In this paper there are shown the results of low-cycle fatigue testing of steel P91 samples. During the testing there was conducted a fixed amplitude loading testing as well as programmed loading with various sequence degrees of the program. The testing was done in two temperatures: T=20°C and T=600°C. During the testing a cyclic steel weakening was observed without a clear period of stabilization. Greater changes of the cyclic properties were observed in temperature T=600°C. The influence of temperature on the fatigue life was determined in this paper. This influence is dependent on the degree of strain. It’s a minor one in the range of big strain and increases in the process of decreasing the degree of strain. Furthermore, the impact of the loading program type was determined on the test results and fatigue life calculations
REFERENCES(14)
1.
ASTM E606-92: Standard Practice for Strain -Controlled Fatigue.
Byrne J., Kan N. Y. K. (1999), Hussey I.W., Harrison G.F.: Influence of sub-surface defects on low-cycle fatigue life in a gas turbine disc alloy at elevated temperature, International Journal of Fatigue, 21, 195-206.
Fatemi A., Yang L. (1998), Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials, International Journal of Fatigue, 20, 9-34.
Junak G., Cieśla M. (2011), Effect of graded loads on low cycle durability of steel P91 i P92 used in power generation, Inżynieria materiałowa, 32, 5, 862-867 (in Polish).
Junak G., Cieśla M. (2011), Low-cycle fatigue of P91 and P92 steels used in the power engineering industry, Archives of Materials Science and Engineering, vol. 48 nr 1, 19-24.
Manson S. S., Halford G. R. (1986), Re-Examination of Cumulative Fatigue Damage Analysis - an Engineering Perspective, Engineering Fracture Mechanics, 25(5/6), 539-571.
Miner M. A. (1945), Cumulative Damage in Fatigue, Transactions of the American Society of Mechanicals Engineers Journal of Applied Mechanics, 67, 159-164.
Mroziński S. (2011), The influence of loading program on the course of fatigue damage cumulation, Journal of Theoretical and Applied Mechanics, 49, 1, 83-95.
Mroziński S., Skocki R. (2012), Influence of temperature on the cyclic properties of martensitic cast steel, Materials Science Forum, Vol. 726, 150-155.
Nagesha A., Valsan M., Kannan R., Bhanu Sankara Rao K., Mannan S.L. (2002), Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1 Mo ferritic steel, International Journal of Fatigue, 24, 1285-1293.
Nagode M., Zingsheim M. (2004), An online algorithm for temperature influenced fatigue life estimation: strain-life approach, International Journal of Fatigue, 26, 155-161.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.