This paper investigates the performance of electromagnetic vibration harvesters that can be incorporated in energy harvesting magnetorheological (MR) dampers. The study outlines the structure and operating principles of harvesters and compares results of numerical calculations with measurement data obtained under idle run. Results demonstrate the potential applications of harvesters as velocity sensors. The relationship between electromotive force (emf) and velocity across the devices is established. The discussion section suggests that power generation by harvesters can provide the velocity information by utilising the sensing function applicable to a variety of control algorithms.
REFERENCES(11)
1.
Chen C., Liao W.H. (2010), A self-powered, self-sensing magnetorheological damper, Proceedings of IEEE Conference on Mechatronics and Automation, 1364−1369.
Jung H.J., Jang D.D., Koo J.H., Cho S.W. (2010), Experimental evaluation of a ‘self-Sensing capability of an electromagnetic induction system designed for MR Dampers, Journal of Intelligent Material Systems and Structures, 21, 827−835.
Kaleta J. (2013), Magnetic materials SMART: Structure, manufacturing, testing, properties, applications., Oficyna Wydawnicza Politechniki Wrocławskiej.
Matras A., Sapiński B., Węgrzynowski M. (2017), Magnetic field and circuit analysis in an electromagnetic transducer supplying a rotary MR dumper, Przegląd Elektrotechniczny, 93, 145-149.
Sapiński B. (2008), An experimental electromagnetic induction device for a magnetorheological damper, Journal of Theoretical and Applied Mechanics, 46(4), 933-947.
Sapinski B., Rosół M., Węgrzynowski M. (2016), Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.
Sapiński B., Węgrzynowski M., Nabielec J. (2018), Magne-trheological damper-based positioning system with power generation, Journal of Intelligent Material Systems and Structures, DOI: 10.1177/1045389x17730928.
Wang D.H., Bai X.X., Liao W.H. (2010), An integrated relative displacement self-sensing magnetorheological damper: prototyping and testing, Smart Materials and Structures, 19, 105008.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.