RESEARCH PAPER
Robotic Swarm Self-Organisation Control
,
 
 
 
More details
Hide details
1
Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 , Rzeszów, Poland
 
 
Submission date: 2018-06-26
 
 
Acceptance date: 2019-06-28
 
 
Online publication date: 2019-07-25
 
 
Publication date: 2019-06-01
 
 
Acta Mechanica et Automatica 2019;13(2):130-134
 
KEYWORDS
ABSTRACT
This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis using the Lyapunov control theory and numeric simulations results.
REFERENCES (20)
1.
Balkacem K., Foudil, C. (2016), A virtual viscoelastic based aggregation model for self-organization of swarm robots system, TAROS 2016: Towards Autonomous Robotic Systems, 202–213, .
 
2.
Brambilla M. Ferrante E., Birattari M., Dorigo M. (2013), Swarm robotics: a review from the swarm engineering perspective, Swarm Intell., 7(1), 1-41.
 
3.
Cheah C.C., Hou S.P., Slotine J.J. (2009), Region-based shape control for a swarm of robots, Automatica, 45(10), 2406-2411.
 
4.
Christensen A.L., O’Grady R., Dorigo M. (2009), From fireflies to fault-tolerant swarms of robots, IEEE Transactions on Evolutionary Computation, 13(4), 754-766.
 
5.
Gazi V. (2005), Swarm aggregations using artificial potentials and sliding-mode control, IEEE Transactions on Robotics, 21(6), 1208-1214.
 
6.
Gazi V., Passino K.M. (2003), Stability analysis of swarms, IEEE Transactions on Automatic Control, 48(4), 692-697.
 
7.
Gazi V., Passino K.M. (2004), A class of attractions/repulsion functions for stable swarm aggregations, International Journal of Control, 77(18), 1567-1579.
 
8.
Giergiel J., Żylski, W. (2005), Description of motion of a mobile robot by Maggie’s equations, J. Theor. Appl. Mech., 43(3), 511-521.
 
9.
Hendzel Z. (2007), An adaptive critic neural Network for motion control of Wheeler mobile robot, Nonlinear Dynamics, 50, 849-855.
 
10.
Hildenbrandt H., Carere C., Hemelrijk C.K. (2010) Self-organized aerial displays of thousands of starlings: a model, Behavioral Ecology, 21(6), 1349-1359,.
 
11.
Hsieh M.A., Halasz A., Bergman S., Kumar V. (2008), Biologically inspired redistribution of a swarm of robots among multiple sites, Swarm Intelligence, 2(2-4), 121-141.
 
12.
Lewis F.L., Jagannathan S., Yesildirek A. (1999), Control of Robot Manipulators and Nonlinear Systems, Tylor & Frnacjis, London.
 
13.
Rauch E., Millonas M.M., Chialvo D.R. (1995), Pattern formation and functionality in swarm models, Physics Letters A, 207(3-4), 185-193.
 
14.
Reynolds C.W. (1987) Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21(4), 25-34, New York.
 
15.
Shucker B., Bennett J.K. (2005), Virtual spring mesh algorithms for control of distributed robotic macrosensors, University of Colorado at Bulder, Technical Report CU-CS-996-05.
 
16.
Spears W.M., Spears D.F., Hamann J.C., Heil R. (2004), Distributed, physics-based control of swarms of vehicles, Autonomous Robots, 17(2-3), 137-162.
 
17.
Spong M.W., Vidyasagar M. (1989), Robot dynamics and control, John Wiley & Sons.
 
18.
Trianni V. (2008), Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots, Studies in Computational Intelligence, 108. Springer, Berlin.
 
19.
Urcola P., Riazuelo L., Lazaro M.T., Montano L. (2008), Cooperative navigation using environment compliant robot formations, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2789-2794.
 
20.
Wiech J., Eremeyev V.A., Giorgio I. (2018), Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following, Continuum Mechanics and Thermodynamics, 1-12, Springer, 2018.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top