This article describes a concept of an autonomous landing system of UAV (Unmanned Aerial Vehicle). This type of device is equipped with the functionality of FPV observation (First Person View) and radio broadcasting of video or image data. The problem is performance of a system of autonomous drone landing in an area with dimensions of 1m × 1m, based on CCD camera coupled with an image transmission system connected to a base station. Captured images are scanned and landing marker is detected. For this purpose, image features detectors (such as SIFT, SURF or BRISK) are utilized to create a database of keypoints of the landing marker and in a new image keypoints are found using the same feature detector. In this paper results of a framework that allows detection of defined marker for the purpose of drone landing field positioning will be presented.
REFERENCES(18)
1.
Andriluka M., Schnitzspan P., Meyer J., Kohlbrecher S., Petersen K., Stryk O., Roth S., Schiele B. (2010), Vision based victim detection from unmanned aerial vehicles, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Besbes B., Apatean A., Rogozan A., Bensrhair A. (2010), Combining SURF-based local and global features for road obstacle recognition in far infrared images. 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), 1869 - 1874.
Bradski R. (1998), Computer vision face tracking for use in a perceptual user interface, Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision, 214-219.
Dalal N., Triggs B. (2005), Histograms of oriented gradients for human detection, Computer Vision and Pattern Recognition, 2005. CVPR 2005, IEEE Computer Society Conference , Vol. 1, 886-893.
Li H., Xu T., Li J., Zhang L. (2013), Face recognition based on improved SURF, Third International Conference on Intelligent System Design and Engineering Applications (ISDEA), 755 - 758.
Pan J., Chen W., Peng W. (2013), A new moving objects detection method based on improved SURF algorithm, 25th Chinese Control and Decision Conference (CCDC), 901-906.
Shaker M., Smith M. N. R., Shigang Y., Duckett T. (2010), Visionbased landing of a simulated unmanned aerial vehicle with fast reinforcement learning, International Conference on Emerging Security Technologies (EST), 183-188.
Skoczylas M., Rakowski W., Cherubini R., Gerardi S. (2011), Unstained viable cell recognition in phase-contrast microscopy, Opto-Electronics Review, Vol. 19(3), 307-319.
Wang Z., Xiao H., He W., Wen F., Yuan K. (2013), Real-time SIFTbased object recognition system, IEEE International Conference on Mechatronics and Automation (ICMA), 1361 - 1366.
Yu S., Zheng S., Yang H., Liang L. (2013), Vehicle logo recognition based on bag-of-words, 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 353 - 358.
Zheng Z., Zhang H., Wang B., Gao Z. (2012), Robust traffic sign recognition and tracking for advanced driver assistance systems, International IEEE Conference on Intelligent Transportation Systems (ITSC), 704 - 709.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.