RESEARCH PAPER
Application of Finite Element Method for Analysis of Nanostructures
 
More details
Hide details
1
Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 , Košice, Slovakia
 
 
Submission date: 2016-04-28
 
 
Acceptance date: 2017-05-15
 
 
Online publication date: 2017-06-15
 
 
Publication date: 2017-06-01
 
 
Acta Mechanica et Automatica 2017;11(2):116-120
 
KEYWORDS
ABSTRACT
The paper deals with application of the finite element method in modelling and simulation of nanostructures. The finite element model is based on beam elements with stiffness properties gained from the quantum mechanics and nonlinear spring elements with force-displacement relation are gained from Morse potential. Several basic mechanical properties of structures are computed by homogenization of nanostructure, e.g. Young's modulus, Poisson's ratio. The problems connecting with geometrical parameters of nanostructures are considered and their influences to resulting homogenized quantities are mentioned.
REFERENCES (21)
1.
Brenner D.W. (1990), Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, Vol. 42, 9458.
 
2.
Cornell W.D., Cieplak P., Bayly C.I. (1995), A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules, Journal of American Chemical Society, 117, 5179-5197.
 
3.
Hartmann M.A., Todt M., Rammerstorfer F.G., Fisher F.D., Paris O. (2013), Elastic properties of graphene obtained by computational mechanical tests, Europhysics Letters, 103, 68004-p1-68004-p6.
 
4.
Hemmasizadeh A., Mahzoon M., Hadi E., Khandan R. (2008), A method for developing the equivalent continuum model of a single layer graphene sheet, Thin Solid Films, 516, 7636-7640.
 
5.
Hosseini K.S.A., Moshrefzadeh S.H. (2013), Mechanical properties of double-layered graphene sheets, Computational Materials Science, 69, 335-343.
 
6.
Lee C., Wei X., Kysar J.W., Hone J. (2008), Measurement of the elastic properties and intrisic strength of monolayer graphene, Science, 321, 385-388.
 
7.
Li Ch., Chou T.W. (2003), A structural mechanics approach for the analysis of carbon nanotube, International Journal of Solids and Structures, 40, 2487-2499.
 
8.
Machida K. (1999), Principles of Molecular Mechanics, Kodansha and John Wiley & Sons Co-publication, Tokyo.
 
9.
Marenić E., Ibrahimbegovic A., Sorić J., Guidault P.A. (2013), Homogenized elastic properties of graphene for small deformations, Materials, 6, 3764-3782.
 
10.
Mayo S.L., Olafson B.D., Goddard W.A. (1990), Dreiding–a generic force-field for molecular simulations, Journal of Physical Chemistry, 94, 8897–8909.
 
11.
Meo M., Rossi M. (2006), Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Composite Science and Technology, 66, 1597-1605.
 
12.
Rafiee R., Heidarhaei M. (2012), Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials, Composite Structures, 94, 2460-2464.
 
13.
Rappe A.K., Casewit C.J., Colwell K.S. (1992), A full periodictable force-field for molecular mechanics and molecular dynamics simulations, Journal of American Chemical Society, 114, 10024-10035.
 
14.
Ru C.Q. (2000), Effective bending stiffness of carbon nanotubes, Physical Review B, 62, 9973-9976.
 
15.
Saito S., Dresselhaus D., Dresselhaus M.S. (1998), Physical Properties of Carbon Nanotubes, Imperical College Press, London.
 
16.
Sakhaee-Pour A. (2009), Elastic properties of single-layered graphene sheet, Solid State Communications, 149, 91-95.
 
17.
Scarapa F., Adhikari S., Srikantha P. (2009), Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20, 065709.
 
18.
Shokrieh M.M, Rafiee R. (2010) Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Materials & Design, 31, 790-795.
 
19.
Thostenson E.T., Chunyu L., Chou T.W. (2005), Nanocomposites in context, Composite Science and Technology, 65, 491-516.
 
20.
Tsai J.L., Tu J.F. (2010), Characterizing mechanical properties of graphite using molecular dynamics simulation, Materials & Design, 31, 194-199.
 
21.
Tserpes K.I., Papanikos P. (2005), Finite element modelling of single-walled carbon nanotubes, Composites Part B, 36, 468-477.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top