RESEARCH PAPER
Plate Structural Analysis Based on a Double Interpolation Element with Arbitrary Meshing
 
More details
Hide details
1
Faculty of Civil Engineering, Ho Chi Minh City University of Architecture, 196 Pasteur, District 3, Ho Chi Minh city, Vietnam.
 
 
Submission date: 2020-12-08
 
 
Acceptance date: 2021-06-14
 
 
Online publication date: 2021-06-30
 
 
Publication date: 2021-06-01
 
 
Acta Mechanica et Automatica 2021;15(2):91-99
 
KEYWORDS
ABSTRACT
This paper presents the plate structural analysis based on the finite element method (FEM) using a double interpolation element with arbitrary meshing. This element used in this research is related to the first-order shear deformation theory (FSDT) and the double interpolation procedure. The first stage of the procedure is the same with the standard FEM for the quadrilateral element, but the averaged nodal gradients must be computed for the second stage of this interpolation. Shape functions established by the double interpolation procedure exhibit more continuous nodal gradients and higher-order polynomial contrast compared to the standard FEM when analysing the same mesh. Note that the total degrees of freedom (DOFs) do not increase in this procedure, and the trial solution and its derivatives are continuous across inter-element boundaries. Besides, with controlling distortion factors, the interior nodes of a plate domain are derived from a set of regular nodes. Four practical examples with good results and small errors are considered in this study for showing excellent efficiency for this element. Last but not least, this element allows us to implement the procedure in an existing FEM computer code as well as can be used for nonlinear analysis in the near future.
REFERENCES (35)
1.
Ahmadian H., Faroughi S. (2011a), Development of super-convergent plane stress element formulation using an inverse approach, Finite Elements in Analysis and Design, 47(7), 796-803.
 
2.
Ahmadian H., Faroughi S. (2011b), Shape functions of superconvergent finite element models, Thin-Walled Structures, 49(9), 1178-1183.
 
3.
Allman D. J. (1984), A compatible triangular element including vertex rotations for plane elasticity analysis, Computers and Structures, 19(1), 1-8.
 
4.
Ansys (2009), ANSYS Workbench User’s Guide, ANSYS, Inc.: Canonsburg, PA 15317, USA.
 
5.
Bui T. Q., Vo D. Q., Zhang C., Nguyen D. D. (2014), A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications, Finite Elements in Analysis and Design, 84, 14-31.
 
6.
Chau-Dinh T., Trung-Kien N., Nguyen-Van H., Ton-That H. L. (2021), A MITC3+ element improved by edge-based smoothed strains for analyses of laminated composite plates using the higher-order shear deformation theory, Acta Mechanica, 232(2), 389-422.
 
7.
Da V., Beirao L., Annalisa B., Lovadina C., Martinelli M., Sangalli G. (2012), An isogeometric method for the Reissner Mindlin plate bending problem, Computer Methods in Applied Mechanics and Engineering, 209, 45-53.
 
8.
Devarajan B., Kapania R. K. (2020), Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis, Composite Structures, 238, 111881.
 
9.
Faroughi S., Ahmadian H. (2010), Shape functions associated with inverse element formulations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(2), 304-311.
 
10.
Fredriksson M., Ottosen N. S. (2004), Fast and accurate 4-node quadrilateral, International Journal for Numerical Methods in Engineering, 61(11), 1809-1834.
 
11.
Ghugal Y. M., Sayyad A. S. (2010), Free vibration of thick orthotropic plates using trigonometric shear deformation theory, Latin American Journal of Solids and Structures, 8, 229-243.
 
12.
Hoang T. T. L. (2020), A new C0 third-order shear deformation theory for the nonlinear free vibration analysis of stiffened functionally graded plates, Facta Universitatis, Series: Mechanical Engineering, Online first.
 
13.
Hoang-Lan T. T. (2020), A Combined Strain Element to Functionally Graded Structures in Thermal Environment, Acta Polytechnica, 60(6), 528-539.
 
14.
Hoang-Lan T. T. (2020), The linear and nonlinear bending analyses of functionally graded carbon nanotube-reinforced composite plates based on the novel four-node quadrilateral element, European Journal of Computational Mechanics, 29(1), 139-172.
 
15.
Hoang-Lan T. T., Nguyen-Van H. (2021), A combined strain element in static, frequency and buckling analyses of laminated composite plates and shells, Periodica Polytechnica Civil Engineering, 65(1), 56-71.
 
16.
Hoang-Lan T. T., Nguyen-Van H., Chau-Dinh T. (2021), A novel quadrilateral element for analysis of functionally graded porous plates/shells reinforced by graphene platelets, Archive of Applied Mechanics.
 
17.
Kirchhoff G. R. (1850), Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe, Journal fur die reine und angewandte Mathematik, 40, 51-88.
 
18.
Miglani J., Devarajan B., Kapania R. K. (2018), Thermal buckling analysis of periodically supported composite beams using Isogeometric analysis, AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1224.
 
19.
Mindlin R. D. (1951), Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, ASME Journal of Applied Mechanics, 18, 31-38.
 
20.
Nguyen-Xuan H., Liu G. R., Thai-Hoang C., Nguyen-Thoi T. (2010), An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner– Mindlin plates, Computer Methods in Applied Mechanics and Engineering, 199(9), 471-489.
 
21.
Pian T. H. H., Sumihara K. (1984), Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20(9), 1685-1695.
 
22.
Reddy J. N. (1984), A simple higher-order theory for laminated composite plates, Journal of Applied Mechanics, 51(4), 745-752.
 
23.
Reddy J. N. (2007), Theory and Analysis of Elastic Plates and Shells: CRC Press.
 
24.
Robert D. B. (1979), Formulas for natural frequency and mode shape, New York: Van Nostrand Reinhold.
 
25.
Sayyad A. S., Ghugal Y. M. (2012), Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory, Applied and Computational Mechanics, 6(1), 65-82.
 
26.
Ton T. H. L. (2019), Finite element analysis of functionally graded skew plates in thermal environment based on the new third-order shear deformation theory, Journal of Applied and Computational Mechanics, 6(4), 1044-1057.
 
27.
Ton T. H. L. (2020), A novel quadrilateral element for dynamic response of plate ‎structures subjected to blast loading, Journal of Applied and Computational Mechanics, 6, 1314-1323.
 
28.
Ton T. H. L. (2020), Improvement on eight-node quadrilateral element (IQ8) using twice-interpolation strategy for linear elastic fracture mechanics, Engineering Solid Mechanics, 8(4), 323-336.
 
29.
Ton-That H. L., Nguyen-Van H., Chau-Dinh T. (2020), Nonlinear Bending Analysis of Functionally Graded Plates Using SQ4T Elements based on Twice Interpolation Strategy, Journal of Applied and Computational Mechanics, 6(1), 125-136.
 
30.
Ton-That H. L., Nguyen-Van H., Chau-Dinh T. (2020), Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C, Comptes Rendus. Mécanique, 348(4), 285-305.
 
31.
Tran L. V., Wahab M. A., Seung-Eock K. (2017), An isogeometric finite element approach for thermal bending and buckling analyses of laminated composite plates, Composite Structures, 179, 35-49.
 
32.
Wu S. C., Zhang W. H., Peng X., Miao B. R. (2012), A twice-interpolation finite element method (TFEM) for crack propagation problems, International Journal of Computational Methods, 9(4), 1250055.
 
33.
Xie X. P. (2005), An accurate hybrid macro-element with linear displacements, Communications in Numerical Methods in Engineering, 21(1), 1-12.
 
34.
Xuan H. N. (2008), A strain smoothing method in finite elements for structural analysis, PhD thesis, University of Liege, Belgium.
 
35.
Zheng C., Wu S. C., Tang X. H., Zhang J. H. (2010), A novel twice-interpolation finite element method for solid mechanics problems, Acta Mechanica Sinica, 26(2), 265-278.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top