The paper describes the possibilities of bevel gears kinematics design on the basis of the motion graph and improving modifications to cut the pinion teeth flanks. The result is the ability to increase the accuracy of the kinematic transmission. The issue of changing the geometry of the pinion gear is considered in respect of a gear intended for the use in aviation, which requires the cooperation of high quality meshing. The basic geometric features that have been modified include the profile angle, the angle of tooth line, crowning trans-verse and longitudinal and lateral surface twist angle of the tooth. The modification of each of the selected geometrical parameters has had a different effect on the chart of transmission. It has been shown that the effect of the intended changes in the geometry of the pinion may reduce the deviation of motion delays gear and an improve the gear transmission chart.
REFERENCES(10)
1.
Alves J. T., Guignand M., de Vaujany J-P. (2013), Designing and Manufacturing Spiral Bevel Gears Using 5-axis Computer Numerical Control (CNC) Milling Machines. ASME Journal of Mechanical Design, February 2013, Vol. 135, 024502.
De Vaujany J-P., Gugnand M., Remond D., Icard Y. (2007), Numerical and Experimental Study of the Loaded Transmission Error of a Spiral Bevel Gear, ASME Journal of Mechanical Design, Vol. 129, 195-200.
Marciniec A. (2003), Synthesis and analysis of meshing for Spiral Bevel Gears, Publishing House of Rzeszow University of Technology, Rzeszow (in Polish).
Pisula J., Płocica M. (2012), Analysis of Meshing of Bevel Gears on the Basis of a mathematical model of machining processes and Direct Simulation of Cutting in Inventor, Mechanik, 1/2012, 78-79 (in Polish).
Pisula J., Ptocica M. (2013), Evaluation of the Quality of Meshing for Designed Pair of Bevel Gears with Independent Design System, Mechanik, 2/2013, 138 (in Polish).
Shih Y. P., Fong Z. H. (2008), Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator, Journal of Mechanical Design, Transactions of the ASME, Vol. 130, 062604.
Simon, V., (2008), Machine-Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments, ASME Journal of Mechanical Design, Vol. 130, 082603.
Wang P. Y., Fong Z. H. (2005), Adjustability Improvement of Face-Milling Spiral Bevel Gears by Modified Radial Motion (MRM) Method, Mechanism and Machine Theory, Vol. 40, 69-89.
Zhang R., Wang T. (2012), The Influences of Installation Errors on Double Circular Arc Tooth Spiral Bevel Gear Using TCA Method, Journal of Convergence Information Technology (JCIT), Vol. 7, No.1, 1-10.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.