RESEARCH PAPER
Influence of Fluid Rheology on Blood Flow Haemodynamics in Patient-Specific Arterial Networks of Varied Complexity – In-Silico Studies
 
More details
Hide details
1
Faculty of Mechanical Engineering, Lodz University of Technology, Żeromskiego 116 St., 90-924 , Łódź, Poland
 
 
Submission date: 2023-03-30
 
 
Acceptance date: 2023-06-28
 
 
Online publication date: 2023-12-30
 
 
Publication date: 2024-03-01
 
 
Acta Mechanica et Automatica 2024;18(1):8-21
 
KEYWORDS
ABSTRACT
Results obtained with computational fluid dynamics (CFD) rely on assumptions made during a pre-processing stage, including a mathematical description of a fluid rheology. Up to this date there is no clear answer to several aspects, mainly related to the question of whether and under what conditions blood can be simplified to a Newtonian fluid during CFD analyses. Different research groups present contradictory results, leaving the question unanswered. Therefore, the objective of this research was to perform steady-state and pulsatile blood flow simulations using eight different rheological models in geometries of varying complexity. A qualitative comparison of shear- and viscosity-related parameters showed no meaningful discrepancies, but a quantitative analysis revealed significant differences, especially in the magnitudes of wall shear stress (WSS) and its gradient (WSSG). We suggest that for the large arteries blood should be modelled as a non-Newtonian fluid, whereas for the cerebral vasculature the assumption of blood as a simple Newtonian fluid can be treated as a valid simplification.
REFERENCES (38)
1.
Reorowicz P, Obidowski D, Klosinski P, Szubert W, Stefanczyk L, Jozwik K. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region. J Biomech. 2014;47(7): 1642–51.
 
2.
Caballero AD, Laín S. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Engin. 2015;18(11):1200–16.
 
3.
Doost SN, Zhong L, Su B, Morsi YS. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed [Internet]. 2016;127:232–47. Available from: http://dx.doi.org/10.1016/j.cm....
 
4.
Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J Biomech. 2004;37(5):709–20.
 
5.
Jodko D, Jeckowski M, Tyfa Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue. Int j numer method biomed eng. 2022;38(8):1–23.
 
6.
Reorowicz P, Tyfa Z, Obidowski D, Wiśniewski K, Stefańczyk L, Jóźwik K, et al. Blood flow through the fusiform aneurysm treated with the Flow Diverter stent – Numerical investigations. Biocybern Biomed Eng. 2022;42(1):375–90.
 
7.
Tyfa Z, Obidowski D, Reorowicz P, Stefańczyk L, Fortuniak J, Jóźwik K. Numerical simulations of the pulsatile blood flow in the different types of arterial fenestrations: Comparable analysis of multiple vascular geometries. Biocybern Biomed Eng. 2018;38(2):228–42.
 
8.
Wisniewski K, Tomasik B, Tyfa Z, Reorowicz P, Bobeff EJ. Porous Media Computational Fluid Dynamics and the Role of the First Coil in the Embolization of Ruptured Intracranial Aneurysms. J Clin Med. 2021;10(7):1348.
 
9.
Cho YI, Kensey KR. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology. 1991;28(3–4):241–62.
 
10.
Gijsen FJH, Van De Vosse FN, Janssen JD. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 1999; 32(7):705–13.
 
11.
Shinde S, Mukhopadhyay S, Mukhopadhyay S. Investigation of flow in an idealized curved artery: comparative study using cfd and fsi with newtonian and non-newtonian fluids. J Mech Med Biol [Internet]. 2022;22:2250010. Available from: https://doi.org/10.1142/S02195....
 
12.
Boyd J, Buick JM. Comparison of Newtonian and non-Newtonian flows in a two-dimensional carotid artery model using the lattice Boltzmann method. Phys Med Biol. 2007;52(20):6215–28.
 
13.
Mendieta JB, Fontanarosa D, Wang J, Paritala PK, McGahan T, Lloyd T, et al. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomech Model Mechanobiol [Internet]. 2020;19(5):1477–90. Available from: https://doi.org/10.1007/s10237....
 
14.
Razavi A, Shirani E, Sadeghi MR. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech [Internet]. 2011;44(11):2021–30. Available from: http://dx.doi.org/10.1016/j.jb....
 
15.
Johnston BM, Johnston PR, Corney S, Kilpatrick D. Non-Newtonian blood flow in human right coronary arteries: Transient simulations. J Biomech. 2006;39(6):1116–28.
 
16.
Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Nonnewton Fluid Mech [Internet]. 2014;207:42–52. Available from: http://dx.doi.org/10.1016/j.jn....
 
17.
Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME. 2008;130(7):0780011–4.
 
18.
Obidowski D, Reorowicz P, Witkowski D, Sobczak K, Jóźwik K. Methods for determination of stagnation in pneumatic ventricular assist devices. Int J Artif Organs. 2018;41(10):653–63.
 
19.
Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, et al. Numerical modeling of the flow in intracranial aneurysms: Prediction of regions prone to thrombus formation. Ann Biomed Eng. 2008;36(11):1793–804.
 
20.
Logerfo FW, Nowak MD, Quist WC. Structural details of boundary layer separation in a model human carotid bifurcation under steady and pulsatile flow conditions. J Vasc Surg. 1985;2(2):263–9.
 
21.
Subramaniam T, Rasani MR. Pulsatile CFD Numerical Simulation to investigate the effect of various degree and position of stenosis on carotid artery hemodynamics. J Adv Res Appl Sci Eng Technol. 2022;26(2):29–40.
 
22.
Nagai Y, Kemper MK, Earley CJ, Metter EJ. Blood-flow velocities and their relationships in carotid and middle cerebral arteries. Ultrasound Med Biol. 1998;24(8):1131–6.
 
23.
Pomella N, Wilhelm EN, Kolyva C, González-Alonso J, Rakobowchuk M, Khir AW. Common Carotid Artery Diameter, Blood Flow Velocity and Wave Intensity Responses at Rest and during Exercise in Young Healthy Humans: A Reproducibility Study. Ultrasound Med Biol. 2017;43(5):943–57.
 
24.
Soleimani E, Mokhtari-Dizaji M, Fatouraee N, Saberi H. Assessing the blood pressure waveform of the carotid artery using an ultra-sound image processing method. Ultrasonography. 2017;36(2): 144–52.
 
25.
Lantz BM, Forester JM, Link DP, Holcroft JW. Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am J Roentgenol. 1981;137(5):903–7.
 
26.
Stein PD, Sabbah HN, Anbe DT, Walburn FJ. Blood velocity in the abdominal aorta and common iliac artery of man. Biorheology. 1979;16(3):249–55.
 
27.
Bruss ZS, Raja A. Physiology, Stroke Volume. In: StatPearls Publishing. StatPearls Publishing; 2022.
 
28.
Czernicki Z. Fizjologia mózgowego przepływu krwi. In: Czepko R, editor. Wybrane zagadnienia diagnostyki i leczenia malformacji naczyniowych ośrodkowego układu nerwowego. Uniwersytet Jagiellonski - Wydawnictwo Uniwersytetu Jagiellonskiego; 2007. 15–20.
 
29.
Xing CY, Tarumi T, Liu J, Zhang Y, Turner M, Riley J, et al. Distribution of cardiac output to the brain across the adult lifespan. J Cereb Blood Flow Metab. 2017;37(8):2848–56.
 
30.
Majka J. Fizjologia krążenia mózgowego. In: Szczudlik A, Członkowa A, Kwieciński H, Słowik A, editors. Udar mózgu. 1st ed. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego; 2007;26–41.
 
31.
Seidel E, Eicke BM, Tettenborn B, Krummenauer F. Reference values for vertebral artery flow volume by duplex sonography in young and elderly adults. Stroke. 1999;30(12):2692–6.
 
32.
Amin-Hanjani S, Du X, Pandey DK, Thulborn KR, Charbel FT. Effect of age and vascular anatomy on blood flow in major cerebral vessels. J Cereb Blood Flow Metab. 2015;35(2):312–8.
 
33.
Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35(December 2014):648–54.
 
34.
Apostolidis AJ, Moyer AP, Beris AN. Non-Newtonian effects in simulations of coronary arterial blood flow. J Nonnewton Fluid Mech [Internet]. 2016;233:155–65. Available from: http://dx.doi.org/10.1016/j.jn....
 
35.
Gharahi H, Zambrano BA, Zhu DC, DeMarco JK, Baek S. Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. Int J Adv Eng Sci Appl Math. 2016;8(1):46–60.
 
36.
Moradicheghamahi J, Sadeghiseraji J, Jahangiri M. Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. Int J Mech Sci [Internet]. 2019;150(October 2017):393–403. Available from: https://doi.org/10.1016/j.ijme....
 
37.
Razavi SE, Farhangmehr V, Zendeali N. Numerical investigation of the blood flow through the middle cerebral artery. BioImpacts [Internet]. 2018;8(3):195–200. Available from: https://doi.org/10.15171/bi.20....
 
38.
Oliveira IL, Santos GB, Gasche JL, Militzer J, Baccin CE. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. J Biomech Eng [Internet]. 2021;143(7):071006. Available from: https://doi.org/10.1115/1.4050....
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top