RESEARCH PAPER
Displacement Analysis of the Human Knee Joint Based on the Spatial Kinematic Model by Using Vector Method
 
More details
Hide details
1
Cracow University of Technology, Al. Jana Pawła II 37 b, 31-864 , Kraków, Poland
 
2
State Higher Vocational School, ul. Staszica 1, 33-300 Nowy Sącz, Poland
 
 
Submission date: 2015-06-06
 
 
Acceptance date: 2017-12-11
 
 
Online publication date: 2017-12-30
 
 
Publication date: 2017-12-01
 
 
Acta Mechanica et Automatica 2017;11(4):322-327
 
KEYWORDS
ABSTRACT
Kinematic model of the human knee joint, considered as one-degree-of-freedom spatial parallel mechanism, is used to analyse the spatial displacement of the femur with respect to the tibia. The articular surfaces of femoral and tibia condyles are modelled, based on selected references, as spherical and planar surfaces. The condyles are contacted in two points and are guided by three ligaments modelled as binary links with constant lengths. In particular, the mechanism position problem is solved by using the vector method. The obtained kinematic characteristics are adequate to the experimental results presented in the literature. Additionally, the screw displacements of relative motion in the knee joint model are determined.
REFERENCES (12)
1.
Di Gregorio R., Parenti-Castelli V. (2003), A spatial mechanism with higher pairs for modelling the human knee joint, Trans. ASME Jnl of Biomechanical Eng., 125, 232-237.
 
2.
Góra M. (2008), Kinematic analysis of the multi-rod suspension mechanisms of the cars, Doct. Diss, Cracow University of Technology.
 
3.
Morecki A., Knapczyk J., Kędzior K. (2002), Theory of mechanisms and manipulators, WNT, Warsaw 2002.
 
4.
Ottoboni A., Parenti-Castelli V., Sancisi N. (2010), Articular surface approximation in equivalent spatial parallel mechanism models of the human knee joint: an experiment-based assessment, Proc. IMechE, Part H: Engineering in Medicine, 224, 1121-1132.
 
5.
Parenti-Castelli V., Di Gregorio R. (2000), Parallel mechanisms applied to the human knee passive motion simulation, Advances in Robot Kinematics, Kluwer Academic Publ. Dordrecht, 333-343.
 
6.
Parenti-Castelli V., Sancisi N. (2013), Synthesis of spatial mechanisms to model human joints. In: McCarthy J. (eds) 21st Century Kinematics, Springer, London.
 
7.
Saldias D., Martins D., de Mello Roesler C., da Silva Rosa F., Ocampo Moré A., (2013), Modeling of human knee joint in sagittal plane considering elastic behavior of cruciate ligaments, 22nd International Congress of Mechanical Engineering, November 3-7, 2013, Ribeirão Preto, SP, Brazil.
 
8.
Saldias D., Radavelli L., Roesler C., Martin D. (2014), Kinematic synthesis of the passive human knee joint by differential evolution and quaternions algebra: a preliminary study, 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 12-15 Aug. 2014, Brazil.
 
9.
Sancisi N., Parenti-Castelli V. (2010), A 1-Dof parallel spherical wrist for the modelling of the knee passive motion, Mechanism and Machine Theory, 45, 658-665.
 
10.
Sancisi N., Parenti-Castelli V., (2011), A sequentially-defined stiffness model of the knee, Mechanism and Machine Theory, 46(12), 1920-1928.
 
11.
Wilson D.R., Feikes J.D., O’Connor J.J. (1998), Ligaments and articular contact guide passive knee flexion, Journal of Biomechanics, 31, 1127-1136.
 
12.
Woo S., Abramowitch S., Kilger R., Liang R., (2006), Biomechanics of knee ligaments: injury, healing, and repair, Journal of Biomechanics, 39(1), 1–20.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top