RESEARCH PAPER
Failure Analysis of Beam Composite Elements Subjected to Three-Point Bending Using Advanced Numerical Damage Models
More details
Hide details
1
Faculty of Mechanical Engineering, Department of Machine Design and Mechatronics, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Submission date: 2022-11-11
Acceptance date: 2022-12-04
Online publication date: 2023-02-15
Publication date: 2023-03-01
Acta Mechanica et Automatica 2023;17(1):133-144
KEYWORDS
ABSTRACT
This paper deals with the experimental and numerical analysis of three-point bending phenomenon on beam composite profiles. Flat rectangular test specimens made of carbon–epoxy composite, characterised by symmetric [0/90/0/90]s laminate ply lay-up, were used in this study. Experimental testing was carried out with a COMETECH universal testing machine, using special three-point bending heads. In addition, macroscopic evaluation was performed experimentally using a KEYENCE Digital Microscope with a mobile head recording real-time images. Parallel to the experimental studies, numerical simulations were performed using the finite element method in ABAQUS software. The application of the above-mentioned interdisciplinary research techniques allowed for a thorough analysis of the phenomenon of failure of the composite material subjected to bending. The obtained research results provided a better understanding of the failure mechanism of the composite material.
REFERENCES (78)
1.
Fascetti A, Feo L, Nistic N, Penna R. Web-flange behavior of pultruded GFRP I beams: a lattice model for the interpretation of experimental results. Composites Part B Eng, 2016;100:257-269.
2.
Berardi VP, Perrella M, Feo L, Cricrì G. Creep behavior of GFRP laminates and their phases: experimental investigation and analytical modeling. Composites Part B Eng, 2017;122:136-144.
3.
Kubiak T, Kolakowski Z, Swiniarski J, Urbaniak M, Gliszczynski A. Local buckling and post-buckling of composite channel-section beams – numerical and experimental investigations. Composites Part B Eng, 2016;91:176-188.
4.
Rozylo P. Experimental-numerical study into the stability and failure of compressed thin-walled composite profiles using progressive failure analysis and cohesive zone model. Composite Structures, 2021;257:113303.
5.
Debski H, Rozylo P, Teter A. Buckling and limit states of thin-walled composite columns under eccentric load. Thin-Walled Structures, 2020;149:106627.
6.
Debski H, Rozylo P, Wysmulski P. Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures, 2020;252:112716.
7.
Rozylo P, Debski H. Stability and load-carrying capacity of short composite Z-profiles under eccentric compression. Thin-Walled Structures, 2020;157:107019.
8.
Debski H, Samborski S, Rozylo P, Wysmulski P. Stability and Load-Carrying Capacity of Thin-Walled FRP Composite Z-Profiles under Eccentric Compression. Materials, 2020;13:2956.
9.
Rozylo P, Debski H. Effect of eccentric loading on the stability and load-carrying capacity of thin-walled composite profiles with top-hat section. Composite Structures, 2020;245:112388.
10.
Gliszczynski A, Czechowski L. Collapse of channel section composite profile subjected to bending, Part I: Numerical investigations. Compos Struct, 2017;178:383–394.
11.
Jakubczak P, Gliszczynski A. Bienias J, Majerski K. Kubiak T. Collapse of channel section composite profile subjected to bending Part II: Failure analysis. Compos Struct, 2017;179:1–20.
12.
Kazmierczyk F, Urbaniak M, Swiniarski J, Kubiak T. Influence of boundary conditions on the behaviour of composite channel section subjected to pure bending – Experimental study. Compos Struct, 2022;279:114727.
13.
Gliszczynski A, Kubiak T. Load-carrying capacity of thin-walled composite beams subjected to pure bending. Thin-Walled Struct, 2017;115:76–85.
14.
Czechowski L, Gliszczynski A, Bienias J, Jakubczak P, Majerski K. Composites Part B, 2017;111:112-123.
15.
Banat D, Mania RJ. Failure assessment of thin-walled FML profiles during buckling and postbuckling response. Compos Part B Eng 2017;112:278-289.
16.
Madukauwa-David ID, Drissi-Habti M. Numerical simulation of the mechanical behavior of a large smart composite platform under static loads. Composites Part B Eng 2016;88:19-25.
17.
Feo L, Latour M, Penna R, Rizzano G. Pilot study on the experimental behavior of GFRP-steel slip-critical connections. Composites Part B Eng 2017;115:209-222.
18.
Chroscielewski J, Miskiewicz M, Pyrzowski Ł, Sobczyk B, Wilde K. A novel sandwich footbridge - Practical application of laminated composites in bridge design and in situ measurements of static response. Composites Part B Eng 2017;126:153-161.
19.
Rozylo P. Stability and failure of compressed thin-walled composite columns using experimental tests and advanced numerical damage models. Int J Numer Methods Eng. 2021;122:5076-5099.
20.
Rozylo P, Wysmulski P. Failure analysis of thin-walled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Composite Structures, 2021;262:113597.
21.
Rozylo P, Debski H, Wysmulski P, Falkowicz K. Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures 2018;204:207-216.
22.
Paszkiewicz M, Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin-Walled Structures 2015;93:112-121.
23.
Ascione F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Composite Structures 2014;112:85–99.
24.
Sohn MS, Hu XZ, Kim JK, Walker L. Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement. Composites Part B: Engineering 2000;31:681-691.
25.
Batra RC, Gopinath G, Zheng JQ. Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures 2012;94:540-547.
26.
Rozylo P, Ferdynus M, Debski H, Samborski S. Progressive Failure Analysis of Thin-Walled Composite Structures Verified Experimentally. Materials, 2020;13:1138.
27.
Debski H, Rozylo P, Gliszczynski A, Kubiak T. Numerical models for buckling, postbuckling and failure analysis of predamaged thin-walled composite struts subjected to uniform compression. Thin-Walled Structures, 2019;139:53-65.
28.
Reddy JN, Pandey AK. A first-ply failure analysis of composite laminates. Comput Struct, 1987;25:371–393.
29.
Kubiak T, Samborski S, Teter A. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Compos Struct, 2015; 133:921-929.
30.
Hashin Z, Rotem A. A fatigue failure criterion for fibre reinforced materials. J. Compos. Mater, 1973;7:448–464.
31.
Camanho PP, Maimí P, Dávila CG. Prediction of size effects in notched laminates using continuum damage mechanics. Compos. Sci. Technol, 2017;67:2715–2727.
32.
Camanho PP, Matthews FL. A progressive damage model for mechanically fastened joints in composite laminates. J. Comp. Mater, 1999;33:2248–2280.
33.
Barbero EJ, Cosso FA. Determination of material parameters for discrete damage mechanics analysis of carbon epoxy laminates. Compos. Part B Eng, 2014;56:638–646.
34.
Lemaitre J, Plumtree A. Application of damage concepts to predict creep fatigue failures. J. Eng. Mater. Technol, 1979;101:284–292.
35.
Ribeiro ML, Vandepitte D, Tita V. Damage model and progressive failure analyses for filament wound composite laminates. Appl. Compos. Mater, 2013;20:975–992.
36.
Kachanov LM. Time of the rupture process under creep conditions, Izv. AN SSSR. Otd. Tekh. Nauk, 1958;8:26–31.
37.
Matzenmiller A, Lubliner J, Taylor LR. A constitutive model for anisotropic damage in fiber composites. Mech. Mater, 1995;20:125–152.
38.
Lapczyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf, 2007;38: 2333–2341.
39.
Bisagni C, Di Pietro, G, Fraschini L, Terletti D. Progressive crushing of fiber reinforced composite structural components of a Formula One racing car. Compos. Struct, 2005;68:491–503.
40.
Li W, Cai H, Li C, Wang K, Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Adv. Compos. Mater, 2014;23:477–490.
41.
Benzeggagh ML, Kenane M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Composites Science and Technology, 1996;56:439–449.
42.
Dugdale DS. Yielding of steel sheets containing slit, Journal of the Mechanics and Physics of Solids, 1960;8(2):100-104.
43.
Barenblatt GI. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962;7:55-129.
44.
Turon A, Camanho PP, Costa J, Dávila CG. A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mechanics of Materials, 2006;38(11):1072-1089.
45.
Camanho PP, Davila CG, de Moura MF. Numerical simulation of mixed-mode progressive delamination in the composite materials, Journal of Composite Materials, 2003;37(16):1415-1438.
46.
Hu H, Niu F, Dou T, Zhang H. Rehabilitation Effect Evaluation of CFRP-Lined Prestressed Concrete Cylinder Pipe under Combined Loads Using Numerical Simulation. Mathematical Problems in Engineering, 2018;2018:3268962.
47.
Borg R, Nilsson L, Simonsson K. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model, Composites Science and Technology, 2004;64:269-278.
48.
Zhao L, Gong Y, Zhang J, Chen Y, Fei B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements, Composite Structures, 2014; 116:509-522.
49.
Rozylo P. Failure analysis of thin-walled composite structures using independent advanced damage models. Composite Structures, 2021;262:113598.
50.
Li ZM, Qiao P. Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Engineering Structures, 2015;85:277–292.
51.
Bouhala L, Makradi A, Belouettar S, Younes A, Natarajan S. An XFEM/CZM based inverse method for identification of composite failure parameters. Comput. Struct, 2015;153:91-97.
52.
Paneretti E, Fanteria D, Danzi F. Delaminations growth in compression after impact test simulations: Influence of cohesive elements parameters on numerical results. Compos. Struct, 2016;137:140-147.
53.
Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Methods Eng, 1999;46(1):131–50.
54.
Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fracture Mech, 2002;69(7):813–33.
55.
Dolbow J, Moës N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Comput Methods Appl Mech Eng, 2001;190(51-52):6825–46.
56.
Melenk J, Babuska I. The partition of unity ˙nite element method: Basic theory and applications. computer methods. Appl. Mech Eng, 1996;39:289–314.
57.
Zienkiewicz OC, Taylor RL. Finite Element Method—Solid Mechanics, 5th ed.; Elsevier: Barcelona, Spain, 2000.
58.
Parlapalli MR, Soh KC, Shu DW, Ma G. Experimental investigation of delamination buckling of stitched composite laminates. Composites: Part A, 2007;38:2024–2033.
59.
Turvey GJ, Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Composite Structures, 2006;84:1527–1537.
60.
Bohse J. et al. Damage analysis of Polymer Matrix Composites by Acoustic Emission Testing. DGZfP-Proceedings BB 90-CD:339-348.
61.
Riccio A, Saputo S, Sellitto A, Di Caprio F, Di Palma L. A numerical-experimental assessment on a composite fuselage barrel vertical drop test: Induced damage onset and evolution. Composite Structures, 2020;248:112519.
62.
Gliszczynski A, Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Composite Structures, 2017;169:52-61.
63.
Aveiga D, Ribeiro ML. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Mathematical Problems in Engineering, 2018;2018:1861268.
64.
Rozylo P, Debski H, Falkowicz K, Wysmulski P, Pasnik J, Kral J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials, 2021;14(6): 1506.
65.
Banat D, Mania RJ, Degenhardt R. Stress state failure analysis of thin-walled GLARE composite members subjected to axial loading in the post-buckling range. Composite Structures, 2022;289:115468.
66.
Banat D, Mania RJ. Damage analysis of thin-walled GLARE members under axial compression – Numerical and experiment investigations. Compos. Struct, 2020;241:112102.
67.
Debski H. Experimental investigation of post-buckling behavior of composite column with top-hat cross-section. Eksploat. Niezawodn, 2013;15:106–110.
68.
Debski H. Badania numeryczne i doświadczalne stateczności i nośności kompozytowych słupów cienkościennych poddanych ściskaniu. Zeszyty naukowe nr 1161, Wydawnictwo Politechniki Łódzkiej, ISSN 0137-4834, Łódź, 2013.
69.
Rozylo P. Comparison of Failure for Thin-Walled Composite Columns. Materials, 2022;15:167.
70.
Debski H, Rozylo P, Wysmulski P, Falkowicz K, Ferdynus M. Experimental study on the effect of eccentric compressive load on the stability and load-carrying capacity of thin-walled composite profiles. Composites Part B, 2021;226:109346.
71.
Li Z, Cen S, Wu CJ, Shang Y, Li CF. High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element US-ATFQ4. Int J Numer Methods Eng, 2018;114:931–954.
72.
Camanho PP, Davila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002–211737, 2002:1–37.
73.
Dassault Systemes Simulia Corp. Abaqus 2020 Documentation. Providence, RI, USA, 2020.
74.
Belytschko T, Black T. Elastic Crack Growth in Finite Elements with Minimal Remeshing. International Journal for Numerical Methods in Engineering, 1999;45:601–620.
75.
Melenk J, Babuska I. The Partition of Unity Finite Element Method: Basic Theory and Applications. Computer Methods in Applied Mechanics and Engineering, 1996;39:289–314.
76.
Yu Z, Zhang J, Shen J, Chen H. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nuclear Materials and Energy, 2021;29:101063.
77.
Heidari-Rarani M, Sayedain M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Composites Part C: Open Access, 2020;2:100014.
78.
Kolanu NR, Raju G, Ramji M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Composites Part B, 2020;190: 107931.