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Abstract: The primary objective of this work is to examine the Kuralay equation, which is a complex integrable coupled system,
in order to investigate the integrable motion of induced curves. The soliton solutions derived from the Kuralay equation are thought
to be the supremacy study of numerous significant phenomena and extensive applications across a wide range of domains, including
optical fibres, nonlinear optics and ferromagnetic materials. The inverse scattering transform is unable to resolve the Cauchy problem
for this equation, so the analytical method is used to produce exact travelling wave solutions. The modified auxiliary equation and Sardar
sub-equation approaches are used to find solitary wave solutions. As a result, singular, mixed singular, periodic, mixed trigonometric,
complex combo, trigonometric, mixed hyperbolic, plane and combined bright-dark soliton solution can be obtained. The derived solutions
are graphically displayed in 2-D and 3-D glances to demonstrate how the fitting values of the system parameters can be used to predict
the behavioural responses to pulse propagation. This study also provides a rich platform for further investigation.
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1. INTRODUCTION

As technology advances, partial differential equations (PDEs)
have proven to be an essential tool for scientists and researchers
for understanding physical phenomena. By employing various
methodologies and technologies, they have achieved a higher
level of precision in examining the structures of various physical
phenomena. The use of nonlinear partial differential equations
(NLPDEs) is particularly valuable in modelling nonlinear phenom-
ena in various applied as well as in natural sciences, such as
acoustics physics, plasma and solid-state physics. These equa-
tions provide an in-depth and clear understanding of the observed
physical phenomena, allowing for precise predictions of their
future propagation. Furthermore, use of NLPDEs in travelling
wave profile’s analysis has an impact as an invaluable tool in a
variety of fields, ranging from quantum mechanics and fluid me-
chanics to different fields in engineering. Consequently, a multi-
tude of researchers have delved into diverse nonlinear partial
differential models, aiming to attain a more profound understand-
ing of the dynamics exhibited by the examined physical phenom-
ena. Recent examinations have encompassed investigations of
Date-Jimbo-Kashiwara—Miwa equation [1-3], Riemann wave
equation [4,5], Schrodinger equation [6—11], Navier-Stokes equa-
tions [12-15], Lakshmanan—Porsezian-Daniel equation [16,17],
Chen-Lee-Liu dynamical equation [18-21] and many others [22—
30].

Many researchers have paid attention to the field of analytical
solutions. Kumar and Niwas have discussed the dynamical as-

pects and constructed the soliton solutions of the distinct govern-
ing models [31-33]. El-Ganaini et al. [34] utilised the Lie symmetry
approach and analytical method to develop the invariant solutions.
Kumar et al. [35] investigated the Kudryashov-Sinelshchikov
equation by using the generalised exponential rational function
(GERF) method. Abdou et al. [36] applied the he generalised
Kudryashov (GK) approach and the sine—Gordon expansion
approach to the deoxyribonucleic acid model for constructing new
specific analytical solutions. Kumar and Kumar [37] executed the
GERF method to construct numerous and large numbers of exact
analytical solitary wave solutions of the nonlinear extended Zakh-
arov-Kuznetsov equation. Mathanaranjan [38,39] has developed
the soliton solutions by using analytical techniques. Zhao et al.
[40] applied a new GERF method on the nonlinear wave model
and constructed the analytical solutions. Mathanaranjan et al. [41]
utilised the extended sine-Gordon equation expansion method
and developed the soliton solutions. Mathanaranjan and Vijaya-
kumar [42] discussed the fractional soliton solutions by executing
the analytical solutions. Mathanaranjan et al. [43] generated the
chirped optical solitons and examined the stability analysis of the
nonlinear Schrédinger equation.

Furthermore, an area witnessing a notable surge in the appli-
cation of NLPDEs is the exploration of soliton waves (distinct
wave formations that uphold their form and speed throughout
propagation). Diverse nonlinear physical models are being em-
ployed by researchers on solitons waves to comprehend and
prognosticate their propagation. Consequently, these waves have
gained escalating significance across various domains like optical
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fibres, nonlinear optics and ferromagnetic materials. Recent ac-
complishments in the exploration of soliton waves are document-
ed in Refs [44-49]. By cultivating a deeper comprehension of
soliton waves, scholars can propel advancements in these realms
and uncover novel applications.

The integrable complex coupled Kuralay governing system (K-
lIE) as referenced in [50] is as follows:

le_KXf_VKZ 0
(R, + R, + VK = 0,
V, + 2d*(RK), = 0. (1)

In this context, K (x, t) signifies a complex function, accompa-
nied by its corresponding complex conjugate denoted as K (x, ).
In contrast, V stands for a real potential function conditional upon
the autonomous spatial ‘x’ and temporal variables ‘t'. Furthermore,
the (K-IIE) equation incorporates two supplementary variations,
specifically (K-IIAE) and (K-IIBE) [51-53].

Assuming d = 1 and R = €K , where € = +1, the aforemen-
tioned equation system transforms into:

[Kf - th —VK = 0,
V, — 2e(IK[*), = 0. 2

Recently (2023), Mathanaranjan [54] applied F-expansion and
new extended auxiliary equation methods and constructed the
solitary waves and elliptic function solutions of Kuralay equation.
Many novel solutions have been generated, other dynamical
aspects analysed and the conserved quantities of the Kuralay
equation developed. However, many solutions and families were
missing such as periodic patterns featuring elevated crests and
troughs, as well as anti-peaked crests and troughs, periodic kinks,
anti-kinks and compactons in both bright and dark forms. Thus, in
order to fill this gap, this study is carried out utilising the modified
auxiliary equation and Sardar sub-equation method.

Apart from the benefits associated with employing NLPDEs,
the quest for precise analytical solutions to these equations pre-
sents challenges. To tackle this, a variety of techniques have
been formulated. These approaches encompass the inverse
scattering method [55], variational iteration method [56,57], inte-
gral scheme [58], soliton perturbation theory [59], positive quad-
ratic function method [60], (G'/G2)-expansion method [61] and Lie
symmetry approach [62], among others. This article investigates
soliton solutions for the (K-IIE) equation by employing two distinc-
tive methodologies: the modified auxiliary equation method [63]
and the Sardar sub-equation approach [64]. Employing these
methodologies results in a broad spectrum of solutions, spanning
rational, trigonometric and hyperbolic manifestations.

The techniques described in Section (2) are explained in this
article. The solutions derived from the model are then examined in
Section (3), where various parameter values acquired using the
used approaches are used. The presentation of graphical repre-
sentations is also included in this section. Section (4) involves a
visual evaluation of the solutions and the article concludes in
Section (5), with a summary of the resullts.

2. DESCRIPTION OF ANALYTICAL METHODS

Consider an NLPDE of the following form:
Y(U, U, Uy, Ugg, Uyy, -+ ) = 0. )
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Its NODE will be:

QR,R,R",---)=0. (4)
Consider:

Ux, 1) = U(Q) (5)

where Q = mx + ct. The prime notations within Eq. (4) signify the
differentiation order concerning distinct variables within the equa-
tion.

2.1. Modified auxiliary equation method

Utilising the MAE approach [63], we can regard the subse-
quent equation as the general solution for Eq. (4):

U@ = ap + T E o (2" + gz ~h@)] (6)

ais, Bis are constants of the equation and Q = k1(x + y) + kat. The
function h(Q) can be described by the auxiliary equation that
follows:

B+ az~ @) 4 yzh(m

h,(ﬂ) - In(z)

(7)
Here, y, z, a and B are real arbitrary constants, where z>0 and
z#1. Furthermore, ais and Bis cannot be zero at the same time.
Eq. (7) has the following solutions:
lfy#0and =<0,

B+ﬁtun<\/—759)‘| e

Zh @ = _ [
2y

[B”-_Ef;ovt(ﬁf“)l.

Ify#0and=>0,

Zh@ = _ IB"‘/:“:""( 2 )I - h (@) =
Y

+VEcoth(YE2
—[—B zih( : )l- ©)

lfy#0and==0,
Q) — _ [2+BQ
= —[5] (10

where = = 82- 4ay.
2.2. Sardar sub-equation method

By employing the Sardar sub-equation approach [64], we can
view the ensuing equation as the general solution for Eq. (4):
(@) = 2% (aM'(®), 0 < i <N, (11)

where a;jin Eq. (11) are real constants and M(Q) satisfy the

M'(Q) =T+ vMQ)2 + M(Q)*, (12)

with real constants  and v.
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Eq. (12) has the following solutions:
Case 1:ifu>0and (=0;
ODE of the following form:

M (Q) = +,/-pqu sech,, (vvQ) (13)
M3 (Q) = +,/pqu cschy, (VoQ) (14)
where
2
S€Chpq (.Q) = W, CSChpq (.Q) = W.
Case 2:ifu<0and =0:
ME(Q) = +./~pqu secpq(\/—uﬂ), (15)
ME(Q) = +./~pqu cscpq(\/—uﬂ) (16)
where
_ 2 _ 2L
secpq(ﬂ) = W, CSCpq(Q) = m.

Case 3:ffu<0and { = =

2
z

Mi(Q) =+ \/jgtanhpq ( BQ) (17)
ME(Q) =+ \/?gcothpq ( \/—?m, (18)

ME(Q) =+ \/—? (tanhy, (V=2v0Q) +
1v/pq sechy, (V—2vQ)), (19)

Mi(Q) =+ \[—? (cothy, (V=2v0Q) * /pq cschy,(vV—2v0),

(20)
MF@Q) =+ /—g(tanhpq ( /—gn) + cothy ( /—%Q)),
(21)
where
Q -0
pet —qe
tanhy,, (@) = pe + ge—
pelﬂ+qe—lﬂ
COthpq (Q) = m .
UZ

Case4:ifu>0and {=—

7

ME Q) = + \Etanpq ( \EQ) 22)
MEQ =+ \/g cotyg ( \/g ), (23)

M) = + \f (tany, (VZOQ) + VRGsec,, (VZOO)), (24)

MEQ) = + \E (cotyg (V20Q) + v/pacschy, (V2uQ2)), (25)

MEQ) = + \/g (tanp, ( \/gn) + coty, ( \E ), (26)

where

acta mechanica et automatica, vol.18 no.4 (2024)

Q -
pe” —qe
tanh Q) = — 0,
Pq( ) pelﬂ + qe—LQ
_ pe‘ﬂ+qe““
coth,, () = Lo ge=d *

The functions mentioned are trigonometric and hyperbolic
functions that have parameters represented by p and g. When p
and q are both equal to 1, these functions become the known
trigonometric and hyperbolic functions.

3. THE FORMULATION OF SOLITON SOLUTION
OF KURALAY EQUATION

This section includes the presentation of the soliton solution,
along with graphical representations that illustrate these solutions
for the model being studied.

Now, in order to find the soliton solutions, the travelling wave
transformation will be used, which is given as follows:

K(x, t) — [U(Q,)e‘(kx"'Wt"'n),

V(x, t) — W(Q)e‘(kx""”t"’n)’

Q = mx + ct. (27)
Thus,

K, = (cU’ + ) kx+wetn),
K, = (mU' + (kU)etlexwesn), (28)
Kye = (cmU"” + wwmU’ + 1ckU’ + thkwl)) e x+wet+m,

Egs (27) and (28) are substituted into Eq. (2) and the following
is obtained:

t(cU" + wl) — (cmU" + wmU’ + iotackU' — kwl)
- VU =0,

mV' — 4vcUU’ = 0. (29)

On integrating the second part of Eq. (29)

y= e a (30)

m m

Eq. (30) is plugged into Eq. (29) and we obtain as follows:
W(cU" + wl) — (emU" + wmU' + kU — wU) —
2
(== - )u=0o (31)

m

where n = i The real and imaginary parts of Eq. (31) are given,
respectively, as

2003

U+ =0, (32)

" (w(1-k)-n)
ur + cm m2

(c—wm—ck)U = 0. (33)

From the imaginary part (Eq. (33)) is implied the following val-
ue of m:

= =D (34)
By plugging Eq. (34) into Eq. (32), we obtain as follows:
U’ + ww(1-k)-n) 2w2uU? (35)

c2(k-1) k-2
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3.1. Solution by applying MAE method

The solution using the MAE method for Eq. (35) can be ex-
pressed as follows, after determining the homogeneous balancing
constantN = 1:

UQ) = ap + a,z"® + g z7MD, (36)

To obtain the system of equations, the solution from Eq. (36)
was substituted into Eq. (35), and the varying power coefficients
of zh(Q) were calculated. The algebraic equation system that was
obtained was then solved using the Mathematica software, which
resulted in four distinct families of values for a0, a1 and 1. By
using each family of values separately, the following solutions are
obtained:

3.1.1. Family 1

+[N(k 1) (kw+n-w) 2y\/(k 1) (kw+n-w)
V2weE 1 V2weE Bl -

V2 (k—=D)w+
0, ¢ = iL(W'ﬂ, 37)

B (1-K)E)
General solution for family 1,

U@ =+ LEDE W) (g4 5y ph@), (38)

VZweE

Observing that numerous solutions can be obtained by substi-
tuting Eqs (8)—(10) into Eq. (38), the resulting solutions are as
follows:

Case1: 1f =<0,y #0;

Ky (x,t) =
i( ((n+(k-1)w)(1-k fa"( ”‘/—)> pllkx + et +1) (39)

V2we

((n+(k-Dw)A-K)tan(30v=F) _a

2we

Viilx, t) = 7(

or

1 =
K, ,(xt) = i(,/—((n+(k—1)w)(1—k)cot (59\/—_4) ptlixtwesm)

V2we
(41)
Via(x,t) =
1
2cv /=((n+(k=Dw)(1-k)cot GAV-E), W(kx+wtn) _ €1
— ( NS )e (42)

Case2: If=>0,y #0;

Ky 5(x,t) = i( ((n+(k-Dw)(1-k tanh( -Q\/—)>eL(kx+et+77)'

V2we
(43)
(n+(k-1D)w)(1-k)tanh(=QVE
V(x,8) = —( — G )) 2 (44)
or

J(@+k-Dw)(1-k)coth (%ﬂﬁ))et(kx+wt+n) (45)

K1,4(x: t)=i( m
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DOI 10.2478/ama-2024-0064

200 (@F=DW)(A-K)coth (iﬂ@)z pilexwe+n) _ C1

Via(x,t) = —( Tone -
(46)
3.1.2. Family 2
| BY(n+k—1)w)(1-k) _ _
a, =+ o ,a; =0,6; =
- -
i2a1/((n+(k 11w)(1 k)’C _ i\/Z/w((k 1):1/+n). (47)
V2weE ((1-K)(E)

General solution for family 2,

B |((n+k-1)w)(1-k)} —hQ) [(e=1) (kw+n-w)
U(Q) _ +2az 512cw_i);kw+n w) (48)

It is observed that numerous solutions can be obtained by
substituting equations Eqg. (8)—-(10) into Eq. (48). The resulting
solutions are as follows:

Casel: Ify#0, = <0;

Kpq(x,t) =

2weE

N (1/ (+(k-Dw)([A-k) (B(V=Etan GAV=E)+)— 4ay)> x4 et +1)

(\/_tan( QV=E)+B),/2we(E)

(49)
VZ,I(X' t) =
" 200 (V{FGR-DW)A-K)(B(/~Etan GOV=E)+B)—4ay) _a(s0)
m (V=Etan GOV=E)+p),/2we(E) m’
Ky, (x,t) =
+ J(@Fk=1)w)(A-K) (B(V=Ecot GAV=E)+B)—4ay) ptlix+et +m)
- (V=Ecot GAV=E)+)2we(®) '
(51)
Voo (x,t) =
20 (V({@+Ge=DW) A-R) (B(/=Ecot GOV=E)+B)-4ay) _a (5
m (V=Ecot GAV=E)+)/2we(®) m
Ka3(x,t) =

(JW )(B(VEtanh GOVE)+R)- 4ay)> x4 et + 1)

- (V=Etanh GOVE)+B),2we(8) ’
(53)

Va3(x, t) =

200 <m(ﬂw§tanh (%n@w)—wm) _a (s

m (VEtanh GOVE)+6)\/2we(E) m’

Ko 4(x,t) =
J((m+k—-Dw)(1—-k (B(\/_coth( QVE)+B)—4ay) ot + et +1)
t (\/—_-'coth( QVE)+B),[2we(E) ’

(55)
or

Vya(x, t) =

(38)

200 (m(ﬁ(racorh@nﬁ)w)—w))z pilkxrwesn) _
m

(\/E coth(%ﬂ\/i)ﬂ?)\/m
a (56)

m
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(i)

Fig. 1. Three-dimensional, contour and two-dimensional representations
of the solution K1,1 across different parameter values of w.
(a) 3-D visualisation at w = 0.35. (b) Contour visualisation
atw =0.35. (c) 2-D visualisation at w = 0.35. (d) 3-D visualisa-
tion at w = 0.75. (e) Contour visualisation at w = 0.75. (f) 2-D vis-
ualisation at w = 0.75. (g) 3-D visualisation at w = 1.05. (h) Con-
tour visualisation at w = 1.05. (i) 2-D visualisation at w = 1.05
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(i)

Fig. 2. Three-dimensional, contour and two-dimensional representations
of the solution K1,4 across different values of w. (a) 3-D visuali-
sation at w = 0.25. (b) Contour visualisation at w = 0.25. (c) 2-D
visualisation at w = 0.25. (d) 3-D visualisation at w = 0.75 (e)
Contour visualisation at w = 0.75 (f) 2-D visualisation at w = 0.75.
(g) 3-D visualisation at w = 1.25. (h) Contour visualisation
atw =1.25. (i) 2-D visualisation at w = 1.25

3.2. Solution by applying Sardar sub-equation method

The solution using the Sardar sub-equation method for Eg.
(35) can be expressed as follows, after determining the homoge-
neous balancing constant N = 1:

UlQ) = ay + aM(Q) (57)

To obtain the system of equations, the solution from Eq. (57)
was substituted into Eq. (35), and the varying power coefficients
of M(Q) were calculated. The algebraic equation system that was
obtained was then solved using the Mathematica software, which
resulted in a family of values for a0, a1 and c. By Using this fami-
ly, we got solutions as follows:

3.2.1. Family
_ _  JE-Dw+n _  Aw(=k-1)w-n)
a,=0,a, =% N ,c=+ —_ (58)
General solution for family,
S k=Dw)([A-k)
uQ) = MM@,), (59)

Vowe

acta mechanica et automatica, vol.18 no.4 (2024)

After using the general solution of Eq. (59) in Eqs (27) and
(30), we get the following solutions: Case 1:if u>0and { = 0;

K, (x, t) =

n /((n+(k—1v)v\:)(1—k)pq (sechpq (\/UQ)))el(kx +et+1n) (60)

Vilx, t) =

ﬂ( ’((n+(k—1‘i\/€v)(1—k)pq (Sechpq(ﬁﬂ)))zet(kx+wt+,eta) —

2, (61)

m

K, (x, t) =

+( ,((n+(k—1V)VvEV)(1—k)pq (Cschpq(ﬁﬂ)))el(kx +et+ 77), (62)

V,(x, t) =

E (n+(k—D)w)(1-k)pq 2 ju(kx+wt+n) _ €1
—( f—we (cschy, (VU2)))%e -

(63)
Case 2:ifu<0and (=0;
K3(X, t) =

’ k— -k
+( (n+( 1‘:}:/)(1 )pq (Secpq(\/__vﬂ)))el(kx +et+ n),

Vi(x, t) =

ﬂ ((n+(k—1)w)(1-k)pq — 2 ju(kx+wt+n) _ €1
- ( ’—Ws (secy(V—v)))e -

(65)

(64)

K,(x,t) =

i( ’((n+(k—1v)vv6v)(1—k)pq (Cscpq(\/__vﬂ)))et(kx +et+ n), (66)

Vu(x,t) =

ﬂ (n+(k—D)w)(1-k)pq — 2 ju(kx+wt+n) _ €1
- ( ’—Ws (csCpe(V—v))) e -

(67)

2

Case3:ifu<0and§=vr;

KS (xl t) =

(n+ (k—Dw)(k—1)
2we

+( (tanyg(_[—>Q)))etkx+et+m,  (68)

Ws(x, t) =

2
2cv ( (n+(k-1)w)(k-1) (tanpq( _gﬂ))> etkx+et+m) _ ﬂ’

m 2we m

(69)
Ke(x, t) =

(n+k-1)w)(k—-1) v
£( /T (cothyg (= ))e kx+ec+m,
(70)
Vo 0) = 22 (S (corh,, [Fayeenon —2, (1)

609
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K, (x, t) = +( /w (tanh,,(V=200)) + Kys(x, £) = +( /w(cotpq(rﬂ)) +

i.[—pgsech,,(v—2vQ)))etkx +et+m) 72 pgcsc,, (V20Q)))etlex +et+m), 84
Pq Pq
/(k D((k-1) Vis(x, t) = (D)0 2 (cotyg(VZQ) £
V,(x,t) = w(tanhpq(v—ZvQ) + 13X 2we COlpq
2
2
w(kx+wt+n) __ €1
/pq sechpq(\/—ZUQ))> gilhxrwiin) _ 2L, (73) mc“pq(mg))> e - (85)
— 41 [t Gk=DWIA-K) v
Kg(x, t) = +( %(cothpq(wl—%ﬂ)) + Kia(x, 8) = £ ’ = (tanpq(\/;ﬂ)) +
i/—pgesch,, (V —20Q)))etkx +et+m) (74) cot(ﬁ Q)))etlex +et+m, (86)
(k—-1)((k-1D)w+n) — -
Vg(x,t) = —( /T( othpq(\/—ZvQ) + Vi (o, t) = 2vc <; (n+w(sz))(1 k) (tanpq (\E Q) +
2
2
C
\/p_q CSChpq(‘ /—ZUQ))> et(kx+wt+71) — ;1, (75) COtpq (\E Q))) et(kx+wt+17) _ :n_l (87)
Ko(x, £) = +C [CHEDIED (2 [ Lay)
coth(% ,_IZ_JQ)))eL(kx+et+T])’ (76)
Vo(x,t) =22 |Ge=D = twen) G (tanhy, G \/7 Q) +
COthpq (i\/?ﬂ)))zel(kx+wt+7]) — Z (77)

2

Case 4:if u> 0 and <=°T;

Kio(x, t) =
k=Dw)(1—k
([0 \E Q))elextec+m  (78) @)
Viplx, t) = ) I
2 k—Dw)(1—k
%( ((n+( 2‘3:/)( ) (tanhpq(\/gﬂ))) pllkx+et+m) _ :n_l‘
(79 :
K1 (x,t) = ; B
i( ’((n+(k 1)W)(1 k) (Co%q(fﬂ)))el(kx+et+n) (80) ) j
Vi (x, t) =
2 k—1))(1-k
%( (n+w( 2we))( ) (COtpq (\/gﬂ)))ZeL(kJHan) — :n_l’
(81) 0 h L
Ky, (x, ) = +( @+ 1)w)(1 B (tan,, (VIUO)) + (b)
. /pqsecpq(\/ﬂﬂ)))e‘(k’c tet+n) (82)

Vi, (x,t) = ( M(tanpq (V2v0) +

m

2
\/Esecpq(\/EQ))> gtllxtwian) _ 1 (83)
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Fig. 3. Three-dimensional, contour and two-dimensional representa-
tions of the solution K8 across different parameter values of u.

2 (a) 3-D visualisation at u = =1.25. (b) Contour visualisation at u =

-1.25. (c) 2-D visualisation at u = -1.25. (d) 3-D visualisation at

u = -0.75. (e) Contour visualisation u = -0.75. (f) 2-D visualisa-

tion u = -0.75. (g) 3-D visualisation u = -0.15. (h) Contour visual-

isation u = -0.15. (i) 2-D visualisation u = -0.15
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(i)
Fig. 4. Three-dimensional, contour and two-dimensional representations
() of the solution K12 across different parameter values of u. (a) 3-
D visualisation at u = 0.5. (b) Contour visualisation at u = 0.5. (c)
2-D visualisation at u = 0.5. (d) 3-D visualisation at u = 0.15, (e)
Contour visualisation at u = 0.15. (f) 2-D visualisation at u = 0.15.
(9) 3-D visualisation at u = 0.05. (h) Contour visualisation at u =
0.05. (i) 2-D visualisation at u = 0.05
— {1
— {=5
—_— t=10 4. GRAPHICAL DISCUSSION

The purpose of this section is to provide a visual examination
of the obtained results and their relevance in terms of physical
(f) implications.

Fig. 1 illustrates the transmission behaviour of the solution
K1,1 at designated parameter values, a = 0.25, y = 0.5, k = 0.5,
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B =0.1and n =0.25. This solution anticipates an anti-kink periodic
pattern exhibited by a travelling soliton, where the frequency rises
as the parameter w increases. Fig. 2 illustrates the transmission
behaviour of the solution K1,4 at designated parameter values, a
=0.25,y=0.5,k=0.5B=0.1and n=0.25. This solution antici-
pates an anti-kink periodic pattern exhibited by a travelling soliton,
where the frequency rises as the parameter w increases.

Fig. 3 shows the propagating behaviour of the solution K8 at
designated parameter values, w = 15, k = 0.5, n = 0.25, p = 0.26
and g = 0.25. The proposed solution can forecast the behaviour of
a travelling soliton that displays periodic patterns characterised by
anti-peaked crests and anti-troughs. Furthermore, the frequency
of this pattern is observed to increase as the value of the parame-
ter u increases.

Fig. 4 shows the propagating behaviour of the solution K12 at
designated parameter values, w = 0.15, k = 0.35, n = 0.15, p =
0.52 and q = 0.5. The proposed solution can forecast the behav-
iour of a travelling soliton that displays periodic patterns character-
ised by anti-peaked crests and anti-troughs. Furthermore, the
frequency of this pattern is observed to increase as the value of
the parameter u increases.

5. CONCLUSION

In this study, numerous novel solitons to the Kuralay equation
are constructed through use of the modified auxiliary equation
approach and the Sardar sub-equation method. Thus, numerous
types of solitons such as a plane solution, periodic-stumpons,
compacton, smooth soliton, multi-smooth kink, mixed-hyperbolic,
periodic and mixed-periodic, compacton with singular peaks,
mixed-trigonometric, trigonometric solution, peakon soliton, anti-
peaked with decay, mixed-shock singular, mixed-singular, and
singular and shock wave solutions are developed which are more
generalised than the existing results. The propagation of solitons
is graphically displayed in 3-D, contour and 2-D visualisation. The
observed wave propagation displayed diverse behaviours, en-
compassing periodic patterns featuring elevated crests and
troughs, as well as anti-peaked crests and troughs, periodic kinks,
anti-kinks and compactons in both bright and dark forms. It is
observed that the wave number is responsible to control the prop-
agation of a solitary wave. Some appropriate values are selected
for the involved free parameters in order to enlighten the graphical
behaviour of the optical pulses using the developed analytical
solutions. In interpreting the physical perspective of the nonlinear
model, the proposed solutions may be considered to be authorita-
tive. The modified auxiliary equation approach and the Sardar
sub-equation method is a reliable and effective mathematical
technique that can be applied to propose the analytical solutions
to a number of other difficult physical phenomena. Additionally,
there is potential to broaden the scope of this study to encompass
lump interactions, multiple solitons and rogue wave breathers,
thus expanding its practical utility.
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