Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 , Rzeszów, Poland
This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis using the Lyapunov control theory and numeric simulations results.
REFERENCES(20)
1.
Balkacem K., Foudil, C. (2016), A virtual viscoelastic based aggregation model for self-organization of swarm robots system, TAROS 2016: Towards Autonomous Robotic Systems, 202–213, .
Christensen A.L., O’Grady R., Dorigo M. (2009), From fireflies to fault-tolerant swarms of robots, IEEE Transactions on Evolutionary Computation, 13(4), 754-766.
Gazi V., Passino K.M. (2004), A class of attractions/repulsion functions for stable swarm aggregations, International Journal of Control, 77(18), 1567-1579.
Hsieh M.A., Halasz A., Bergman S., Kumar V. (2008), Biologically inspired redistribution of a swarm of robots among multiple sites, Swarm Intelligence, 2(2-4), 121-141.
Shucker B., Bennett J.K. (2005), Virtual spring mesh algorithms for control of distributed robotic macrosensors, University of Colorado at Bulder, Technical Report CU-CS-996-05.
Trianni V. (2008), Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots, Studies in Computational Intelligence, 108. Springer, Berlin.
Urcola P., Riazuelo L., Lazaro M.T., Montano L. (2008), Cooperative navigation using environment compliant robot formations, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2789-2794.
Wiech J., Eremeyev V.A., Giorgio I. (2018), Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following, Continuum Mechanics and Thermodynamics, 1-12, Springer, 2018.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.