Department of Mathematical and Computer Modelling, Faculty of Mechanics and Mathematics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040, Almaty, Kazakhstan
2
School of Computing and Mathematics, Keele University, Keele, Staffordshire, ST5 5BG, UK
3
Institute for Problems in Mechanical Engineering RAS, 61 Bolshoy Pr., Saint-Petersburg, 199178, Russia
The article is concerned with the analysis of the problem for a concentrated line load moving at a constant speed along the surface of a pre-stressed, incompressible, isotropic elastic half-space, within the framework of the plane-strain assumption. The focus is on the near-critical regimes, when the speed of the load is close to that of the surface wave. Both steady-state and transient regimes are considered. Implementation of the hyperbolic–elliptic asymptotic formulation for the surface wave field allows explicit approximate solution for displacement components expressed in terms of the elementary functions, highlighting the resonant nature of the surface wave. Numerical illustrations of the solutions are presented for several material models.
REFERENCES(40)
1.
Alekseeva L.A., Ukrainets V.N. (2009), Dynamics of an elastic half-space with a reinforced cylindrical cavity under moving loads, Int. Appl. Mech., 45(9), 981-990.
Cao Y., Xia H., Li Z. (2012), A semi-analytical/FEM model for predicting ground vibrations induced by high-speed train through continuous girder bridge, J. Mech. Sci. Technol., 26, 2485-2496.
Dimitrovová Z. (2017), Analysis of the critical velocity of a load moving on a beam supported by a finite depth foundation, Int. J. Solids Struct., 122, 128-147.
Erbaş B., Kaplunov J., Prikazchikov D.A., Şahin O. (2017), The near-resonant regimes of a moving load in a three-dimensional problem for a coated elastic half-space, Math. Mech. Solids, 22(1), 89–100.
Fu Y., Kaplunov J., Prikazchikov D. (2020), Reduced model for the surface dynamics of a generally anisotropic elastic half-space, P. Roy. Soc. A-Math. Phy., 476(2234), 1-19.
Gakenheimer D.C., Miklowitz J. (1969), Transient excitation of an elastic half space by a point load traveling on the surface, J. Appl. Mech., 36(3), 505-515.
Kaplunov J., Nolde E., Prikazchikov D.A. (2010a), A revisit to the moving load problem using an asymptotic model for the Rayleigh wave, Wave Motion, 47, 440-451.
Kaplunov J., Prikazchikov D., Sultanova L. (2019), Rayleigh-type waves on a coated elastic half-space with a clamped surface, Phil. Trans. Roy. Soc. A, 377(2156), 1-15.
Kaplunov J., Voloshin V., Rawlins A.D. (2010b), Uniform asymptotic behaviour of integrals of Bessel functions with a large parameter in the argument, Quart. J. Mech. Appl. Math., 63(1), 57-72.
Kumar R., Vohra R. (2020), Steady state response due to moving load in thermoelastic material with double porosity, Mater. Phys. Mech., 44(2), 172-185.
Lefeuve-Mesgouez G., Le Houédec D., Peplow A.T. (2000), Ground vibration in the vicinity of a high-speed moving harmonic strip load, J. Sound Vib., 231(5), 1289-1309.
Lu T., Metrikine A.V., Steenbergen M.J.M.M. (2020), The equivalent dynamic stiffness of a visco-elastic half-space in interaction with a periodically supported beam under a moving load, Europ. J. Mech.-A/Solids, 84, 104065.
Mishuris G., Piccolroaz A., Radi E. (2012), Steady-state propagation of a Mode III crack in couple stress elastic materials, Int. J. Eng. Sci., 61, 112-128.
Sun Z., Kasbergen C., Skarpas A., Anupam K., van Dalen K.N., Erkens S.M. (2019), Dynamic analysis of layered systems under a moving harmonic rectangular load based on the spectral element method, Int. J. Solids Struct., 180, 45-61.
van Dalen K.N., Tsouvalas A., Metrikine A.V., Hoving J.S. (2015), Transition radiation excited by a surface load that moves over the interface of two elastic layers, Int. J. Solids Struct., 73, 99-112.
Wang Y., Zhou A., Fu T., Zhang W. (2020), Transient response of a sandwich beam with functionally graded porous core traversed by a non-uniformly distributed moving mass, Int. J. Mech. Mater. Design, 16(3), 519-540.
Wootton P.T., Kaplunov J., Prikazchikov D. (2020), A second-order asymptotic model for Rayleigh waves on a linearly elastic half plane, IMA J. Appl. Math., 85, 113-131.
Zhou L., Wang S., Li L., Fu Y. (2018), An evaluation of the Gent and Gent-Gent material models using inflation of a plane membrane, Int. J. Mech. Sci., 146-147, 39-48.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.