RESEARCH PAPER
DEPENDENCE OF CREEP FAILURE PROBABILITY ON THE SIZE OF METALLIC SPECIMENS
 
 
More details
Hide details
1
Faculty of Civil Engineering, Strength of Material Department, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków
 
 
Online publication date: 2014-01-22
 
 
Publication date: 2013-09-01
 
 
Acta Mechanica et Automatica 2013;7(3):166-169
 
KEYWORDS
ABSTRACT
The occurrence of statistical size effect is considered for damage in creep conditions. The numerical and experimental analysis have been performed. The obtained results are ambiguous. Numerical models confirm the scale effect which can be statistical or deterministic one. But this effect has no experimental verification. It may suggest that the weakest link model cannot be applied in creep conditions. Explanation of this needs further investigations
REFERENCES (18)
1.
Bažant Z.P. (1984), Size Effect in Blunt Fracture: Concrete, Rock, Metal, J. Eng. Mech., 110, 518-535.
 
2.
Bažant Z.P. (1999), Size effect on structural strength: a review, Archive of Applied Mechanics, 69, 703-725.
 
3.
Bodnar, A., Chrzanowski, M. (2002), On creep rupture of rectangular plates, ZAMM, 82, 201-205.
 
4.
Carpinteri A., Spagnoli A. (2004), A fractal analysis of size effect on fatigue crack growth, Int. J. of Fatigue, 26, 125-133.
 
5.
Carpinteri A., Spagnoli A., Vantadori S. (2002), An approach to size effect in fatigue of metals using fractal theories, Fatigue Fract.Engng. Mater. Struct., 25, 619-627.
 
6.
Carpinteri A., Spagnoli A., Vantadori S. (2009), Size effect in S-N curves: A fractal approach to finite-life fatigue strength, Int. J. of Fatigue, 31, 927-933.
 
7.
Carpinteri A., Spagnoli A., Vantadori S. (2010), A multifractal analysis of fatigue crack growth and its application to concrete, Eng.Fract. Mech., 77, 974-984.
 
8.
Chrzanowski M. (1972), On the Possibility of Describing the Complete Process of Metallic Creep, Bull. Ac. Pol. Sc. Ser. Sc.Techn., XX, 75-81.
 
9.
Farris J.P., Lee J. D., Harlow D. G., Delph T.J. (1990), On the scatter in creep rupture times, Metallurgical and Materials Transactions, 21A, 345-352.
 
10.
Feltham P., Meakin J.D. (1959), Creep in Face-Centred Cubic Metals with Special Reference to Copper, Acta Metallurgica, 7, 614-627.
 
11.
Garofalo F., Whitmore R.W., Domis W.F., Gemmingen F. (1961), Creep and creep-rupture relationships in an austenitic stainless steel, Trans. Metall. Soc. AIME, 221, 310-319.
 
12.
Hayhurst D.R. (1974), The effects of test variables on scatter in high-temperature tensile creep-rupture data, International Journal of Mechanical Sciences, 16, 829-841.
 
13.
Kocańda S., Szala J. (1991), Podstawy obliczeń zmęczeniowych, PWN, Warszawa (in Polish).
 
14.
Monkman F.C., Grant N.J. (1956), An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Test, Proc. ASTM, 56, 593-620.
 
15.
Nowak K. (2011), Uncertainty of lifetime for CAFE creep damage model, Computer Methods in Materials Science, 11, 315-323.
 
16.
Raabe D. (2002), Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Ann. Review of Materials Research, 32, 53-76.
 
17.
Weibull W. (1939), The Phenomenon of Rupture in Solids, Proceedings of Royal Swedish Institute for Engineering Research, 153, 5-55.
 
18.
Yatomi M., Nikbin K.M., O'Dowd N.P. (2003), Creep crack growth prediction using a damage based approach, International Journal of Pressure Vessels and Piping, 80, 573-583.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top