RESEARCH PAPER
Approximate Solution of Painlevé Equation I by Natural Decomposition Method and Laplace Decomposition Method
More details
Hide details
1
Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600, Pakistan
2
Department of Mathematics, University of Management and Technology Lahore, Pakistan
Submission date: 2022-12-08
Acceptance date: 2023-03-19
Online publication date: 2023-07-15
Publication date: 2023-09-01
Acta Mechanica et Automatica 2023;17(3):417-422
KEYWORDS
ABSTRACT
Novelty:
One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory. This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour of non-linear waves.
REFERENCES (30)
1.
Painleve P. Sur les équationsdifférentielles du second ordre et d’ordresupérieurdontl’intégralegénéraleestuniforme. Acta mathematica. 1902 Dec;25:1-85.
2.
Borisov AV, Kudryashov NA. Paul Painlevé and his contribution to science. Regular and Chaotic Dynamics. 2014 Feb;19:1-9.
3.
Segur H, Ablowitz MJ. Asymptotic solutions of nonlinear evolution equations and a Painlevé transcedent. Physica D: Nonlinear Phenomena. 1981 Jul 1;3(1-2):165-84.
4.
Kanna T, Sakkaravarthi K, Kumar CS, Lakshmanan M, Wadati M. Painlevé singularity structure analysis of three component Gross– Pitaevskii type equations. Journal of mathematical physics. 2009 Nov 25;50(11):113520.
5.
Cao X, Xu C. ABäcklund transformation for the Burgers hierarchy. InAbstract and Applied Analysis 2010 Jan 1 (Vol. 2010). Hindawi.
6.
Lee SY, Teodorescu R, Wiegmann P. Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painlevé I transcendent. Physica D: Nonlinear Phenomena. 2011 Jun 15;240(13):1080-91.
7.
Dai D, Zhang L. On tronquée solutions of the first Painlevé hierarchy. Journal of Mathematical Analysis and Applications. 2010 Aug 15;368(2):393-9.
8.
]Florjańczyk M, Gagnon L. Exact solutions for a higher-order nonlinear Schrödinger equation. Physical Review A. 1990 Apr 1;41(8):4478.
9.
Ablowitz MJ, Segur H. Solitons and the inverse scattering transform. Society for Industrial and Applied Mathematics; 1981 Jan 1.
10.
Tajiri M, Kawamoto S. Reduction of KdV and cylindrical KdV equations to Painlevé equation. Journal of the Physical Society of Japan. 1982 May 15;51(5):1678-81.
11.
Dehghan M, Shakeri F. The numerical solution of the second Painlevé equation. Numerical Methods for Partial Differential Equations: An International Journal. 2009 Sep;25(5):1238-59.
12.
Clarkson PA. Special polynomials associated with rational solutions of the fifth Painlevé equation. Journal of computational and applied mathematics. 2005 Jun 1;178(1-2):111-29.
13.
El-Gamel M, Behiry SH, Hashish H. Numerical method for the solution of special nonlinear fourth-order boundary value problems. Applied Mathematics and Computation. 2003 Dec 25;145(2-3):717-34.
14.
Ellahi R, Abbasbandy S, Hayat T, Zeeshan A. On comparison of series and numerical solutions for second Painlevé equation. Numerical Methods for Partial Differential Equations. 2010 Sep;26(5): 1070-8.
15.
Gromak VI, Laine I, Shimomura S. Painlevé differential equations in the complex plane. InPainlevé Differential Equations in the Complex Plane 2008 Aug 22. de Gruyter.
16.
Bobenko AI, Eitner U, editors. Painlevé equations in the differential geometry of surfaces. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000 Dec 12.
17.
Saadatmandi A. Numerical study of second Painlevé equation. Comm. Numer. Anal. 2012;2012.
18.
Sierra-Porta D, Núnez LA. On the polynomial solution of the first Painlevé equation. Int. J. of Applied Mathematical Research. 2017;6(1):34-8.
19.
Ahmad H, Khan TA, Yao S. Numerical solution of second order Painlevé differential equation. Journal of Mathematics and Computer Science. 2020;21(2):150-7.
20.
Izadi M. An approximation technique for first Painlevé equation.
21.
Khan ZH, Khan WA. N-transform properties and applications. NUST journal of engineering sciences. 2008 Dec 31;1(1):127-33.
22.
Belgacem FB, Silambarasan R. Theory of natural transform. Math. Engg. Sci. Aeros. 2012 Feb 25;3:99-124.
23.
Spiegel MR. Laplace transforms. New York: McGraw-Hill; 1965.
24.
Belgacem FB, Karaballi AA. Sumudu transform fundamental properties investigations and applications. International Journal of Stochastic Analysis. 2006;2006.
25.
Maitama S, Hamza YF. An analytical method for solving nonlinear sine-Gordon equation. Sohag Journal of Mathematics. 2020;7(1):5-10.
26.
Elbadri M, Ahmed SA, Abdalla YT, Hdidi W. A new solution of time-fractional coupled KdV equation by using natural decomposition method. InAbstract and Applied Analysis 2020 Sep 1 (Vol. 2020, pp. 1-9). Hindawi Limited.
27.
Maitama S, Kurawa SM. An efficient technique for solving gas dynamics equation using the natural decomposition method. InInternational Mathematical Forum 2014 (Vol. 9, No. 24, pp. 1177-1190). Hikari, Ltd..
28.
Amir M, Awais M, Ashraf A, Ali R, Ali Shah SA. Analytical Method for Solving Inviscid Burger Equation. Punjab University Journal of Mathematics. 2023 Dec 3;55(1).
29.
Behzadi SS. Convergence of iterative methods for solving Painlevé equation. Applied Mathematical Sciences. 2010;4(30):1489-507.
30.
Hesameddini E, Peyrovi A. The use of variational iteration method and homotopy perturbation method for Painlevé equation I. Applied Mathematical Sciences. 2009;3(37-40):1861-71.