RESEARCH PAPER
Heat Conduction in Anisotropic Medium with Perfectly Conductive Thread-Like Inclusions
 
More details
Hide details
1
Bialystok University of Technology, Wiejska Str. 45C, 15-351 Bialystok, Poland
 
2
Lutsk National Technical University, Lvivska Str. 75, 43018 Lutsk, Ukraine
 
 
Submission date: 2019-05-21
 
 
Acceptance date: 2020-01-10
 
 
Online publication date: 2020-01-30
 
 
Publication date: 2019-12-01
 
 
Acta Mechanica et Automatica 2019;13(4):251-254
 
KEYWORDS
ABSTRACT
The paper presents a novel approach for the analysis of steady-state heat conduction of solids containing perfectly conductive thread-like inhomogeneities. Modelling of a thread-like heat conductive inhomogeneity is reduced to determination of density of heat distributed along a spatial curve, which replaces the inclusion. Corresponding boundary integral equations are obtained for anisotropic solids with thread-like inclusions. Non-integral terms are computed in a closed form. It is shown that, nevertheless the singularity of the equation is 1/r, it is hypersingular, since the kernel is symmetric. Boundary element approach is adopted for solution of the obtained equations. Numerical example is presented for a rectilinear conductive thread, which verifies derived boundary integral equations.
REFERENCES (17)
1.
Anufriev R., Nomura M. (2019), Coherent thermal conduction in silicon nanowires with periodic wings, Nanomaterials, 9, 142; doi:10.3390/nano9020142.
 
2.
Balandin A.A., Ghosh S., Nika D.L., Pokatilov E.P. (2010), Extraordinary thermal conductivity of graphene: possible applications in thermal management, ECS Trans., 28(5), 63–71.
 
3.
Berger J.R., Martin P.A., Mantič V., Gray L.J. (2005), Fundamental solutions for steady-state heat transfer in an exponentially graded anisotropic material, Z. angew. Math. Phys., 56, 293–303.
 
4.
Cepite D., Jakovics A. (2008), Modelling of a heat tranfer through the material with regular distributed elliptic cavities, HEAT & POWER AND THERMAL PHYSICS, 1, 56–66.
 
5.
Chao C.K., Chen C.K., Chen F.M. (2009), Analytical exact solutions of heat conduction problemsfor a three-phase elliptical composite, CMES, 47(3), 283–297.
 
6.
Im H., Hwang Y., Moon J.H., Lee S.H., Kim J. (2013), The thermal conductivity of Al(OH)3 covered MWCNT/epoxy terminated dimethyl polysiloxane composite based on analytical Al(OH)3 covered MWCNT, Composites Part A: Applied Science and Manufacturing, 54, 159-165.
 
7.
Khan K.A., Khan S.Z., Khan M.A. (2016), Effective thermal conductivity of two-phase composites containing highly conductive inclusions, Journal of Reinforced Plastics and Composites, 35, 1586–1599.
 
8.
Kushch V.I., Sevostianov I., Giraud A. (2017), Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(20170472), 1–19 (http://dx.doi.org/10.1098/rspa...).
 
9.
Lee S., Lee J., Ryu B., Ryu S. (2018), A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance, SCIENTIFIC REPORTS, 8, Article Number: 7266, DOI: 10.1038/s41598-018-25379-8.
 
10.
Mirenkova G.N., Sosnina E.G. (1982), Rigid ellipsoidal disc and needle in an anisotropic elastic medium, PMM U.S.S.R., 45, 122–126.
 
11.
Pasternak Ia., Pasternak R., Pasternak V., Sulym H. (2017), Boundary element analysis of 3D cracks in anisotropic thermomagnetoelectroelastic solids, Engineering Analysis with Boundary Elements, 74, 70–78.
 
12.
Pasternak Ia., Sulym H., Ilchuk N. (2019), Boundary element analysis of 3D shell-like rigid electrically conducting inclusions in anisotropic thermomagnetoelectroelastic solids, Z Angew Math Mech. e201800319 (https://doi.org/10.1002/zamm.2...).
 
13.
Petrov A.G. (1986), Asymptotic expansions of thin axisymmetric cavities, Journal of Applied Mechanics and Technical Physics, 27(5), 667–672.
 
14.
Polyanin A.D., Manzhirov A.V. (2008) Handbook of integral equations, 2nd ed., Chapman & Hall/CRC.
 
15.
Sulim G.T., Piskozub J.Z. (2008), Thermoelastic equilibrium of piecewise homogeneous solids with thin inclusions, J Eng Math, 61, 315–337.
 
16.
Vales B., Cuartas V.M., Welemane H., Pastor M.-L., Trajin B. (2016), Heat source estimation in anisotropic materials, Composite Structures, 136, 287–296.
 
17.
Wang H., Qin Q.-H., Kang Y.L. (2005), A new meshless method for steady-state heat conductionproblems in anisotropic and inhomogeneous media, Archive of Applied Mechanics, 74, 563–579.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top