RESEARCH PAPER
Investigations of Polypropylene Foil Cutting Process Using Fiber Nb: Yag and Diode Nd:YVO4 Lasers
More details
Hide details
1
Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 , Koszalin, Poland
2
Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 01-476 Warsaw, Poland
3
PHU Kontakt Rafał Gryglicki, ul. Kalinowa 31. , 75-667 , Koszalin, Poland
Submission date: 2019-05-16
Acceptance date: 2019-06-24
Online publication date: 2019-07-25
Publication date: 2019-06-01
Acta Mechanica et Automatica 2019;13(2):107-112
KEYWORDS
ABSTRACT
Lasers are widely used in a variety of manufacturing processes including: depaneling, drilling, cutting, repair, trimming, micromachining. Polypropylene foils are intensively investigated as materials with great number of potential applications. Laser cutting is a major operation used in forming these materials and preparing the final workpieces. At the moment, the main challenge when cutting polypropylene is to obtain high quality products characterized by optimum sheared edge condition, minimum surface damage, freedom from burrs, slivers, edge wave, distortion, residual stresses and to obtain minimum width of HAZ zone. The amount of adjusTab. process parameters and the fact that the influence of these parameters on the process is not fully understood makes it difficult to control the cutting process. In practice, the right setup for the lasers is mostly found by trial and error combined with experience. Therefore, the final product frequently has serious defects. The paper presents the possibility of using fiber and diode lasers for forming of workpieces from polypropylene multilayer foil using cutting technology. The effect of selected process parameters and conditions on quality of sheared edge and material degradation is discussed.
REFERENCES (24)
1.
Abrao AM., Faria PE., Campos Rubio JC., Reis P., Paulo Davim J., (2007), Drilling of fiber reinforced plastics: a review. International Journal of Manufacturing Technology, 186: 1–7.
2.
Arroyoa J.M, Diniz A.E., Fernandes de Lima M.S., (2010), Wear performance of laser precoating treated cemented carbide milling tools, Wear 268, 1329–1336.
3.
Atanasov P. A., Baeva M. G., (1997), CW CO2 laser cutting of plastics, Proceedings SPIE 3092, 772–775.
4.
Bohdal L., (2016), The application of the smoothed particle hydrodynamics (SPH) method to the simulation and analysis of blanking process, Mechanika, 22 (5), 380–387.
5.
Caiazzo F., Ciurcio F., Daurelio G., Memola Capece Minutolo F., (2005), Laser cutting of different polymeric plastics (PE, PP and PC) by CO2 laser beam, Journal of Materials Processing Technology, 159, 279–285.
6.
Cuong T.V., Pham V.H., Tran Q.T., Hahn S.H., Chung J.S., Shin E.W., Kim E.J., (2010), Photoluminescence and Raman studies of graphene thin films prepared by reduction of graphene oxide, Materials Letters 64, 399–40.
7.
Deng J., Li S., Xing Y., Li Y., (2014), Studies on thermal shock resistance of TiN and TiAlN coatings under pulsed laser irradiation, Surface Engineering 30 (3), 195–203.
8.
Eltawahni H. A., Olabi A. G., Benyounis K. Y., (2010), Effect of process parameters and optimization of CO2 laser cutting of ultra high performance polyethylene, Materials and Design 31 (8), 4029-4038.
9.
Huang Y.J., Huang Y.P., Chiang P.Y., Liang H.C., Su K.W., Chen Y.-F. (2012), High-power passively Q-switched Nd:YVO4 UV laser at 355 nm, Applied Physics B., 106, 893–898.
10.
Karnakis D., Fieret J., Rumsby P., Gower M. (2010), Microhole drilling using reshaped pulsed Gaussian beams (private correspondence).
11.
Kiselev A. M., Ponomarev Yu. N., Stepanov A. N., Tikhomirov A. B., Tikhomirov B. A., (2011), Nonlinear absorption of femtosecond laser pulses (800 nm) by atmospheric air and water vapour, Quantum Electronics 41 (11), 976–980.
12.
Kurt M., Kaynak Y., Bagei E., Demirer H., Kurt M., (2009), Dimensional analyses and surface quality of laser cutting process for engineering plastics, International Journal of Manufacturing Technology, 41, 259–267.
13.
Langer M., Rechner R., Thieme M., Jansen I., Beyer E., (2012), Surface analytical characterisation of Nd:YAG-laser pre-treated Al Mg3 as a preparation for bonding, Solid State Sciences 14(7):926–35.
14.
Leone C., Papa I., Tagliaferri F., Lopresto V., (2013), Investigation of CFRP laser milling using a 30W Q-switched Yb:YAG fiber laser: Effect of process parameters on removal mechanisms and HAZ formation. Composites Part A: Applied Science and Manufacturing 55, 129–42.
15.
Li Z.L., Zheng H.Y., Lim G.C., Chu P.L., Li L., (2010), Study on UV laser machining quality of carbon fiber reinforced composites. Composites: Part A 41, 1403–1408.
16.
Miraouri I., Boujelbene M., Bayraktar E. (2014), Analysis of roughness and heat affected zone of steel plates obtained by laser cutting, Advanced Materials Research, 974, 169–173.
17.
Perry T.L., Werschmoeller D., Li X.C., Pfefferkorn F.E., Duffie N.A., (2009), Pulsed laser polishing of micro-milled Ti6Al4V samples. Journal of Manufacturing Processes 11(2):74–81.
18.
Ragusich A., Taillon G., Meunier M., Martinu L., Klemberg-Sapieha J.E., (2013), Selective pulsed laser stripping of TiAlN erosion-resistant coatings: effect of wavelength and pulse duration, Surface Coating Technology 232, 758–766.
19.
Sotnikov A., Laux H., Stritzker B., (2010), Experimental and Numerical Optimization of Beam Shapes for Short-Pulse Ultraviolet Laser Cutting Processing, Physics Procedia 5, 137–146.
20.
Uebel M., Bliedtner J., (2014), Laser precision cutting of high-melting metal foils, Procedia Engineering 69, 99–103.
21.
Wan D.P., Liang X.C., Meng F.M., Hu D.J., Wang Y.M., Chen N.K, Shao T.M., (2009), Automatic compensation of laser beam focusing parameters for flying optics. Optics and Laser Technology 41(4):499–503.
22.
Wang X.C., Li Z.L., Chen T., Lok B.K., Low D.K.Y. (2008), 355nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates, Opt. Lasers Eng. 46, 404-409.
23.
Zhang Y., Faghri A., (1999) Int. J. Heat Mass Transfer 42, 1775.
24.
Zhang Y.-L., Guo L., Wei S., He Y., Xia H., Chen Q., Sun H.-B., Xiao F.-S., (2010), Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, Nano Today 5, 15–20.