RESEARCH PAPER
The Influence of Friction Force and Hysteresis on the Dynamic Responses of Passive Quarter-Car Suspension with Linear and Non-Linear Damper Static Characteristics
 
More details
Hide details
1
Faculty of Mechanical Engineering, Institute of Machine Design, Poznan University of Technology, ul. Piotrowo 3, 61-138, Poznan, Poland
 
 
Submission date: 2022-08-08
 
 
Acceptance date: 2023-01-22
 
 
Online publication date: 2023-03-19
 
 
Publication date: 2023-06-01
 
 
Acta Mechanica et Automatica 2023;17(2):205-218
 
KEYWORDS
ABSTRACT
Vehicle passive suspensions consist of two major elements generating force – spring and passive damper. Both possess non-linear characteristics, which are quite often taken into account in simulations; however, the friction forces inside the hydraulic damper and the damping force’s hysteresis are usually left out. The researchers in this paper present the results of examination of the influence of using complex damper models – with friction and hysteresis; and with linear and non-linear static characteristics – on the chosen dynamic responses of a suspension system for excitations in the typical exploitation frequency range. The results from the simulation tests of the simplified and advanced versions of the damper model – different transfer functions and their relation to the reference model’s transfer functions – are compared. The main conclusion is that friction and hysteresis add extra force to the already existing damping force, acting similar to damping increase for the base static characteristics. But this increase is not linear – it is bigger for smaller frequencies than for higher frequencies. The research shows the importance of including non-linear characteristics and proposed modules in modelling passive dampers.
REFERENCES (12)
1.
Ślaski G. Studium projektowania zawieszeń samochodowych o zmiennym tłumieniu. Wydawnictwo Politechniki Poznańskiej. Poznań: Wydawnictwo Politechniki Poznańskiej; 2012. 399–404 p.
 
2.
Grajnert J. Izolacja drgań w maszynach i pojazdach. Wydawnictwo Politechniki Wrocławskiej; 1997.
 
3.
Mitschke M. Dynamika samochodu t.2 Drgania. Warszawa: Wydawnictwo Komunikacji i Łączności; 1989.
 
4.
Reński A. Bezpieczeństwo czynne samochodu. Zawieszenia oraz układy hamulcowe i kierownicze. Oficyna Wydawnicza Politechniki Warszawskiej; 2011.
 
5.
Zdanowicz P, Lozia Z. Wyznaczenie optymalnej wartości współczynnika asymetrii amortyzatora pasywnego zawieszenia samochodu z wykorzystaniem modelu „ćwiartki samochodu”. Pr Nauk Politech Warsz Transp. 2017;(119):249–65.
 
6.
Zdanowicz P. Ocena stanu amortyzatorów pojazdu z uwzględnieniem tarcia suchego w zawieszeniu. Politechnika Warszawska; 2012.
 
7.
Lyu D, Zhang Q, Lyu K, Liu J, Li Y. Influence of the Dry Friction Suspension System Characteristics on the Stick-Slip of Vertical Vibration of a Three-Piece Bogie. Shock Vib. 2021;2021.
 
8.
Ślaski G, Klockiewicz Z. the Influence of Shock Absorber Characteristics’ Nonlinearities on Suspension Frequency Response Function Estimation and Possibilities of Simplified Characteristics Modelling. Arch Automot Eng. 2022;96(2):77–95.
 
9.
Dąbrowski K. Algorytmizacja adaptacyjnego sterowania tłumieniem zawieszenia samochodu dla uwzględnienia zmienności warunków eksploatacji. 2018.
 
10.
Kwok NM, Ha QP, Nguyen TH, Li J, Samali B. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization. Sensors Actuators, A Phys. 2006;132(2):441–51.
 
11.
Wiȩckowski D, Dąbrowski K, Ślaski G. Adjustable shock absorber characteristics testing and modelling. IOP Conf Ser Mater Sci Eng. 2018;421(2).
 
12.
Savaresi SM, Poussot-Vassal C, Spelta C, Sename O, Dugard L. Semi-Active Suspension Control Design for Vehicles. 2010.
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top