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Abstract: The primary objective of this work is to examine the Kuralay equation, which is a complex integrable coupled system,  
in order to investigate the integrable motion of induced curves. The soliton solutions derived from the Kuralay equation are thought  
to be the supremacy study of numerous significant phenomena and extensive applications across a wide range of domains, including  
optical fibres, nonlinear optics and ferromagnetic materials. The inverse scattering transform is unable to resolve the Cauchy problem  
for this equation, so the analytical method is used to produce exact travelling wave solutions. The modified auxiliary equation and Sardar 
sub-equation approaches are used to find solitary wave solutions. As a result, singular, mixed singular, periodic, mixed trigonometric,  
complex combo, trigonometric, mixed hyperbolic, plane and combined bright–dark soliton solution can be obtained. The derived solutions 
are graphically displayed in 2-D and 3-D glances to demonstrate how the fitting values of the system parameters can be used to predict  
the behavioural responses to pulse propagation. This study also provides a rich platform for further investigation. 
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1. INTRODUCTION 

As technology advances, partial differential equations (PDEs) 
have proven to be an essential tool for scientists and researchers 
for understanding physical phenomena. By employing various 
methodologies and technologies, they have achieved a higher 
level of precision in examining the structures of various physical 
phenomena. The use of nonlinear partial differential equations 
(NLPDEs) is particularly valuable in modelling nonlinear phenom-
ena in various applied as well as in natural sciences, such as 
acoustics physics, plasma and solid-state physics. These equa-
tions provide an in-depth and clear understanding of the observed 
physical phenomena, allowing for precise predictions of their 
future propagation. Furthermore, use of NLPDEs in travelling 
wave profile’s analysis has an impact as an invaluable tool in a 
variety of fields, ranging from quantum mechanics and fluid me-
chanics to different fields in engineering. Consequently, a multi-
tude of researchers have delved into diverse nonlinear partial 
differential models, aiming to attain a more profound understand-
ing of the dynamics exhibited by the examined physical phenom-
ena. Recent examinations have encompassed investigations of 
Date–Jimbo–Kashiwara–Miwa equation [1–3], Riemann wave 
equation [4,5], Schrödinger equation [6–11], Navier–Stokes equa-
tions [12–15], Lakshmanan–Porsezian–Daniel equation [16,17], 
Chen–Lee–Liu dynamical equation [18–21] and many others [22–
30]. 

Many researchers have paid attention to the field of analytical 
solutions. Kumar and Niwas have discussed the dynamical as-

pects and constructed the soliton solutions of the distinct govern-
ing models [31–33]. El-Ganaini et al. [34] utilised the Lie symmetry 
approach and analytical method to develop the invariant solutions. 
Kumar et al. [35] investigated the Kudryashov–Sinelshchikov 
equation by using the generalised exponential rational function 
(GERF) method. Abdou et al. [36] applied the he generalised 
Kudryashov (GK) approach and the sine–Gordon expansion 
approach to the deoxyribonucleic acid model for constructing new 
specific analytical solutions. Kumar and Kumar [37] executed the 
GERF method to construct numerous and large numbers of exact 
analytical solitary wave solutions of the nonlinear extended Zakh-
arov–Kuznetsov equation. Mathanaranjan [38,39] has developed 
the soliton solutions by using analytical techniques. Zhao et al. 
[40] applied a new GERF method on the nonlinear wave model 
and constructed the analytical solutions. Mathanaranjan et al. [41] 
utilised the extended sine–Gordon equation expansion method 
and developed the soliton solutions. Mathanaranjan and Vijaya-
kumar [42] discussed the fractional soliton solutions by executing 
the analytical solutions. Mathanaranjan et al. [43] generated the 
chirped optical solitons and examined the stability analysis of the 
nonlinear Schrödinger equation. 

Furthermore, an area witnessing a notable surge in the appli-
cation of NLPDEs is the exploration of soliton waves (distinct 
wave formations that uphold their form and speed throughout 
propagation). Diverse nonlinear physical models are being em-
ployed by researchers on solitons waves to comprehend and 
prognosticate their propagation. Consequently, these waves have 
gained escalating significance across various domains like optical 
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fibres, nonlinear optics and ferromagnetic materials. Recent ac-
complishments in the exploration of soliton waves are document-
ed in Refs [44–49]. By cultivating a deeper comprehension of 
soliton waves, scholars can propel advancements in these realms 
and uncover novel applications. 

The integrable complex coupled Kuralay governing system (K-
IIE) as referenced in [50] is as follows: 

𝜄𝕂𝑡 − 𝕂𝑥𝑡 − 𝕍𝕂 = 0 

𝜄ℝ𝑡 + ℝ𝑥𝑡 + 𝕍𝕂 = 0, 

𝕍𝑥 + 2𝑑2(ℝ𝕂)𝑡 = 0.                                                               (1) 

In this context, K (x, t) signifies a complex function, accompa-
nied by its corresponding complex conjugate denoted as K (x, t). 
In contrast, V stands for a real potential function conditional upon 
the autonomous spatial ‘x’ and temporal variables ‘t’. Furthermore, 
the (K-IIE) equation incorporates two supplementary variations, 
specifically (K-IIAE) and (K-IIBE) [51–53]. 

Assuming d = 1 and R = ϵK¯, where ϵ = ±1, the aforemen-

tioned equation system transforms into: 

𝜄𝕂𝑡 − 𝕂𝑥𝑡 − 𝕍𝕂 = 0, 
𝕍𝑥 − 2𝜖(|𝕂|2)𝑡 = 0.                                                                (2) 

Recently (2023), Mathanaranjan [54] applied F-expansion and 
new extended auxiliary equation methods and constructed the 
solitary waves and elliptic function solutions of Kuralay equation. 
Many novel solutions have been generated, other dynamical 
aspects analysed and the conserved quantities of the Kuralay 
equation developed. However, many solutions and families were 
missing such as periodic patterns featuring elevated crests and 
troughs, as well as anti-peaked crests and troughs, periodic kinks, 
anti-kinks and compactons in both bright and dark forms. Thus, in 
order to fill this gap, this study is carried out utilising the modified 
auxiliary equation and Sardar sub-equation method. 

Apart from the benefits associated with employing NLPDEs, 
the quest for precise analytical solutions to these equations pre-
sents challenges. To tackle this, a variety of techniques have 
been formulated. These approaches encompass the inverse 
scattering method [55], variational iteration method [56,57], inte-
gral scheme [58], soliton perturbation theory [59], positive quad-
ratic function method [60], (G′/G2)-expansion method [61] and Lie 
symmetry approach [62], among others. This article investigates 
soliton solutions for the (K-IIE) equation by employing two distinc-
tive methodologies: the modified auxiliary equation method [63] 
and the Sardar sub-equation approach [64]. Employing these 
methodologies results in a broad spectrum of solutions, spanning 
rational, trigonometric and hyperbolic manifestations. 

The techniques described in Section (2) are explained in this 
article. The solutions derived from the model are then examined in 
Section (3), where various parameter values acquired using the 
used approaches are used. The presentation of graphical repre-
sentations is also included in this section. Section (4) involves a 
visual evaluation of the solutions and the article concludes in 
Section (5), with a summary of the results. 

 
2. DESCRIPTION OF ANALYTICAL METHODS 

Consider an NLPDE of the following form: 

𝑌(𝕌, 𝕌𝑡 , 𝕌𝑥 , 𝕌𝑡𝑡 , 𝕌𝑥𝑥 , ⋯ ) = 0.                                               (3) 

Its NODE will be: 

ℚ(ℝ, ℝ′, ℝ′′, ⋯ ) = 0.                                                           (4) 

Consider: 

𝕌(𝑥, 𝑡) = 𝕌(Ω)                                                                           (5) 

where Ω = mx + ct. The prime notations within Eq. (4) signify the 
differentiation order concerning distinct variables within the equa-
tion. 

2.1.  Modified auxiliary equation method 

Utilising the MAE approach [63], we can regard the subse-
quent equation as the general solution for Eq. (4): 

𝕌(Ω) = 𝛼0  +  ∑ ⬚𝑁
𝑖=1 [𝛼𝑖(𝑧ℎ(Ω)  + 𝛽𝑖𝑧

−ℎ(Ω)]                 (6) 

αis, βis are constants of the equation and Ω = k1(x + y) + k2t. The 
function h(Ω) can be described by the auxiliary equation that 
follows: 

ℎ′(Ω)  =  
β + α𝑧−ℎ(Ω) + γ𝑧ℎ(Ω)

ln( 𝑧)
     .                                      (7) 

Here, γ, z, α and β are real arbitrary constants, where z>0 and 
z≠1. Furthermore, αis and βis cannot be zero at the same time. 

Eq. (7) has the following solutions: 
If γ ≠ 0 and Ξ < 0, 

𝑧ℎ(Ω)  =   − [
β+ √−Ξ𝑡𝑎𝑛(

√−ΞΩ

2
)

2γ
]   𝑜𝑟  𝑧ℎ(Ω)  =   −

[
β+ √−Ξ𝑐𝑜𝑡(

√−ΞΩ

2
)

2γ
].                                                          (8) 

If γ ≠ 0 and Ξ > 0, 

𝑧ℎ(Ω) = − [
β+ √Ξ𝑡𝑎𝑛ℎ(

√ΞΩ

2
)

2γ
]   𝑟 𝑧ℎ(Ω) =

− [
β+ √Ξ𝑐𝑜𝑡ℎ(

√ΞΩ

2
)

2γ
].                                                           (9) (9) 

If γ ≠ 0 and Ξ = 0, 

𝑧ℎ(Ω)  =   − [
2 + βΩ

2γΩ
]   ,                                                  (10) 

where Ξ = β2 − 4αγ. 

2.2. Sardar sub-equation method 

By employing the Sardar sub-equation approach [64], we can 
view the ensuing equation as the general solution for Eq. (4): 

 𝑈(Ω) = ∑ (𝑎𝑖𝑀
𝑖(Ω))𝑁

𝑖=0 ,   0  ≤  𝑖  ≤ 𝑁,                   (11) 

where ai in Eq. (11) are real constants and M(Ω) satisfy the 

𝑀′(Ω) = √𝜁 + 𝜐𝑀(Ω)2 + 𝑀(Ω)4,                                     (12) 

with real constants ζ and υ. 
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Eq. (12) has the following solutions: 
Case 1: if υ > 0 and ζ = 0; 

ODE of the following form: 

 𝑀1
±(Ω) = ±√-pqυ sechpq(√υΩ)                                  (13) 

𝑀2
±(Ω) = ±√pqυ cschpq(√υΩ)                                          (14) 

where 

𝑠𝑒𝑐ℎ𝑝𝑞(𝛺)   =  
2

𝑝𝑒𝛺+𝑞𝑒−𝛺 ,     𝑐𝑠𝑐ℎ𝑝𝑞(𝛺)   =  
2

𝑝𝑒𝛺−𝑞𝑒−𝛺.  

Case 2: if υ < 0 and ζ = 0: 

 𝑀3
±(Ω) = ±√−pqυ secpq(√−υΩ),                   (15) 

 𝑀4
±(Ω) = ±√−pqυ cscpq(√−υΩ)                               (16) 

where 

secpq(Ω)   =  
2

peιΩ+qe−ιΩ ,     cscpq(Ω)   =  
2ι

peιΩ−qe−ιΩ.     

Case 3: if υ < 0 and ζ =
υ2

4
: 

 𝑀5
±(Ω) = ±√−

υ

2
tanhpq (√−

υ

2
Ω),                             (17) 

 𝑀6
±(Ω) = ±√−

𝜐

2
cothpq (√−

𝜐

2
Ω),                               (18)

 𝑀7
±(Ω) = ±√−

𝜐

2
(tanhpq (√−2𝜐Ω) ±

𝜄√pq sechpq(√−2𝜐Ω)),      (19)                      

𝑀8
±(Ω) = ±√−

𝜐

2
(cothpq(√−2𝜐Ω) ± √pq cschpq(√−2𝜐Ω),         

(20)                                 

𝑀9
±(Ω) = ±√−

𝜐

8
(tanhpq (√−

𝜐

8
Ω) + cothpq (√−

𝜐

8
Ω)),   

                                                                                                   (21)                                              

where 

tanh𝑝𝑞(Ω) =
𝑝𝑒Ω − 𝑞𝑒−𝜄Ω

𝑝𝑒𝜄Ω + 𝑞𝑒−𝜄Ω
,         

coth𝑝𝑞 (Ω) =
𝑝𝑒𝜄Ω+𝑞𝑒−𝜄Ω

𝑝𝑒𝜄Ω−𝑞𝑒−𝜄Ω . 

Case 4: if υ > 0 and  ζ =
υ2

4
:; 

 𝑀10
± (Ω) = ±√

υ

2
tanpq (√

υ

2
Ω) ,                               (22) 

 𝑀11
± Ω = ±√

𝜐

2
cotpq (√

𝜐

2
Ω) ,                               (23) 

 𝑀12
± (Ω) = ±√

𝜐

2
(tanpq (√2𝜐Ω) ± √pqsecpq (√2𝜐Ω)),   (24)                                   

 𝑀13
± (Ω) = ±√

𝜐

2
(cotpq (√2𝜐Ω) ± √pqcschpq(√2𝜐Ω)),   (25)                               

 𝑀14
± (Ω) = ±√

𝜐

8
(tanpq (√

𝜐

8
Ω) + cotpq (√

𝜐

8
Ω)),             (26)                     

where 

tanh𝑝𝑞(Ω) = −𝜄
𝑝𝑒Ω − 𝑞𝑒−𝜄Ω

𝑝𝑒𝜄Ω + 𝑞𝑒−𝜄Ω
,         

coth𝑝𝑞 (Ω) = 𝜄
𝑝𝑒𝜄Ω+𝑞𝑒−𝜄Ω

𝑝𝑒𝜄Ω−𝑞𝑒−𝜄Ω . 

The functions mentioned are trigonometric and hyperbolic 
functions that have parameters represented by p and q. When p 
and q are both equal to 1, these functions become the known 
trigonometric and hyperbolic functions. 

3. THE FORMULATION OF SOLITON SOLUTION  
OF KURALAY EQUATION 

This section includes the presentation of the soliton solution, 
along with graphical representations that illustrate these solutions 
for the model being studied. 

Now, in order to find the soliton solutions, the travelling wave 
transformation will be used, which is given as follows: 

𝕂(𝑥, 𝑡) = 𝕌(Ω)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),        

𝕍(𝑥, 𝑡) = 𝕍(Ω)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),         

 Ω = 𝑚𝑥 + 𝑐𝑡.                                                         (27) 

Thus, 

𝕂𝑡 = (𝑐𝕌′ + 𝜄𝑤𝕌)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),  

𝕂𝑥 = (𝑚𝕌′ + 𝜄𝑘𝕌)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),                           (28) 

𝕂𝑥𝑡 = (𝑐𝑚𝕌′′ + 𝜄𝑤𝑚𝕌′ + 𝜄𝑐𝑘𝕌′ + 𝜄𝑘𝑤𝕌)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂). 

Eqs (27) and (28) are substituted into Eq. (2) and the following 
is obtained: 

𝜄(𝑐𝕌′ + 𝜄𝑤𝕌) − (𝑐𝑚𝕌′′ + 𝜄𝑤𝑚𝕌′ + 𝑖𝑜𝑡𝑎𝑐𝑘𝕌′ − 𝑘𝑤𝕌)

− 𝕍𝕌 = 0, 

𝑚𝕍′ − 4𝜐𝑐𝕌𝕌′ = 0.                                (29) 

On integrating the second part of Eq. (29) 

𝑉  =  
2υ𝑐𝑈𝟚

𝑚
  −  

𝑐1

𝑚
..                                                                 (30) 

Eq. (30) is plugged into Eq. (29) and we obtain as follows: 

ι(𝑐𝑈′  +  ι𝑤𝑈)  −  (𝑐𝑚𝑈′′  +  ι𝑤𝑚𝑈′  +  ι𝑐𝑘𝑈′  −  𝑤𝑈)  −

(
2υ𝑐𝑈𝟚

𝑚
  −  ) 𝑈 = 0,                                                                 (31)  

where n =
c

m
. The real and imaginary parts of Eq. (31) are given, 

respectively, as 

𝑈′′  +  
(𝑤(1−𝑘)−𝑛)

𝑐𝑚
𝑈  +  

2υ𝑈𝟛

𝑚2   =  0,                               (32) 

(𝑐 − 𝑤𝑚 − 𝑐𝑘)𝕌′ = 0.                                                (33) 

From the imaginary part (Eq. (33)) is implied the following val-
ue of m: 

𝑚  =  
𝑐(𝑘−1)

𝑤
.                                                               (34) 

By plugging Eq. (34) into Eq. (32), we obtain as follows: 

𝑈′′  +  
𝑤(𝑤(1−𝑘)−𝑛)

𝑐2(𝑘−1)
𝑈  +  

2𝑤2υ𝑈𝟛

𝑐2(𝑘−1)2   =  0.                            (35) 
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3.1.  Solution by applying MAE method 

The solution using the MAE method for Eq. (35) can be ex-
pressed as follows, after determining the homogeneous balancing 
constant N = 1: 

𝕌(Ω) = 𝛼0 + 𝛼1𝑧ℎ(Ω) + 𝛽1𝑧−ℎ(Ω).                               (36) 

To obtain the system of equations, the solution from Eq. (36) 
was substituted into Eq. (35), and the varying power coefficients 
of zh(Ω) were calculated. The algebraic equation system that was 
obtained was then solved using the Mathematica software, which 
resulted in four distinct families of values for α0, α1 and β1. By 
using each family of values separately, the following solutions are 
obtained: 

3.1.1.  Family 1 

α0  = ±
β√(𝑘−1)(𝑘𝑤+𝑛−𝑤)

√2𝑤ϵΞ
,  α1  = ±

2γ√(𝑘−1)(𝑘𝑤+𝑛−𝑤)

√2𝑤ϵΞ
, β1  =

0,   𝑐 = ±
√2√𝑤((𝑘−1)𝑤+𝑛)

√((1−𝑘)Ξ)

,                                             (37)                                

General solution for family 1, 

𝑈(Ω)  = ±
√(𝑘−1)(𝑘𝑤+𝑛−𝑤)

√2𝑤ϵΞ
(β ± 2γ𝑧ℎ(Ω)).                     (38) . (38) 

Observing that numerous solutions can be obtained by substi-
tuting Eqs (8)–(10) into Eq. (38), the resulting solutions are as 
follows: 

Case1: If Ξ < 0, γ ≠ 0; 

𝕂1,1(𝑥, 𝑡) =

± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)𝑡𝑎 𝑛(

1

2
𝛺√−𝛯)

√2𝑤𝜖
) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂)                   (39) 

𝕍1,1(𝑥, 𝑡) =  
2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)𝑡𝑎 𝑛(
1

2
𝛺√−𝛯)

√2𝑤𝜖
) −

𝑐1

𝑚
,    (40) 

or 

𝕂1,2(𝑥, 𝑡)  = ±(
√−((𝑛+(𝑘−1)𝑤)(1−𝑘)cot (

1

2
Ω√−Ξ)

√2𝑤𝜖
)   𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),              

                                                                                  (41) 

𝕍1,2(𝑥, 𝑡) =

2𝑐𝜐

𝑚
(

√−((𝑛+(𝑘−1)𝑤)(1−𝑘)cot (
1

2
Ω√−Ξ)

√2𝑤𝜖
)2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.      (42)                                                                                                                             

Case2: If Ξ > 0, γ ≠ 0; 

𝕂1,3(𝑥, 𝑡) = ± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)𝑡𝑎 𝑛 ℎ(

1

2
𝛺√𝛯)

√2𝑤𝜖
) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),    

                                                                                  (43) 

𝕍1,3(𝑥, 𝑡) =  
2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)𝑡𝑎 𝑛ℎ(
1

2
𝛺√𝛯)

√2𝑤𝜖
) −

𝑐1

𝑚
,     (44)  

or 

𝕂1,4(𝑥, 𝑡)=±(
√((𝑛+(𝑘−1)𝑤)(1−𝑘)coth (

1

2
Ω√Ξ)

√2𝑤𝜖
)𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂),        (45)                                                                      

𝕍1,4(𝑥, 𝑡) =
2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)coth (
1

2
Ω√Ξ)

√2𝑤𝜖
)2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.    

                                                                      (46)  

3.1.2.  Family 2 

𝛼0 = ±
𝛽√((𝑛+(𝑘−1)𝑤)(1−𝑘)

√2𝑤𝜖Ξ
, 𝛼1 = 0, 𝛽1 =

±
2𝛼√((𝑛+(𝑘−1)𝑤)(1−𝑘)

√2𝑤𝜖Ξ
, 𝑐 = ±

√2√𝑤((𝑘−1)𝑤+𝑛)

√((1−𝑘)(Ξ))
.               (47) 

General solution for family 2, 

𝑈(Ω)  =
𝛽√((𝑛+(𝑘−1)𝑤)(1−𝑘)}

√2𝑤ϵΞ
±

2𝛼𝑧−ℎ(Ω)√(𝑘−1)(𝑘𝑤+𝑛−𝑤)

√2𝑤𝜖Ξ
  (48) (48) 

It is observed that numerous solutions can be obtained by 
substituting equations Eq. (8)–(10) into Eq. (48). The resulting 
solutions are as follows: 

Case1 : If γ≠0, Ξ < 0; 

𝕂2,1(𝑥, 𝑡) =

± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√−Ξtan (

1

2
Ω√−Ξ)+𝛽)−4𝛼𝛾)

(√−Ξtan (
1

2
Ω√−Ξ)+𝛽)√2𝑤𝜖(Ξ)

) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),   

                                                                                                   (49) 

𝕍2,1(𝑥, 𝑡) =  

2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√−Ξtan (
1

2
Ω√−Ξ)+𝛽)−4𝛼𝛾)

(√−Ξtan (
1

2
Ω√−Ξ)+𝛽)√2𝑤𝜖(Ξ)

) −
𝑐1

𝑚
,   (50) 

 
𝕂2,2(𝑥, 𝑡) =

± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√−Ξcot (

1

2
Ω√−Ξ)+𝛽)−4𝛼𝛾)

(√−Ξcot (
1

2
Ω√−Ξ)+𝛽)√2𝑤𝜖(Ξ)

) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),  

(51) 

𝕍2,2(𝑥, 𝑡) =  

2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√−Ξcot (
1

2
Ω√−Ξ)+𝛽)−4𝛼𝛾)

(√−Ξcot (
1

2
Ω√−Ξ)+𝛽)√2𝑤𝜖(Ξ)

) −
𝑐1

𝑚
,   (52) 

𝕂2,3(𝑥, 𝑡) =

± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√Ξtanh (

1

2
Ω√Ξ)+𝛽)−4𝛼𝛾)

(√−Ξtanh (
1

2
Ω√Ξ)+𝛽)√2𝑤𝜖(Ξ)

) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),  

(53) 

𝕍2,3(𝑥, 𝑡) =  

2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√Ξtanh (
1

2
Ω√Ξ)+𝛽)−4𝛼𝛾)

(√Ξtanh (
1

2
Ω√Ξ)+𝛽)√2𝑤𝜖(Ξ)

) −
𝑐1

𝑚
,     (54) 

𝕂2,4(𝑥, 𝑡) =

± (
√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√Ξcoth (

1

2
Ω√Ξ)+𝛽)−4𝛼𝛾)

(√−Ξcoth (
1

2
Ω√Ξ)+𝛽)√2𝑤𝜖(Ξ)

) 𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),   

(55) 

or 

𝕍2,4(𝑥, 𝑡) =

2𝑐𝜐

𝑚
(

√((𝑛+(𝑘−1)𝑤)(1−𝑘)(𝛽(√Ξ coth(
1

2
Ω√Ξ)+𝛽)−4𝛼𝛾)

(√Ξ coth(
1

2
Ω√Ξ)+𝛽)√2𝑤𝜖(Ξ)

)

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.                                                                                                   (56) 
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(i) 

Fig. 1.   Three-dimensional, contour and two-dimensional representations 
of the solution K1,1 across different parameter values of w.  
(a) 3-D visualisation at w = 0.35. (b) Contour visualisation  
at w = 0.35. (c) 2-D visualisation at w = 0.35. (d) 3-D visualisa-
tion at w = 0.75. (e) Contour visualisation at w = 0.75. (f) 2-D vis-
ualisation at w = 0.75. (g) 3-D visualisation at w = 1.05. (h) Con-
tour visualisation at w = 1.05. (i) 2-D visualisation at w = 1.05 

 

(a) 
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(g) 
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(h) 

 

(i) 

Fig. 2.   Three-dimensional, contour and two-dimensional representations 
of the solution K1,4 across different values of w. (a) 3-D visuali-
sation at w = 0.25. (b) Contour visualisation at w = 0.25. (c) 2-D 
visualisation at w = 0.25. (d) 3-D visualisation at w = 0.75 (e) 
Contour visualisation at w = 0.75 (f) 2-D visualisation at w = 0.75. 
(g) 3-D visualisation at w = 1.25. (h) Contour visualisation  
at w = 1.25. (i) 2-D visualisation at w = 1.25 

3.2. Solution by applying Sardar sub-equation method 

The solution using the Sardar sub-equation method for Eq. 
(35) can be expressed as follows, after determining the homoge-
neous balancing constant N = 1: 

𝑈(Ω)  =  𝑎0  +  𝑎1𝑀(Ω)                                                 (57) 

To obtain the system of equations, the solution from Eq. (57) 
was substituted into Eq. (35), and the varying power coefficients 
of M(Ω) were calculated. The algebraic equation system that was 
obtained was then solved using the Mathematica software, which 
resulted in a family of values for a0, a1 and c. By Using this fami-
ly, we got solutions as follows: 

3.2.1. Family 

𝑎0 = 0,  𝑎1 = ±
√(𝑘−1)𝑤+𝑛

√υ𝑤ϵ
,  𝑐 = ±

√𝑤(−(𝑘−1)𝑤−𝑛)

√υ−𝑘υ
.         (58)       

                                                                                . (58) 
General solution for family, 

𝑈(Ω)  =
√((𝑛+(𝑘−1)𝑤)(1−𝑘)

√υ𝑤ϵ
𝑀(𝜙),                                  (59)                                                                             

 . (59) 

After using the general solution of Eq. (59) in Eqs (27) and 
(30), we get the following solutions: Case 1: if υ > 0 and ζ = 0; 

𝕂1(𝑥, 𝑡) =

±√
((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(sechpq(√𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂)        (60) 

𝕍1(𝑥, 𝑡) =

2𝜐𝑐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(𝑠𝑒𝑐ℎpq(√𝜐Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+,𝑒𝑡𝑎) −

𝑐1

𝑚
,                                                                              (61)                                                                                                                             

𝕂2(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(cschpq(√𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),      (62)                                                                                

𝕍2(𝑥, 𝑡) =

2𝜐𝑐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(cschpq(√𝜐Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.    

                                                                                  (63)                                                                                                              

Case 2: if υ < 0 and ζ = 0; 

𝕂3(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(secpq(√−𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),   

                                                                                  (64)  

𝕍3(𝑥, 𝑡) =

2𝜐𝑐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(secpq(√−𝜐Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
,                 

                                                                                  (65)  

𝕂4(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(cscpq(√−𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),      (66)                                                                                                                                                                                         

𝕍4(𝑥, 𝑡) =

2𝜐𝑐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(1−𝑘)pq

𝑤𝜖
(cscpq(√−𝜐Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.  

                                                                                                   (67) 

Case 3: if υ < 0 and ζ =
υ2

4
; 

𝕂5(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(tanpq(√−

𝜐

2
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),       (68)                                                                                                  

𝕍5(𝑥, 𝑡) =  

2𝑐𝜐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(tanpq(√−

𝜐

2
Ω)))

2

𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂) −
𝑐1

𝑚
,                                                                        

(69) 

𝕂6(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(cothpq(√−

𝜐

2
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),    

                                                                                                   (70) 

𝕍6(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(√

(𝑘−1)((𝑘−1)𝑤+𝑛)

2𝑤𝜖
(cothpq (√

−𝜐

2
Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
,  (71) 
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𝕂7(𝑥, 𝑡) = ±(√
((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(tanhpq(√−2𝜐Ω)) ±

𝑖√−𝑝𝑞sechpq(√−2𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                        (72) 
                                         

𝕍7(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(√

(𝑘−1)((𝑘−1)𝑤+𝑛)

2𝑤𝜖
(tanhpq(√−2𝜐Ω) ±

𝜄√pq sechpq(√−2𝜐Ω)))

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −
𝑐1

𝑚
,                    (73)    

𝕂8(𝑥, 𝑡) = ±(√
((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(cothpq(√−2𝜐Ω)) ±

𝑖√−𝑝𝑞cschpq(√−2𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                       (74)                                                                               

𝕍8(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(√

(𝑘−1)((𝑘−1)𝑤+𝑛)

2𝑤𝜖
(cothpq(√−2𝜐Ω) ±

√pq cschpq(√−2𝜐Ω)))

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −
𝑐1

𝑚
,                              (75)                                                                               

𝕂9(𝑥, 𝑡) = ±(
1

2
√

((𝑛+(𝑘−1)𝑤)(𝑘−1)

2𝑤𝜖
(tanhpq(

1

2
√−

𝜐

2
Ω)) ±

𝑐𝑜𝑡ℎ(
1

2
√−

𝜐

2
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                                  (76) 

𝕍9(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(

1

2
√

(𝑘−1)((𝑘−1)𝑤+𝑛)

2𝑤𝜖
(tanhpq (

1

2
√

−𝜐

2
Ω) ±

cothpq (
1

2
√

−𝜐

2
Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
.                   (77) 

         

Case 4: if υ > 0 and  ζ =
υ2

4
; 

𝕂10(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(tanhpq(√

𝜐

2
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),        (78) 

𝕍10(𝑥, 𝑡) =  

2𝑐𝜐

𝑚
(√

((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(tanhpq(√

𝜐

2
Ω)))

2

𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂) −
𝑐1

𝑚
,                                                                        

(79)    

𝕂11(𝑥, 𝑡) =

±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(cotpq(√

𝜐

2
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),          (80)                                                                               

𝕍11(𝑥, 𝑡) =

2𝜐𝑐

𝑚
(√

(𝑛+𝑤(𝑘−1))(1−𝑘)

2𝑤𝜖
(cotpq (√

𝜐

2
Ω)))2𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −

𝑐1

𝑚
,   

(81) 

𝕂12(𝑥, 𝑡) = ±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(tanpq(√2𝜐Ω)) ±

√𝑝𝑞secpq(√2𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                                (82) 

𝕍12(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(√

(𝑛+𝑤(𝑘−1))(1−𝑘)

2𝑤𝜖
(tanpq(√2𝜐Ω) ±

√pq secpq(√2𝜐Ω)))

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −
𝑐1

𝑚
,                                   (83)         

𝕂13(𝑥, 𝑡) = ±(√
((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(cotpq(√2𝜐Ω)) ±

√𝑝𝑞cscpq(√2𝜐Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                                 (84) 

𝕍13(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(√

(𝑛+𝑤(𝑘−1))(1−𝑘)

2𝑤𝜖
(cotpq(√2𝜐Ω) ±

√pq cscpq(√2𝜐Ω)))

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −
𝑐1

𝑚
,                                (85) 

𝕂14(𝑥, 𝑡) = ±(
1

2
√

((𝑛+(𝑘−1)𝑤)(1−𝑘)

2𝑤𝜖
(tanpq(√

𝜐

8
Ω)) ±

𝑐𝑜𝑡(√
𝜐

8
Ω)))𝑒𝜄(𝑘𝑥 + 𝑒𝑡 + 𝜂),                                         (86) 

𝕍14(𝑥, 𝑡) =
2𝜐𝑐

𝑚
(

1

2
√

(𝑛+𝑤(𝑘−1))(1−𝑘)

𝑤𝜖
(tanpq (√

𝜐

8
Ω) +

cotpq (√
𝜐

8
Ω)))

2

𝑒𝜄(𝑘𝑥+𝑤𝑡+𝜂) −
𝑐1

𝑚
.                                        (87) 

 

(a) 

 
(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 
(h) 

 
(i) 

Fig. 3.   Three-dimensional, contour and   two-dimensional representa-
tions of the solution K8 across different parameter values of υ. 
(a) 3-D visualisation at υ = −1.25. (b) Contour visualisation at υ = 
−1.25. (c) 2-D visualisation at υ = −1.25. (d) 3-D visualisation at 
υ = −0.75. (e) Contour visualisation υ = −0.75. (f) 2-D visualisa-
tion υ = −0.75. (g) 3-D visualisation υ = −0.15. (h) Contour visual-
isation υ = −0.15. (i) 2-D visualisation υ = −0.15 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Fig. 4.   Three-dimensional, contour and two-dimensional representations 
of the solution K12 across different parameter values of υ. (a) 3-
D visualisation at υ = 0.5. (b) Contour visualisation at υ = 0.5. (c) 
2-D visualisation at υ = 0.5. (d) 3-D visualisation at υ = 0.15, (e) 
Contour visualisation at υ = 0.15. (f) 2-D visualisation at υ = 0.15. 
(g) 3-D visualisation at υ = 0.05. (h) Contour visualisation at υ = 
0.05. (i) 2-D visualisation at υ = 0.05 

4. GRAPHICAL DISCUSSION 

The purpose of this section is to provide a visual examination 
of the obtained results and their relevance in terms of physical 
implications. 

Fig. 1 illustrates the transmission behaviour of the solution 
K1,1 at designated parameter values, α = 0.25, γ = 0.5, k = 0.5,  
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β = 0.1 and n = 0.25. This solution anticipates an anti-kink periodic 
pattern exhibited by a travelling soliton, where the frequency rises 
as the parameter w increases. Fig. 2 illustrates the transmission 
behaviour of the solution K1,4 at designated parameter values, α 
= 0.25, γ = 0.5, k = 0.5, β = 0.1 and n = 0.25. This solution antici-
pates an anti-kink periodic pattern exhibited by a travelling soliton, 
where the frequency rises as the parameter w increases. 

Fig. 3 shows the propagating behaviour of the solution K8 at 
designated parameter values, w = 15, k = 0.5, n = 0.25, p = 0.26 
and q = 0.25. The proposed solution can forecast the behaviour of 
a travelling soliton that displays periodic patterns characterised by 
anti-peaked crests and anti-troughs. Furthermore, the frequency 
of this pattern is observed to increase as the value of the parame-
ter υ increases. 

Fig. 4 shows the propagating behaviour of the solution K12 at 
designated parameter values, w = 0.15, k = 0.35, n = 0.15, p = 
0.52 and q = 0.5. The proposed solution can forecast the behav-
iour of a travelling soliton that displays periodic patterns character-
ised by anti-peaked crests and anti-troughs. Furthermore, the 
frequency of this pattern is observed to increase as the value of 
the parameter υ increases. 

5. CONCLUSION 

In this study, numerous novel solitons to the Kuralay equation 
are constructed through use of the modified auxiliary equation 
approach and the Sardar sub-equation method. Thus, numerous 
types of solitons such as a plane solution, periodic-stumpons, 
compacton, smooth soliton, multi-smooth kink, mixed-hyperbolic, 
periodic and mixed-periodic, compacton with singular peaks, 
mixed-trigonometric, trigonometric solution, peakon soliton, anti-
peaked with decay, mixed-shock singular, mixed-singular, and 
singular and shock wave solutions are developed which are more 
generalised than the existing results. The propagation of solitons 
is graphically displayed in 3-D, contour and 2-D visualisation. The 
observed wave propagation displayed diverse behaviours, en-
compassing periodic patterns featuring elevated crests and 
troughs, as well as anti-peaked crests and troughs, periodic kinks, 
anti-kinks and compactons in both bright and dark forms. It is 
observed that the wave number is responsible to control the prop-
agation of a solitary wave. Some appropriate values are selected 
for the involved free parameters in order to enlighten the graphical 
behaviour of the optical pulses using the developed analytical 
solutions. In interpreting the physical perspective of the nonlinear 
model, the proposed solutions may be considered to be authorita-
tive. The modified auxiliary equation approach and the Sardar 
sub-equation method is a reliable and effective mathematical 
technique that can be applied to propose the analytical solutions 
to a number of other difficult physical phenomena. Additionally, 
there is potential to broaden the scope of this study to encompass 
lump interactions, multiple solitons and rogue wave breathers, 
thus expanding its practical utility. 
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