RESEARCH PAPER
The Influence of Clearances in a Drive System on Dynamics and Kinematics of a Telescopic Crane
 
More details
Hide details
1
Faculty of Mechanical Engineering and Computer Science, Department of Engineering Fundamentals, University of Bielsko-Biala, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
 
 
Online publication date: 2015-05-15
 
 
Publication date: 2015-03-01
 
 
Acta Mechanica et Automatica 2015;9(1):9-13
 
KEYWORDS
ABSTRACT
The paper presents the results of numerical analyses that were carried out in order to evaluate how a change in a size of a clearance in a slewing motion drive system of a telescopic crane influences the movement of a load and the dynamic loads of a structure. A computational model was developed based on a real structure of an experimental crane by using the ADAMS software. The analyses showed that a circumferential clearance at the output of a reduction gear, which is less than 1º, does not adversely affect the precision of the load movement. An excessive clearance leads to losing fluidity of a body slewing motion and to changes in the trajectory of the load.
REFERENCES (25)
1.
Bai Z.F., Zhao Y. (2012), Dynamics modeling and quantitative analysis of multibody systems including revolute clearance joint, Precision Engineering, 36, 554- 567.
 
2.
Erkaya S. (2012), Investigation of joint clearance effects on welding robot manipulators, Robotics and Computer-Integrated Manufacturing, 28, 449-457.
 
3.
Flores P. (2010), A parametric study on the dynamic response of planar multibody systems with multiple clearance joint, Nonlinear Dynamics, 61, 633-653.
 
4.
Flores P., Ambrosio J. (2004), Revolute joints with clearance in multibody systems, Computers and Structures, 82, 1359-1369.
 
5.
Flores P., Leine R., Glocker R. (2010), Modeling and analysis of rigid multi-body systems with translational clearance joints based on the nonsmooth dynamics approach, Multibody System Dynamics, 23 (2), 165-190.
 
6.
Giergiel J. (1986), Damping of mechanical vibrations (in Polish), Wyd. AGH, Kraków.
 
7.
Harlecki A. (1998), Dynamic analysis of telescopic truck crane using the rigid finite element method, Zeszyty Naukowe Politechniki Łódzkiej Filii w Bielsku-Białej, Budowa i Eksploatacja Maszyn, 32 (51), 11-39.
 
8.
Harlecki A. (1999), „Stick-Slip” motion of open manipulators with flexible drives and dry friction in joint, Journal of Theoretical and Applied Mechanics, 4 (37), 873-892.
 
9.
Kłosiński J., Trąbka A. (2010), Frequency analysis of vibratory device model (in Polish). Pneumatyka, 1, 46-49.
 
10.
Kuusisto S. (1999), Transient nonlinear dynamics of camshafts, Proceedings of the IMAC 17th international modal analysis conference, 1093-1099.
 
11.
Marchelek K. (1991), Machine tools dynamics (in Polish), WNT, Warszawa.
 
12.
Oberg E., Jones F.D., Horton H.L., Ryffel H.H. (2004), 27th Edition Machinery’s Handbook, Industrial Press, Inc., New York.
 
13.
Olivier B.B.A., Jesus R. (2002), Modeling of joints with clearance in flexible multi-body system, International Journal of Solids and Structures, 39, 41-63.
 
14.
Pan M., Van Brussel H., Sas P. (1998), Intelligent joint fault diagnosis of industrial robots, Mechanical Systems and Signal Processing, 12 (4), 571-588.
 
15.
Parenti-Castelli V., Venanzi S. (2005), Clearance influence analysis on mechanisms, Mechanism and Machine Theory, 40, 1316-1329.
 
16.
Siyu C., Jinyuan T., Caiwang L., Qibo W. (2011), Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction, Mechanism and Machine Theory, 46, 466-478.
 
17.
Sun T., Hu H.Y. (2003), Nonlinear dynamics of a planetary gear system with multiple clearances, Mechanism and Machine Theory, 38, 1371-1390.
 
18.
Tian Q., Zhang Y., Chen L., Flores P. (2009), Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joint, Computers and Structures, 87 (13-14), 913-929.
 
19.
Ting K.L., Zhu J., Watkins D. (2000), The effects of joint clearance on position and orientation deviation of linkages and manipulators, Mechanism and Machine Theory, 35, 391-401.
 
20.
Trąbka A. (2014a), Dynamics of telescopic cranes with flexible structural components, International Journal of Mechanical Sciences, 88, 162-174.
 
21.
Trąbka A. (2014b), The impact of the support system’s kinematic structure on selected kinematic and dynamic quantities of an experimental crane, Acta Mechanica et Automatica, vol.8, no.4, 189-193.
 
22.
Trombski M., Kłosiński J., Majewski L., Suwaj S. (1995), Dynamic analysis of a crane model when the clearances in kinematic pairs of the crane jib are taken into account (in Polish), Materiały VIII Konferencji „Problemy Rozwoju Maszyn Roboczych”, Część I, Zakopane, 191-198.
 
23.
Walha L., Fakhfakh T., Haddar M. (2009), Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash, Mechanism and Machine Theory, 44, 1058-1069.
 
24.
Zhao Y., Bai Z.F. (2011), Dynamics analysis of space robot manipulator with joint clearance, Acta Astronautica, 68, 1147-1155.
 
25.
Żółtowski B. (2002), Research of machine dynamics (in Polish), Wyd. MARKAR, Bydgoszcz.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top