RESEARCH PAPER
RHEOLOGICAL PROPERTIES OF MR FLUIDS RECOMMENDED FOR USE IN SHOCK ABSORBERS
 
More details
Hide details
1
AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Process Control, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
2
AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
 
Online publication date: 2013-12-31
 
 
Publication date: 2013-06-01
 
 
Acta Mechanica et Automatica 2013;7(2):107-110
 
KEYWORDS
ABSTRACT
The paper summarises the results of laboratory testing of rheological behaviour of (magnetorheological) MR fluids designed for use in shock absorber and vibration dampers. The experiments used a rotational rheometer with an extra chamber inside which a uniform magnetic field can be generated. Underlying the description of rheological properties of fluids is the Herschel-Bulkley’s model of viscous- plastic substances. The aim of the experiment was to determine the shear stress, yield stress, the yield factor and the power-law exponent depending on the magnetic flux density, followed by the comparative study of rheological parameters of investigated fluids.
REFERENCES (15)
1.
Cheng H., Wang J., Zhang Q., Werely N. (2009), Preparation of composite magnetic particles and aqueous magnetorheological fluids, Smart Materials and Structures, 18, 8, 1-4.
 
2.
Du C., Chen W., Wan F. (2010), Influence of HLB parameters of surfactants on properties of magnetorheological fluid, Advanced Materials Research, 97-101, 843-847.
 
3.
Gołdasz J. (2012), Magnetorheological Shock Absorbers: Automotive Context, Wydawnictwo Politechniki Krakowskiej.
 
4.
Gołdasz J., Sapiński B. (2011), Modeling of Magnetorheological Mounts in Various Operation Modes, Acta Mechanica and Automatica, Vol. 5, No. 4, 29-39.
 
5.
Gorodkin S., James R., Kordonski W. (2009), Magnetic properties of carbonyl iron particles in magnetorheological fluids, Journal of Physics: Conference Series, 149(1), 1-4.
 
6.
Jonsdottir F., Gudmundsson K. H., Dijkman T. B., Thorsteinsson F., Gutfleisch O. (2010), Rheology of perfluorinated polyether-based MR fluids with nanoparticles, Journal of Intelligent Material Systems and Structures, 21, 11, 1051-1060.
 
7.
Olabi A., Grunwald A. (2007), Design and application of magnetorheological fluid, Materials and Design, 28(10), 2658-2664.
 
8.
Phule P. (2001), Magnetorheological (MR) fluids: Principles and applications, Smart Materials Bulletin, 2001(2), 7-10.
 
9.
Sapiński B. (2006), Magnetorheological dampers in vibration control, Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH, Kraków.
 
10.
Soskey P. R,. Winter H. H. (1984), Large step shear strain experiments with parallel disk rotational rheometers, Journal of Rheology, 28, 625-645.
 
11.
Wang H., Zhang B. J., Liu X. Z., Luo D. Z., Zhong S. B. (2011), Compression resistance of magnetorheological fluid, Advanced Materials Research, 143-144, 624-628.
 
12.
Zhu X., Jing X., Li Ch. (2012), Magnetorheological fluid dampers: A review on structure design and analysis, Journal of Intelligent Material System and Structures, 23(8), 839-873.
 
14.
BASF The Chemical Company, http://www.basonetic.com/.
 
15.
LORD Corporation, http://www.lord.com/.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top