RESEARCH PAPER
Research of Dynamic Processes in an Anvil During a Collision with a Sample
 
More details
Hide details
1
Faculty of Mechanical and Industrial Engineering, Institute of Mechanics and Printing, Department of Printing Technologies, Warsaw University of Technology, ul. Konwiktorska 2, 00-217 Warsaw, Poland
 
2
Faculty of Mechanical and Industrial Engineering, Institute of Mechanics and Printing, Department of Mechanics and Weaponry Technology, Warsaw University of Technology, ul. Narbutta 85, 02-524 Warsaw, Poland
 
 
Submission date: 2022-10-03
 
 
Acceptance date: 2022-12-18
 
 
Online publication date: 2023-02-15
 
 
Publication date: 2023-03-01
 
 
Acta Mechanica et Automatica 2023;17(1):104-111
 
KEYWORDS
ABSTRACT
The paper concerns modelling the dynamics of the contact system of the tested sample with an elastic half-space (anvil) during their collision. The original elements in the paper include the proposed general approach to solving the problem of contact dynamics. The presented approach consists in determining the force of impact on the sample during the collision and the joint solution of the problem for the tested sample and the problem for an elastic semi-space under the conditions of the assumptions of Hertz’s theory. The resulting interaction forces allow the determination of displacements and stresses.
REFERENCES (42)
1.
Taylor G. The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc. R. Soc. London Ser. A. 1948;194:289–299.
 
2.
Whiffin AC. The use of flat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials. Proc. R. Soc. London, Ser. A. 1948;194:300–322.
 
3.
Carrington WE, Gayler MLV. The use of flat-ended projectiles for determining dynamic yield stress. III. Changes in microstructure caused by deformation under impact at high-striking velocities. Proc. R. Soc. London, Ser. A. 1948;194:323–331.
 
4.
Włodarczyk E, Michałowski M. Penetration of metallic half-space by a rigid bullet. Problemy Techniki Uzbrojenia. 2002;31(82):93–102.
 
5.
Włodarczyk E, Sarzyński M. Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target. Journal of Theoretical and Applied Mechanics. 2013; 51(4):847-857.
 
6.
Włodarczyk E, Sarzynski M. Strain energy method for determining dynamic yield stress in Taylor’s test. Engineering Transactions. 2017; 65(3):499-511.
 
7.
Świerczewski M, Klasztorny M, Dziewulski P, Gotowicki P. Numerical modelling, simulation and validation of the SPS and PS systems under 6 kg TNT blast shock wave. Acta Mechanica et Automatica. 2012;6(3):77-87.
 
8.
Kil’chevskii NA. Dynamic Contact Compression of Two Bodies. Impact [in Russian]. Kiev: Naukova Dumka; 1976.
 
9.
Awrejcewicz J. Pyryev Yu. Nonsmooth Dynamics of Contacting Thermoelastic Bodies. New York: Springer Varlag; 2009.
 
10.
Saint-Venant BD. Sur le choc longitudinal de deux barres élastiques. J. de Math. (Liouville) Sér. 2. 1867;12:237-276. http://portail.mathdoc.fr/JMPA....
 
11.
Hertz H. Über die Berührung fester elastischer Körper [in German]. Journal für die reine und angewandte Mathematik. 1881;92:156-171.
 
12.
Boussinesq VJ. Application des potentiels a l’étude de l’équilibre et du movement des solides élastiques. Paris: Gauthier-Villars, Imprimeur-Libraire; 1885.
 
13.
Johnson KL. Contact mechanics. Cambridge: Cambridge University Press; 1985.
 
14.
Sears JE. On the longitudinal impact of metal rods with rounded ends. Proc. Cambridge Phil. Soc. 1908;14:257-286.
 
15.
Hunter SC. Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids. 1957;5:162-171.
 
16.
Andersson M., Nilsson F. A perturbation method used for static contact and low velocity impact. Int. J. Impact Eng. 1995;16:759-775.
 
17.
Timoshenko SP, Young DH, Weaver WJr. Vibration Problems in Engineering. New York: Wiley. 1974.
 
18.
Popov SN. Impact of a rigid ball onto the surface of an elastic half-space. Soviet Applied Mechanics. 1990;26(3):250-256.
 
19.
Kubenko VD. Impact of blunted bodies on a liquid or elastic medium. International Applied Mechanics. 2004;40(11):1185-1225.
 
20.
Argatov II. Asymptotic modeling of the impact of a spherical indenter on an elastic half-space. International Journal of Solids and Structures. 2008;45:5035-5048.
 
21.
Argatov II. Fadin YA. Excitation of the Elastic Half-Space Surface by Normal Rebounding Impact of an Indenter. Journal of Friction and Wear. 2009;30(1):1-6.
 
22.
Argatov I, Jokinen M. Longitudinal elastic stress impulse induced by impact through a spring-dashpot system: Optimization and inverse. International Journal of Solids and Structures. 2013;50:3960-3966.
 
23.
Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. London: Edward Arnold Ltd.; 1960.
 
24.
Yang Y, Zeng Q, Wan L. Contact response analysis of vertical impact between elastic sphere and elastic half space. Shock Vib. 2018; vol. 2018: 1802174.
 
25.
Ruta P, Szydło A. Drop-weight test based identification of elastic half-space model parameters. Journal of Sound and Vibration. 2005;282:411-427.
 
26.
Qu A, James DL. On the impact of ground sound. Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019.2019:1-8.
 
27.
Lamb H. On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. London. Ser. A. 1904;203:1-42.
 
28.
Mooney HM. Some numerical solutions for Lamb’s problem. Bulletin of the Seismological Society of America. 1974; 64 (2):473-491.
 
29.
Cagniard L. Rêflextion et rêfraction des ondes sêismiques progressives, Gauthier-Villars. 1939.
 
30.
de Hoop AT. A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. 1960; B8:349-356.
 
31.
Sánchez-Sesma FJ, Iturrarán-Viveros U, Kausel E. Garvin’s generalized problem revisited. Soil Dyn. Earthq. Eng. 2013;47:4-15.
 
32.
Pak RYS, Bai X. Analytic resolution of time-domain half-space Green’s functions for internal loads by a displacement potential-Laplace-Hankel-Cagniard transform method. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020;476: 20190610.
 
33.
Pekeris CL. The seismic surface pulse. Proc. Natl. Acad. Sci. 1955; 41(7):469-480.
 
34.
Kausel E. Fundamental Solutions in Elastodynamics: a Compendium. Cambridge University Press; 2006.
 
35.
Kausel E. Lamb’s problem at its simplest. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences. 2012;469:20120462.
 
36.
Emami M, Eskandari-Ghadi M. Lamb’s problem: a brief history. Mathematics and Mechanics of Solids. 2019;25(3): 108128651988367.
 
37.
Achenbach JD. Wave Propagation in Elastic Solids. New York: Elsevier. 1973.
 
38.
Nowacki W. Thermoelasticity. 2nd edn., PWN-Polish Scientific Publishers. 1986.
 
39.
Smetankina NV, Shupikov AN, Sotrikhin SYu, Yareshchenko VG. A Noncanonically Shape Laminated Plate Subjected to Impact Loading: Theory and Experiment. J. Appl. Mech. 2008;75(5): 051004.
 
40.
Awrejcewicz J, Pyryev Yu. The Saint-Venant principle and an impact load acting on an elastic half-space. Journal of Sound and Vibration. 2003;264(1):245-251.
 
41.
Panovko YaG. Introduction to the Theory of Mechanical Shock. Moscow: Nauka. 1977 [in Russian].
 
42.
Kulczycki-Żyhajło R, Kołodziejczyk W, Rogowski G. Selected issues of theory of elasticity for layered bodies. Acta Mechanica et Automatica. 2009;3(3):32-38.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top