kardomateas G. A. (2006), The mode III interface crack in piezo-electro-magneto-elastic dissimilar bimaterials, J. Appl. Mech., 73, 220–227.
 
15.
Li Y. D., Lee K. Y. (2010), Effects of magneto-electric loadings and piezomagnetic/piezoelectric stiffening on multiferroic interface fracture, Eng. Fract. Mech., 77, 856-866.
 
16.
Loboda V., Sheveleva A., Lapusta Y. (2014), An electrically conducting interface crack with a contact zone in a piezoelectric bimaterial, Int. J. Solids Struct., 51, 63–73.
 
17.
Ma P., Feng W. J., Su R. K. L. (2012), An electrically impermeable and magnetically permeable interface crack with a contact zone in a magnetoelectroelastic bimaterial under uniform magnetoelectromechanical loads, Eur. J. Mech. A/Solids, 32, 41-51.
 
18.
Ma P., Feng W. J., Su R. K. L. (2013), Pre-fracture zone model on electrically impermeable and magnetically permeable interface crack between two dissimilar magnetoelectroelastic materials, Eng. Fract. Mech., 102, 310-323.
 
19.
Ma P., Feng W., Su R. K. L. (2011), Fracture assessment of an interface crack between two dissimilar magnetoelectroelastic materials under heat flow and magnetoelectromechanical loadings, Acta Mech. Solida Sinica, 24, 429-438.
 
20.
Muskhelishvili N. I. (1977), Some Basic Problems of Mathematical Theory of Elasticity, Noordhoff International Publishing, Leyden.
 
21.
Nahmein E. L., Nuller B. M. (1986), Contact of an elastic half plane and a particularly unbonded stamp [in russian], Prikladnaja matematica i mechanika, 50, 663–673.
 
22.
Parton V. Z., Kudryavtsev B. A. (1988), Electromagnetoelasticity, Gordon and Breach Science Publishers, New York.
 
23.
Ru C. Q. (2000), Electrode-ceramic interfacial cracks in piezoelectric multilayer materials, ASME J. Appl. Mech., 67, 255–261.
 
24.
Shi P. P., Sun S., Li X. (2013), The cyclically symmetric cracks on the arc-shaped interface between a functionally graded magneto-electro-elastic layer and an orthotropic elastic substrate under static anti-plane shear load, Eng. Fract. Mech., 105, 238-249.
 
25.
Sih G. C., Song Z. F. (2003), Magnetic and electric poling effects associated with crack growth in BaTiO3–CoFe2O4 composite, Theoretical and Applied Fracture Mechanics, 39, 209–227.
 
26.
Su R. K. L., Feng W. J. (2008), Fracture behavior of a bonded magneto-electro-elastic rectangular plate with an interface crack, Arch. Appl. Mech., 78, 343–362.
 
27.
Sulym H. T., Piskozub L. G., Piskozub Y. Z., Pasternak Ya. M. (2015a), Antiplane deformation of a bimaterial containing an interfacial crack with the account of friction. I. Single loading, Acta Mechanica et Automatica, 9(2), 115-121.
 
28.
Sulym H. T., Piskozub L. G., Piskozub Y. Z., Pasternak Ya. M. (2015b), Antiplane deformation of a bimaterial containing an interfacial crack with the account of friction. 2. Repeating and cyclic loading, Acta Mechanica et Automatica, 9(3), 178-184.
 
29.
Wan Y, Yue Y, Zhong Z. (2012a), Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field, Eng. Fract. Mech., 84, 132–145.
 
30.
Wan Y., Yue Y., Zhong Z. (2012b), A mode III crack crossing the magnetoelectroelastic bimaterial interface under concentrated magnetoelectromechanical loads, Int. J. Solids Structures, 49, 3008-3021.
 
31.
Wang B. L., Mai Y. W. (2006), Closed-form solution for an antiplane interface crack between two dissimilar magnetoelectroelastic layers, J. Appl. Mech., 73, 281–290.
 
32.
Wang B. L., Mai Y. W. (2008), An exact analysis for mode III cracks between two dissimilar magneto-electro-elastic layers, Mech. Compos. Mater., 44, 533–548.
 
33.
Wang X., Zhong Z. (2002), A conducting arc crack between a circular piezoelectric inclusion and an unbounded matrix, Int. J. Solids Struct., 39, 5895–5911.
 
34.
Wang X., Zhong Z., Wu F. L. (2003), A moving conducting crack at the interface of two dissimilar piezoelectric materials, Int. J. Solids Struct., 40, 2381–2399.
 
35.
Yue Y., Wan Y. (2014), Multilayered piezomagnetic/piezoelectric composite with periodic interfacial Yoffe-type cracks under magnetic or electric field, Acta Mech., 225, 2133-2150.
 
36.
Zhou Z. G., Chen Y., Wang B. (2007), The behavior of two parallel interface cracks in magneto-electro-elastic materials under an anti-plane shear stress loading, Compos. Struct., 77, 97–103.
 
37.
Zhou Z. G., Wang B., Sun Y. G. (2004), Two collinear interface cracks in magneto-electro-elastic composites, Int. J. Eng. Science, 42, 1155–1167.
 
38.
Zhou Z. G., Wang J. Z., Wu L. Z. (2009), The behavior of two parallel non-symmetric interface cracks in a magneto-electro-elastic material strip under an anti-plane shear stress loading, Int. J. Appl. Electromagn. Mech., 29, 163–184.
 
39.
Zhou Z. G., Zhang P. W., Wu L. Z. (2007), Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials, Arch. Appl. Mech., 77, 861–882.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top