RESEARCH PAPER
The Use of Thermography to Determine the Compaction of a Saddle-Shaped Briquette Produced in an Innovative Roller Press Compaction Unit
 
More details
Hide details
1
Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
 
2
Department of Machine Design and Operation, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
 
 
Submission date: 2022-06-25
 
 
Acceptance date: 2022-09-12
 
 
Online publication date: 2022-11-01
 
 
Publication date: 2022-12-01
 
 
Acta Mechanica et Automatica 2022;16(4):340-346
 
KEYWORDS
ABSTRACT
The unit compacting pressure in the fine-grained material consolidation process in the roller press can reach >100 MPa and is a parameter that results, among other things, from the properties of the consolidated material and the compaction unit geometry. Achieving the right pressure during briquetting is one of the factors that guarantee the proper consolidation and quality of briquettes. The distribution of the temperature on the surface of the briquettes correlates with locally exerted pressure. The present work aimed to analyse the briquetting process of four fine-grained materials in a roller press equipped with saddle-shaped briquette-forming rollers based on images obtained from the thermography conducted immediately after their consolidation. The tests were carried out in a roller press that was equipped with forming rollers of 450-mm diameter and having a cavity with a volume of 4 cm3, as described by patent PL 222229 B1. Two mixtures of hydrated lime with 9.1 wt% and 13.0 wt% water, a mixture of scale and a mixture of electric arc furnace (EAF) dust were used for the tests. In most mixtures, the highest temperatures were achieved in the middle-upper part of the briquettes. The briquettes from the EAF dust mixture heated locally the most on the surface up to 37.7 °C. The difference between the maximum briquette temperature and the ambient temperature was 20.2 °C.
REFERENCES (51)
1.
Świderski W, Miszczak M, Szabra D. Zastosowanie pomiarów termowizyjnych w badaniach dysz grafitowych stosowanych układach napędowych przeciwlotniczych pocisków rakietowych krótkiego zasięgu. Biuletyn Wojskowej Akademii Technicznej. 2008;57(3): 285-293.
 
2.
Duchaczek A, Mańko Z. Próba zastosowania termowizji w badaniach zmęczeniowych dźwigarów stalowych w mostach wojskowych. Zeszyty Naukowe / Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki. 2009;(3): 125-135.
 
3.
Al-Habaibeh A, Hawas A, Hamadeh L, Medjdoub B, Marsh J, Sen A. Enhancing the sustainability and energy conservation in heritage buildings: The case of Nottingham Playhouse. Frontiers of Architectural Research. 2022;11(1): 142-160. https://doi.org/10.1016/j.foar....
 
4.
Silva GP, Batista PIB, Povóas YV. The usage of infrared thermography to study thermal performance of walls: a bibliographic review. Revista ALCONPAT. 2019;9(2): 117-129. https://doi.org/10.21041/ra.v9....
 
5.
Tomita K, Chew MYL. A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings. Sensors. 2022;22(2): 423. https://doi.org/10.3390/s22020....
 
6.
Branco JHL, Branco RLL, Siqueira TC, de Souza LC, Dalago KMS. Andrade A. Clinical applicability of infrared thermography in rheumatic diseases: A systematic review. Journal of Thermal Biology, 2022, 104, 103172 https://doi.org/10.1016/j.jthe....
 
7.
Kaźmierska B, Sobiech KA, Demczuk-Włodarczyk E, Chwałczyńska A. Thermovision assessment of temperature changes in selected body areas after short-wave diathermy treatment. Journal of Thermal Analysis and Calorimetry. 2021: 1-8 https://doi.org/10.1007/s10973....
 
8.
Damijan Z, Uhryński A. Systemic cryotherapy influence of low temperatures on selected physiological parameters. Acta Physica Polonica A 2012;121(1-A): 38-41. http://dx.doi.org/10.12693%2FA....
 
9.
Damijan Z, Uhryński A. The effect of general low frequency vibration on energy balance of a human being. Acta Physica Polonica A. 2013;123(6): 970-973. doi: 10.12693/APhysPolA.123.970.
 
10.
Damijan Z, Uhryński A. The influence of driver’s working environment on thermical changes of their organism. Acta Physica Polonica A. 2010;118(1): 35-40. doi: 10.12693/APhysPolA.118.35.
 
11.
Molenda J, Charchalis A. Using thermovision for temperature measurements during turning process. Journal of KONES Powertrain and Transport. 2018;25(4): 293-298. https://doi.org/10.5604/01.300....
 
12.
Bartoszuk M. Thermovision measurements of temperature on the tool-chip upper side in turning of aisi 321 steel. Technical Sciences. 2020;23(1): 69-80. https://doi.org/10.31648/ts.51....
 
13.
Piecuch G, Madera M, Żabiński T. Diagnostics of welding process based on thermovision images using convolutional neural network. IOP Conf. Series: Materials Science and Engineering. 2019;710(1): 012042. doi: 10.1088/1757-899X/710/1/012042.
 
14.
Nowacki J, Wypych A. Application of thermovision method to welding thermal cycle analysis. The Journal of Achievements in Materials and Manufacturing Engineering. 2010;40(2): 131-137.
 
15.
Struzikiewicz G, Sioma A. Application of infrared and high-speed cameras in diagnostics of CNC milling machines: case study. Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments. 2019;11176: 111760c. https://doi.org/10.1117/12.253....
 
16.
Fidal M. Identification of machine technical state on the basis of fourier analysis of infrared images. Diagnostics And Structural Health Monitoring. 2011;2(58): 25-30.
 
17.
Michalik P, Zajac J. Use of thermovision for monitoring temperature conveyor belt of pipe conveyor. Applied Mechanics and Materials. 2014;683: 238-42. https://doi.org/10.4028/www.sc....
 
18.
Baranowski P, Damaziak K, Malachowski J, Mazurkiewicz L, Polakowski H, Piatkowski T, Kastek M. Thermovision in the validation process of numerical simulation of braking. Metrology and Measurement Systems. 2014;21(2): 329-340. http://dx.doi.org/10.2478%2Fmm....
 
19.
Jakubek B, Grochalski K, Rukat W, Sokol H. Thermovision measurements of rolling bearings. Measurement. 2022;189: 110512. https://doi.org/10.1016/j.meas....
 
20.
Janura R, Gutten M, Korenciak D, Sebok M. Thermal processes in materials of oil transformers. Diagnostic of Electrical Machines and Insulating Systems in Electrical Engineering (DEMISEE). 2016: 81-84. doi: 10.1109/DEMISEE.2016.7530470.
 
21.
Simko M, Chupac M, Gutten M. Thermovision measurements on electric machines. International Conference on Diagnostics in Electrical Engineering (Diagnostika). 2018: 1-4. doi: 10.1109/DIAGNOSTIKA.2018.8526033.
 
22.
Wyleciał T, Urbaniak D. Research on thermal contact resistance in a bed of steel square bars using thermovision. Acta Physica Polonica A. 2019;135(2): 263-269. doi: 10.12693/APhysPolA.135.263.
 
23.
Sharkeev Y, Vavilov V, Skripnyak V.A, Belyavskaya O, Legostaeva E, Kozulin A, Chulkov A, Sorokoletov A, Skripnyak VV, Eroshenko A, Kuimova M. Analyzing the deformation and fracture of bioinert titanium, zirconium and niobium alloys in different structural states by the use of infrared thermography. Metals. 2018; 8(9): 703. https://doi.org/10.3390/met809....
 
24.
Heinz D, Halek B, Krešák J, Peterka P, Fedorko G Molnár V. Methodology of measurement of steel ropes by infrared technology. Engineering Failure Analysis. 2022;133: 105978. https://doi.org/10.1016/j.engf....
 
25.
Pawlak A, Rozanski A, Galeski A. Thermovision studies of plastic deformation and cavitation in polypropylene. Mechanics of Materials. 2013;67: 104-118. https://doi.org/10.1016/j.mech....
 
26.
Koštial P, Ružiak I, Jonšta Z, Kopal I, Hrehuš R, Kršková J. Experimental method for complex thermo-mechanical material analysis. International Journal of Thermophysics. 2010;31: 630–636. https://doi.org/10.1007/s10765....
 
27.
Pieklak K, Mikołajczyk Z. Strength tests of 3D warp-knitted composites with the use of the thermovision technique. Fibres & Textiles in Eastern Europe. 2011;19(5 (88)): 100-105.
 
28.
Grochalski K, Peta K. Diagnostic methods of detecting defects within the material with the use of active infrared thermovision. Archives of Mechanical Technology and Materials. 2017:37(1): 41-44. doi: 10.1515/amtm-2017-0006.
 
29.
Bazaleev NI, Bryukhovetskij VV, Klepikov VF, Litvinenko VV. Thermovision acoustic thermography construction materials defectos-copy. Voprosy Atomnoj Nauki i Tekhniki. Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie. 2011;2(97/72): 178-185.
 
30.
Wierzbicki Ł, Stabik J, Wróbel G, Szczepanik M. Efficiency of two non-destructive testing methods to detect defects in polymeric materials. Journal of Achievements in Materials and Manufacturing Engineering 2010;38(2): 163-170.
 
31.
Durka T, Stefanidis G, Van Gerven T, Stankiewicz A, On the accuracy and reproducibility of fiber optic (FO) and infrared (IR) temperature measurements of solid materials in microwave applications. Measurement Science and Technology. 2010;21(4): 045108. http://dx.doi.org/10.1088/0957....
 
32.
Lahiri BB, Bagavathiappan S, Reshmi PR, Philip J, Jayakumar T, Raj B. Quantification of defects in composites and rubber materials using active thermography. Infrared Physics & Technology. 2012;55(2-3): 191-199. https://doi.org/10.1016/j.infr....
 
33.
Różański L, Ziopaja K. Detection of material defects in reinforced concrete slab using active thermography. Measurement Automation Monitoring. 2017;63(3): 82-85.
 
34.
Miękina W, Madura H. Podstawy teoretyczne pomiarów termowizyjnych. Pomiary termowizyjne w praktyce. Agenda Wydawnicza Paku. 2004: 10-26.
 
35.
Lepiarczyk D, Uhryński A. Thermo-Vision Analysis of Iron Foundry Production Process Concerning Secondary Usage of Heat. Polish Journal of Environmental Studies. 2014;23(3): 1017-1023.
 
36.
Żaba K, Nowak S, Kwiatkowski M, Nowosielski M, Kita P, Sioma A. Application of non-destructive methods to quality assessment of pattern assembly and ceramic mould in the investment casting elements of aircraft engines. Archives of Metallurgy and Materials. 2014;59(4): 1517-1525. doi: 10.2478/amm-2014-0250.
 
37.
Tor-Świątek A, Samujło B. Use of thermo vision research to analyze the thermal stability of microcellular extrusion process of poly(vinyl chloride). Maintenance and Reliability. 2013;15(1): 58–61.
 
38.
Hynek M, Votapek P. Thermal analysis of tyre curing process. Engineering mechanics, 17th international conference. Prague. 2011: 223-226.
 
39.
Kašiković N, Novaković D, Milić N, Vladić G, Zeljković Ž, Stančić M. Thermovision and spectrophotometric analysis of ink volume and material characteristics influence on colour changes of heat treated printed substrates. Technical Gazette. 2015;(22)1: 33-41. doi: 10.17559/TV-20130928115500.
 
40.
Michalak M. Non-contact tests of thermal properties of textiles, Part 1. (Bezkontaktowe badania właściwości cieplnych wyrobów włókienniczych. Cz. 1.) Przegląd Włókienniczy - Włókno, Odzież, Skóra. 2010; 2: 31-33.
 
41.
Litstera JD, Omara C, Salman AD, Yua M, Weidemannb M, Schmidt A. Roller compaction: Infrared thermography as a PAT for monitoring powder flow from feeding to compaction zone. International Journal of Pharmaceutics. 2020;578: 119114. https://doi.org/10.1016/j.ijph....
 
42.
Kostencki P, Stawicki T, Królicka A. Wear of Ploughshare Material With Regards to the Temperature Distribution on the Rake Face When Used in Soil. Journal of Tribology. 2022;144(4): 041704. https://doi.org/10.1115/1.4053....
 
43.
Yu M, Omar C, Weidemann M, Schmidt A, Litster JD, Salman AD. Roller compaction: Infrared thermography as a PAT for monitoring powder flow from feeding to compaction zone. Int J Pharm [Internet]. 2020;578(119114):119114. Available from: https://www.sciencedirect.com/....
 
44.
Bembenek M, Krawczyk J, Pańcikiewicz K. The wear on roller press rollers made of 20Cr4/1.7027 steel under conditions of copper concentrate briquetting. Materials (Basel) [Internet]. 2020 [cited 2022 Jun 14];13(24):5782. Available from: https://www.mdpi.com/1996-1944....
 
45.
Bembenek M. Exploring efficiencies: Examining the possibility of decreasing the size of the briquettes used as the batch in the electric arc furnace dust processing line. Sustainability [Internet]. 2020 [cited 2022 Jun 14];12(16):6393. Available from: https://www.mdpi.com/2071-1050....
 
46.
Bembenek M, Krawczyk J, Frocisz Ł, Śleboda T. The analysis of the morphology of the saddle-shaped bronze chips briquettes produced in the roller press. Materials (Basel) [Internet]. 2021 [cited 2022 Jun 14];14(6):1455. Available from: https://www.mdpi.com/1996-1944....
 
47.
Bembenek M, Uhryński A. Analysis of the temperature distribution on the surface of saddle-shaped briquettes consolidated in the roller press. Materials (Basel) [Internet]. 2021 [cited 2022 Jun 14];14(7):1770. Available from: https://www.mdpi.com/1996-1944....
 
48.
Uhryński A, Bembenek M. The thermographic analysis of the agglomeration process in the roller press of pillow-shaped briquettes. Materials (Basel) [Internet]. 2022 [cited 2022 Jun 14];15(8):2870. Available from: https://www.mdpi.com/1996-1944....
 
49.
Hryniewicz M., Janewicz A. Briquetting device. Polish patent, PL 222229 B1, July 29, 2016.
 
50.
Bembenek M, Buczak M, Baiul K. Modelling of the Fine-Grained Materials Briquetting Process in a Roller Press with the Discrete Element Method. Materials. 2022; 15(14):4901. https://doi.org/10.3390/ma1514....
 
51.
Bembenek M. Exploring Efficiencies: Examining the Possibility of Decreasing the Size of the Briquettes Used as the Batch in the Electric Arc Furnace Dust Processing Line. Sustainability. 2020; 12(16):6393. https://doi.org/10.3390/su1216....
 
eISSN:2300-5319
ISSN:1898-4088
Journals System - logo
Scroll to top