RESEARCH PAPER
Experiments and Analysis of the Limit Stresses of a Magnetorheological Fluid
 
More details
Hide details
1
Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
2
Department of Process Control, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
 
Submission date: 2022-08-29
 
 
Acceptance date: 2022-11-04
 
 
Online publication date: 2022-12-15
 
 
Publication date: 2022-12-01
 
 
Acta Mechanica et Automatica 2022;16(4):408-416
 
KEYWORDS
ABSTRACT
This paper presents the results of a rheological test of a commercial magnetorheological (MR) fluid (MRF-132DG). The research includes the problem of measuring and interpreting limit stresses under conditions close to the magnetic saturation of the fluid. Four different limit stresses were determined, two related to the yield point and two related to the flow point. Methods for determining limit stresses, especially due to excitation conditions, were also analysed. The aim of this study is to determine the effect of selected parameters on the values of limit stresses of the selected MR fluid. An additional objective is to highlight the problems of defining and interpreting individual limit stresses in MR fluids, particularly in the context of selecting the values of these stresses for the purpose of modeling systems with MR fluids.
REFERENCES (37)
1.
Khajehsaeid H, Alaghehband N, Bavil PK. On the yield stress of magnetorheological fluids. Chemical Engineering Science. 2022;256:117699.
 
2.
Kumar M, Kumar A, Bharti RK, Yadav HNS, Das M. A review on rheological properties of magnetorheological fluid for engineering components polishing. Materials Today: Proceedings. 2022;56(3):A6-A12.
 
3.
de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R. Magnetorheological fluids: a review. Soft Matter. 2011;7:3701-3710.
 
4.
Yang J, Yan H, Wang X, Hu Z. Enhanced yield stress of magnetorheological fluids with dimer acid. Materials Letters. 2016;167:27-29.
 
5.
Asiaban R, Khajehsaeid H, Ghobani E, Jabbari M. New magnetorheological fluid with high stability: Experimental study and constitutive modelling. Polymer Testing. 2020;8:106512.
 
6.
Kubík M, Válek J, Žáček J, Jeniš F, Borin D, et al. Transient response of magnetorheological fluid on a rapid change of magnetic field in shear mode. Scientific Reports. 2022;12:10612.
 
7.
Giorgetti A, Baldanzini N, Biasiotto M, Citti P. Design and testing of a MRF rotational damper for vehicle applications. Smart Materials and Structures. 2010;19(6):065006.
 
8.
Li DD, Keogh DF, Huang K, Chan QN, Yuen ACY, Menictas C et al. Modeling the response of magnetorheological fluid dampes under seismic conditions.
 
9.
Kubík M, Macháček O, Strecker Z, Roupec J, Mazůrek I. Design and testing of magnetorheological valve with fast force response time and great dynamic force range. Smart Materials and Structures. 2017;26(4):047002.
 
10.
Thakur MK, Sarkar C. Experimental and numerical study of magnetorheological clutch with sealing at larger radius disc. Defence Science Journal. 2020;70(6):575-582.
 
11.
Patel S, Upadhyay R, Patel D. Design optimization of magnetorheo-logical brake using structural parameter: evaluation and validation. IOP Conference Series: Materials Science and Engineering. 2020;992:012004.
 
12.
Horak W. Modeling of magnetorheological fluid in quasi-static squeeze flow mode. Smart Materials and Structures. 2018; 27: 065022.
 
13.
Sapiński B, Gołdasz J. Development and performance evaluation of an MR squeeze-mode damper. Smart Materials and Structures. 2015;24(11):115007.
 
14.
Sapiński B, Rosół M, Jastrzębski Ł, Gołdasz J. Outlook on the dynamic behavior of an magnetorheological squeeze-mode damper prototype. Journal of Intelligent Material Systems and Structures. 2017;28(20):3025-3038.
 
15.
Goncalves FD, Carlson JD. An alternate operation mode for MR fluids – Magnetic Gradient Pinch. Journal of Physics: Conference Series. 2009;149:012050.
 
16.
Gołdasz J, Sapiński B. Magnetostatic analysis of a pinch mode magnetorheological valve. Acta Mechanica et Automatica. 2017;11(3):229-232.
 
17.
Sapiński B, Horak W. Rheological properties of MR fluids recommended for use in shock absorbers. Acta Mechanica et Automatica. 2013;7(2):107-110.
 
18.
Quoc NV, Tuan LD, Hiep LD, Quoc HN, Choi SB. Material characterization of MR fluid on performance of MRF based brake. Frontiers in Materials. 2019; 6: 125.
 
19.
Lokhande SB, Patil SR. Experimental characterization and evaluation of magnetorheological clutch for an electric two-wheeler application. Measurement. 2021;175:109150.
 
20.
Strecker Z, Jeniš F, Kubík M, Macháček O, Choi SB. Novel approaches to the design of an ultra-fast magnetorheological valve for semi-active control. Materials. 2021;14(10):2500.
 
21.
Gołdasz J, Sapiński B, Kubík M, Macháček O, Bańkosz W et al. Review: a survey on configurations and performance of flow-mode MR valves. Applied Sciences. 2022;12(12):6260.
 
22.
Laun H.M, Gabril C, Kieburg Ch. Twin gap magneorheometer using ferromagnetic steel plates – Performance and validation. Journal of Rheology. 2010;54:327-354.
 
23.
Wang K, Dong X, Li J, Shi K. Yield dimensionless magnetic effect and shear thinning for magnetorheological grease. Results in Physics. 2020;18:103328.
 
24.
Han S, Choi J, Han HN, Kim S, Seo Y. Effect of particle shape anisotropy on the performance and stability of magnetorheological fluids. ACS Applied Electronic Materials. 2021;3:2526-2533.
 
25.
Jeon J, Koo S. Viscosity and dispersion state of magnetic suspensions. Journal of Magnetism and Magnetic Materials. 2012;324: 424-429.
 
26.
Nagdeve L, Sidpara A, Jain VK, Ramkumar J. On the effect of relative size of magnetic particles and abrasive particles in MR fluid-based finishing process. Machining Science and Technology. 2018;22(3):493-506.
 
27.
Acharya S, Tak RSS, Singh SB, Kumar H. Characterization of magnetorheological brake utilizing synthesized and commercial fluids. Materials Today: Procedings. 2021;46(19):9419-9424.
 
28.
Mezger TG. The Rheology Handbook. 4th edition. Hanover: Vincentz Network GmbH & Co; 2014.
 
29.
Elsaady W, Oyadiji SO, Nasser A. A review on multi-physics numerical modelling in different applications of magnetorheological fluids. Journal of Intelligent Systems and Structures. 2020;31(16):1855-1897.
 
30.
Chaudhuri A, Wereley NM, Radhakrishnan R, Choi SB. Rheological parameter estimation for a ferrous nanoparticle-based magnetorheo-logical fluid using genetic algorithms. Journal of Intelligent Material Systems and Structures. 2006;17(3):261-269.
 
31.
Laun HM, Gabriel C, Kieburg C. Magnetorheological fluid (MRF) in oscillatory shear and parametrization with regard to MR device properties. Journal of Physics: Conference Series. 2009;149:012067.
 
32.
Wereley NM, Chaudhuri A, Yoo J-H, John S, Kotha S, Suggs A et al. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. Journal of Intelligent Material Systems and Structures. 2006;17(5):393-401.
 
33.
LORD Corporation. MRF-132DG Magneto-Rheological Fluid. DS7015 datasheet [Internet]. 2011 Nov [cited 2022 Jul 15]. Available from: https://lordfulfillment.com/pd....
 
34.
Barnes HA. The yield stress – a review or ‘παντα ρει’—everything flows? Journal of Non-Newtonian Fluid Mechanics. 1999;81 (1-2):133-178.
 
35.
Ichwan B, Mazlan SA, Imaduddin F, Ubaidillah, Zamzuri H. Performance simulation on a magnetorheological valve module using three different commercial magnetorheological fluid. Advanced Materials Research. 2015;1123:35-41.
 
36.
Szakal RA, Susan-Resiga D, Muntean S, Ladislau V. Magnetorheo-logical fluids flow modelling used in a magnetorheological brake configuration. 2019 International Conference on ENERGY and ENVIRONMENT (CIEM). 2019:403-407.
 
37.
Szakal RA, Mecea D, Bosioc AI, Borbáth I, Muntean S. Design and testing a magneto-rheological brake with cylindrical configuration. Proceeding of the Romanian Academy – Series A: Mathematics, Physics, Technical Sciences, Information Science. 2021;22(2/2021):189-197.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top