Faculty of Mechanical Engineering, Department of Mechanics and Applied Computer Science, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland
2
Faculty of Architecture, Construction and Design, Department of Applied Mathematics and Mechanics, Lutsk National Technical University, 75 Lvivska st., Lutsk, 43018, Ukraine
The influence of impulse load applied for different duration on the distribution of normalised dynamic radial stresses in positive and negative Poisson’s ratio medium was investigated in this study. For solving the non-stationary problem in the case of plane deformation for structurally inhomogeneous materials, the model of Cosserat continuum was applied. This model enables accounting for the influence of shear-rotation deformation of micro-particles of the medium. In the framework of Cosserat elasticity, on applying the Fourier transforms for time variable and developing the boundary integral equation method, solving of the non-stationary problem reduces to the system of singular integral equations, where the components that determine the influence of shear-rotation deformations are selected. The numerical calculations were performed for the foam medium with positive and negative Poisson’s ratio for different values of time duration of impulse. Developed approach can be used to predict the mechanical behaviour of foam auxetic materials obtained at different values of a volumetric compression ratio under the action of time variable load based on analysis of the distribution of radial stresses in foam medium.
REFERENCES(19)
1.
Brighenti R. (2014), Smart behaviour of layered plates through the use of auxetic materials, Thin-Walled Structures, 84, 432-442.
Duncan O., Shepherd T., Moroney Ch., Foster L., Venkatraman Pr, Winwood K., Allen T., Alderson A. (2018), Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection, Applied Sciences, 8, 941, 1-33.
Grima J., Attard D., Gatt R., Cassar R. (2009), A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form, Advanced Engineering Materials, 11(7), 533-535.
Lakes R. S. (1991), Experimental Micro Mechanics Methods for Conventional and Negative Poisson’s Ratio Cellular Solids as Cosserat Continua, Journal of Engineering Materials and Technology, 113, 148-155.
Lakes R. S. (2016), Physical Meaning of Elastic Constants in Cosserat, Void, and Microstretch Elasticity, Journal of Mechanics of Materials and Structues, 11(3), 217-229.
Mikulich O., Shvabyuk V., Sulym H. (2017), Dynamic Stress Concentration at the Boundary of an Incision at the Plate under the Action of Weak Shock Waves, Acta Mechanica et Automatica, Vol. 11, No. 3, 217-221.
Naik S., Dandagwhal R., Wani C., Giri S. (2019), A review on various aspects of auxetic materials. AIP Conference Proceedings, 2105 (1), 10.1063/1.5100689.
Strek T., Michalski J., Jopek H. (2019) Computational analysis of the mechanical impedance of the sandwich beam with auxetic metal foam core, Physica Status Solidi B, Vol. 256 (1), 1800423, 10.1002/pssb.201800423.
Sulym H., Mikulich O., Shvabyuk V. (2018), Investigation of the dynamic stress state of foam media in Cosserat elasticity, Mechanics and Mechanical Engineering, Vol. 22, No.3, 739-750.
Zhang X., Ding H., An Li. (2014), Numerical Investigation on Dynamic Crushing Behavior of Auxetic Honeycombs with Various Cell-Wall Angles, Advances in Mechanical Engineering, 10.1155/2014/679678.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.