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Abstract: This paper introduces a novel form of the Adomian decomposition (ADM) method for solving fractional-order heat-like  
and wave-like equations with starting and boundary value problems. The derivations are provided in the sense of Caputo. In order to help 
understanding, the generalised formulation of the current approach is provided. Several numerical examples of fractional-order  
diffusion-wave equations (FDWEs) are solved using the suggested method in this context. In addition to examining the applicability  
of the suggested method to the solving of fractional-order heat-like and wave-like equations, a graphical depiction of the solutions to three 
instructive cases was constructed. Solution graphs were arrived at for integer and fractional-order problems. The derived and exact  
solutions to integer-order problems were found to be in excellent agreement. The subject of the present research endeavour  
is the convergence of fractional-order solutions. This strategy is considered to be the most successful way of addressing fractional-order 
initial-boundary value issues in science and engineering. This strategy is presented here. 
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1. INTRODUCTION 

Fractional calculus is the study of derivatives and integrals of 
fractional order. In addition to fluid dynamics, viscoelasticity, 
chemistry, physics and finance, these approaches may also be 
used in other fields. Fractional differential equations are used in 
several scientific and engineering fields. 

The fractional method is currently regarded as the most pow-
erful modelling tool in wave propagation, anomalous diffusion 
tools, turbulence and mechanics [1, 2, 3]. It is an extension of the 
conventional integer-order partial differential equations and frac-
tional partial differential equations (FPDEs). In the past 10 years, 
scientists and engineers have paid a lot of attention to nonlinear 
equations due to the fact that nonlinearity is present in almost all 
physical situations. Nonlinear partial differential equations of 
fractional order are used in chemistry, biology, physics, vibration, 
acoustics, signal processing, electromagnetics, polymeric materi-
als and fluid dynamics, as well as superconductivity, optics and 
quantum mechanics [4–7]. For the description of many elements 
of natural phenomena, such as the dynamics of complex materi-
als, quasi-chaotic dynamical systems and random walks with 
memory, FPDEs are better suited than traditional PDEs [8,9,10]. 

Since FDEs typically lack accurate analytical solutions, the 
manner of solving these equations in approximate and numerical 
ways has been subject to much investigation [11–13]. Methods 
such as variational iteration, Adomian decomposition (ADM), 
homotopy perturbation, Lagrange multiplier technique and others 
are used to provide analytical approximations for linear and non-

linear FDEs. It is necessary to build an effective and user-friendly 
method for solving these equations. The ADM method may be 
used to solve this issue with ordinary, partial and nonlinear differ-
ential equations [14–17]. 

A broad class of linear or nonlinear differential equations has 
been approximated using the decomposition approach [18,19]. 
The method’s use for fractional differentia equations has recently 
been broadened [20–23]. Researchers are expected to work on 
the resolution of fractional-order diffusion-wave equations 
(FDWEs) using the ADM approach, which is a novel technology 
[24]. FDWEs are the most important type of anomalous diffusion 
equation derived from classical diffusion-wave equations [25]. Anh 
and Leonenko [26] provide the mean-square solution comprising 
the Green function and the spectral representation of FDWEs. Ali 
[27] uses a new ADM method to solve FDWEs having both start-
ing and ending conditions. 

In this paper, we will concentrate on solving FDWEs using a 
novel ADM methodological approach. Initial and boundary value 
issues are dealt with using ADM and its variants. The solutions to 
a few test problems and their graphical representation are arrived 
at using the Mathematica program to demonstrate the applicability 
of the current technique. 

The remainder of the article is structured as follows: In Section 
2, the details of the new iterative method, theorem proofs and its 
convergence are discussed. The model’s description and how it is 
used to obtain the exact analytical solutions to the specified frac-
tional heat-like and wave-like equations are also discussed. In 
Section 3, we demonstrate the proposed method’s reliability, 
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convergence and efficiency using four exemplary instances. In 
Section 4, a debate over the examples provided in the article is 
presented, with the aid of some graphs and tables, and related 
discussion. Finally, Section 5 describes the conclusions we have 
drawn from the study. 
Definition 1: provides the Reimann–Liouville (RL) integral opera-

tor of arbitrary order 𝜏(𝜏 ≥ 0) for a function 𝜒(𝛽) [28, 29]  

𝐽𝜏𝜒(𝛽) =
1

Γ(𝜏)
∫ (𝛽 − 𝜄)𝜏−1𝜒(𝜄)𝑑𝜄

1

0
.                                       (1) 

The gamma function that permits Eq. (10) to converge on 

(0, ∞) point-wise is Γ(𝜏) = ∫ 𝛽𝜏−1𝑒−𝛽𝑑𝛽
∞

0
. The integral oper-

ator (RL) has the following properties. 

{

𝐽𝜏𝐽𝜇𝜒(𝛽) = 𝐽𝜇𝐽𝜏𝜒(𝛽),

𝐽𝜏𝐽𝜇𝜒(𝛽) = 𝐽𝜇+𝜏𝜒(𝛽),

𝐽𝜏𝛽𝜇 =
Γ(𝜇+)

Γ(𝜇+𝜏+1)
.

  

Definition 2: For the function 𝜒(𝛽), the Caputo operator of frac-
tional order an is shown [28]. 

Dτχ(β) =
1

𝛤(𝜀−𝜏)
∫

𝜒(𝜀)(𝜄)

(𝛽−𝜄)𝜏+1−𝜀

𝑡

0
𝑑𝜄  𝜀 − 1 < 𝜏 < 𝜀, 𝜀 = [𝜀] + 1.      (2) 

The following conditions must be met by Eq. (2). 

𝐷𝜏𝜒𝑘 = {
0. 𝑘 ∈ 𝑁, 𝑘 < |𝜏|,

Γ(𝑘+1)

1+𝑘−𝜏
𝑘𝑘−𝜏 .

  

Definition 3:The Mittage–Leffler function [30] is expressed as: 

𝑀𝜏(𝛽) = ∑
𝛽𝑛

𝛤(𝑛𝜏+1)
∞
𝑛=0 , 𝜏 > 0, 𝛽 ∈ 𝐶.                              (3) 

2. BASED CONCEPT ON ADM 

Adomian devised this approach for solving differentials and in-
tegrating differential problems in 1994. The following process can 
be used to illustrate the current method. Let 

𝜙(𝜒(𝛾)) = 𝜓(𝛾)                                                            (4) 

If ψ(x) stands for the known function, ϕ stands for the differ-
ential operator, which may be broken down as follows: 

𝜙(𝜒) = 𝐿𝜒 + 𝑅𝜒 + 𝑁𝜒 ,                                                            (5) 

where R and N are linear and nonlinear terms, respectively, and L 
is the invertible operator of the largest derivative. Eq. (4) therefore 
has the following representation: 

  𝐿𝜒 + 𝑅𝜒 + 𝑁𝜒 = 𝜓                                               (6) 

Taking L−1 of Eq. (5), we have 

𝜒 = 𝜂 + 𝐿−1(𝜓) − 𝐿−1(𝑅𝜒) − 𝐿−1                             (7) 

The integration constant η is used here. The following are in-
finite series representations of the ADM 

solution: 

 𝜒 = ∑ 𝜒𝜌
∞
𝜌=0                                     (8) 

The nonlinear term Nχ is denoted by Aρ Adomian polynomials 

and is defined as: 

 𝑁𝜒 = ∑ 𝐴𝜌,      ∞
𝜌=0                                                         (9) 

We can compute Aρ with the aid of the formula below. 

𝐴𝜌 =
1

𝜌!

𝑑𝜌

𝑑𝜆𝜌 𝑁(∑(𝜆𝜌𝜒𝐾)),            𝜌 = 0,1,2, …  

The following connection is used to represent the solution  
of Eq. (4): 

{ 
𝜒0 = 𝜂 + 𝐿−1(𝜓) , 𝜌 = 0                  

𝜒𝜌+1 = 𝐿−1(𝑅𝜒𝜌) − 𝐿−1(𝐴𝜌), 𝜌 ≥ 0
                               (10) 

3.  MODIFIED ADM FOR INTINAL-BOUNDARY VALUE 
PROBLEMS  

Consider the one-dimensional differential equation below to 
convey the key concept of treating initial and boundary conditions 
with the ADM approach for resolving initial-boundary value difficul-
ties. 

𝐷𝛽
Τ𝜒(𝛾, 𝛽) = 𝐷𝛾𝛾𝜒(𝛾, 𝛽) + 𝑅(𝛾, 𝛽), 0 < 𝛾 < 1, 

𝛽 > 0,1 < Τ < 2 .                                                                  (11) 

The IC for Eq. (11) is of the following type: 

𝜒(𝛾, 0) = 𝛿0(𝛾), 𝜒𝛽(𝛾, 0) = 𝛿1(𝛾), 0 ≤ 𝛾 ≤ 1 

Hence, the BC is defined as follows: 

𝜒(0, 𝛽) = 𝜆0(𝛽), 𝜒 (1, 𝛽) = 𝜆1(𝛽), 𝛽 ≥ 0 

The operator form of ADM Eq. (11) is: 

𝐿𝜒 = 𝐷𝛾𝛾𝜒(𝛾, 𝛽) + 𝑅(𝛾, 𝛽)                                                  (12) 

where L is defined as, 

𝐿 =
𝜕Τ

𝜕𝛽Τ
 , 1 < Τ ≤ 2. 

Hence, L−1 is defined as, 

 𝐿−1( . ) = 𝐼Τ( . )𝑑𝛽.                                                           (13) 

Applying  L−1to Eq. (12), we obtain: 

𝜒(𝛾, 𝛽) = 𝜂 + 𝐿−1 (𝐷𝛾𝛾𝜒(𝛾, 𝛽) + 𝑅(𝛾, 𝛽))                       (14) 

when using ADM, the initial approximation becomes more accu-
rate. 

𝜒0(𝛾, 𝛽) = 𝜒(𝛾, 0) + 𝛽 (𝜕𝛽𝜒(𝛾, 0)) + 𝐿−1(𝑅(𝛾, 𝛽)). 

The iteration formula becomes more powerful when used with 
the new ADM technique. 

𝜒𝜌+1(𝛾, 𝛽) = 𝐿−1(𝐷𝛾𝛾𝜒𝜌
∗ ), 𝜌 = 0,1,2, …                            (15) 

where the new 𝜒𝜌
∗  is then computed using the newly suggested 

method. 

𝜒𝜌
∗ = 𝜒𝜌(𝛾, 𝛽) + (1 − 𝛾) (𝜆0(𝛽) − 𝜒𝜌(0, 𝛽)) +

𝛾 (𝜆1(𝛽) − 𝜒𝜌(1, 𝛽)) , 𝜌 = 0,1,2, …                                    (16) 

It is clear that the new successive initial solutions χρ
∗  of Eq. 

(11) satisfy both the initial and boundary conditions when  

𝜌 = 0,1,2,... 

At   𝛽 = 0 ,       𝜒𝜌
∗ (𝛾, 0) = 𝜒𝜌(𝛾, 0), 
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         𝛾 = 0,      𝜒𝜌
∗ (0, 𝛽) = 𝜆0(𝛽), 

         𝛾 = 1,      𝜒𝜌
∗ (1, 𝛽) = 𝜆1(𝛽) . 

Theorem 1. (Uniqueness theorem) We consider the following 
general time FPDE. 

𝐿Τ𝜒(𝛾, 𝛽) + 𝑅𝜒(𝛾, 𝛽) + 𝑁𝜒(𝛾, 𝛽) = 𝜓(𝛾, 𝛽),                   (17)     

𝑚 − 1 < Τ ≤ 𝑚 , 𝛾 > 0, 𝛽 > 0 where L is a fractional-order 
derivative, R is a linear differential operator, is a nonlinear opera-

tor and 𝜓   is a source term, and where 𝑅(𝜒) and 𝑁(𝜒) satisfy 

the Lipschitz condition with the constants 𝐿1 and 𝐿2 Then, Eq. 
(17) has a unique solution whenever 0 < 𝐾 < 1 for 𝐾 =
(𝐿1+𝐿2)𝛽Τ

Γ(Τ+1)
. 

Proof: Let 𝜃 be the Banach space of all continuous functions 

on 𝐼 =  [0, 𝑇] with the norm ∥ 𝜒 (𝛽) ∥ = 𝑚𝑎𝑥 |𝜒 (𝛽)|. We 

define a mapping 𝜔 ∶  𝜃 →  𝜃, where 

𝜔(𝜒(𝛽)) = 𝜑(𝛽) + Τ𝜓(𝛾, 𝛽) − 𝐽[𝑅𝜓(𝛾, 𝛽)] −

𝐽Τ𝑁𝜓(𝛾, 𝛽)}                                                                            (18) 

Let χ, χ̅ ∈ θ 

‖𝜔𝜒 − 𝜔𝜒̅‖ = 𝑚𝑎𝑥|𝜔𝜒 − 𝜔𝜒̅|, 

= |𝜑(𝛽) + 𝐽Τ𝜓(𝛾, 𝛽) − 𝐽Τ[𝑅𝜓(𝛾, 𝛽)] − [𝐽Τ𝑁𝜓(𝛾, 𝛽)]

− 𝜑(𝛽) − 𝐽Τ𝜓(𝛾, 𝛽) + 𝐽Τ[𝑅𝜓(𝛾, 𝛽)]

+ [𝐽Τ𝑁𝜓(𝛾, 𝛽)]| 
= |𝐽Τ[𝑅𝜓(𝛾, 𝛽) − 𝑅𝜓(𝛾, 𝛽)]| + 𝐽Τ[𝑁𝜓(𝛾, 𝛽) − 𝑁𝜓(𝛾, 𝛽)],        

(19) 

Now, we suppose that R(χ) and N(χ) satisfy the Lipschitz 
condition with the constants L1and L2. 

Therefore, 

‖𝜔𝜒 − 𝜔𝜒̅‖ ≤ 𝑚𝑎𝑥[𝐽Τ|𝑅𝜓(𝛾, 𝛽) − 𝑅𝜓(𝛾, 𝛽)|

+                              𝐽Τ|𝑁𝜓(𝛾, 𝛽)
− 𝑁𝜓(𝛾, 𝛽)|], 

‖𝜔𝜒 − 𝜔𝜒̅‖ ≤ 𝑚𝑎𝑥[𝐿1 𝐽Τ|𝜓(𝛾, 𝛽) − 𝜓(𝛾, 𝛽)|

+ 𝐿2 𝐽Τ|𝜓(𝛾, 𝛽) − 𝜓(𝛾, 𝛽)|], 

‖𝜔𝜒 − 𝜔𝜒̅‖ ≤ (𝐿1 + 𝐿2)‖𝜓(𝛾, 𝛽) − 𝜓(𝛾, 𝛽)‖ 
𝛽Τ

Γ(Τ + 1)
 

                    ≤ 𝐾‖𝜓(𝛾, 𝛽) − 𝜓(𝛾, 𝛽)‖, where 𝐾 =
(𝐿1+𝐿2)𝛽Τ

Γ(Τ+1)
 

4.  APPLICATIONS 

In this part, we will show how to solve various exemplary prob-
lems utilising the new ADM-based method. 

 

 Example 1.We examine a fractional heat-like equation in one 
dimension. [31] 

𝐷𝛽
𝜏𝜒 =

1

2
 𝛾2 𝜕2𝜒

𝜕𝛾2  ,   0 <  𝜏, 𝛾 ≤ 1, 𝛽 > 0.                  (21) 

Subject to the BC: 

𝜒(0, 𝛽) = 0 ,    𝜒(1, 𝛽) = 𝑒𝛽 , 𝛽 > 0.                    (22) 

and IC: 

𝜒(𝛾, 0) = 𝛾2.                                          (23) 

By using ADM, Eq. (21) can be written in the form, 

𝐿𝜒 =  
1

2
  𝛾2 𝜕2𝜒

𝜕𝛾2 .                                        (24) 

where L =  Dβ
τ , 0 <  τ ≤ 1. 

Taking L−1 , of Eq. (24), we find that: 

𝜒(𝛾, 𝛽) =  𝜒(𝛾, 0) +  𝐿−1 [
1

2
  𝛾2𝜒𝛾𝛾].  

Using the initial approximation, we find that: 

𝜒0(𝛾, 𝛽) = 𝛾2.                                           (25) 

By use of the new technique of initial approximation χρ
∗ , we 

have 

𝜒𝜌+1 =  
1

2
  𝛾2𝐿−1[𝜒𝜌𝛾𝛾

∗ ]  ,   𝜌 = 0, 1, 2, 3, …             (26) 

By applying a new approximation χρ
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝛽) =  𝜒𝜌(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒𝜌(0, 𝛽)] +

𝛾[𝑒𝛽 − 𝜒𝜌(1, 𝛽)],   𝜌 = 0, 1, 2, …                                         (27) 

Let  ρ = 0; we then obtain: 

𝜒0
∗(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒0(0, 𝛽)] +

𝛾[𝑒𝛽 − 𝜒0(1, 𝛽)].  

Using Eq. (26), we can obtain: 

𝜒1(𝛾, 𝛽) =
𝛾2𝛽𝜏

Γ(𝜏+1)
 ,  

Let ρ = 1; we then obtain: 

𝜒1
∗(𝛾, 𝛽) =  𝜒1(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒1(0, 𝛽)] +

𝛾[𝑒𝛽 − 𝜒1(1, 𝛽)].  

Using Eq. (26), we can obtain: 

𝜒2(𝛾, 𝛽) =
𝛾2𝛽2𝜏

Γ(2𝜏+1)
 ,  

Let 𝜌 = 2; we then obtain: 

𝜒2
∗(𝛾, 𝛽) =  𝜒2(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒2(0, 𝛽)] +

𝛾[𝑒𝛽 − 𝜒2(1, 𝛽)].  

Using Eq. (26), we can obtain: 

𝜒3(𝛾, 𝛽) =
𝛾2𝛽3𝜏

Γ(3𝜏+1)
 ,  

Thus, the new ADM solution for Eq. (21) can be written in a 
series form: 

𝜒(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + 𝜒1(𝛾, 𝛽) + 𝜒2(𝛾, 𝛽) + 𝜒3(𝛾, 𝛽) +
⋯   =  𝛾2𝑀𝜏(𝛽).                         (28) 

where Mτ(β) is the Mittag-Leffler function. 

If τ = 1, we obtain: 

𝜒(𝛾, 𝛽) =  𝛾2 (1 +  𝛽 +  
𝛽2

2!
+ 

𝛽3

3!
+ ⋯ ) =  𝛾2𝑒𝛽 .            (29) 

which is the exact solution of Eq. (21). 
 

Example 2. We examine a fractional wave-like equation in one 
dimension [32]. 

𝐷𝛽𝛽
𝜏 𝜒 =

1

2
 𝛾2 𝜕2𝜒

𝜕𝛾2  ,   0 <  𝛾 < 1 ,0 <  𝜏 ≤ 2, 𝛽 > 0.         (30) 

Subject to the BC: 

𝜒(0, 𝛽) = 0 ,    𝜒(1, 𝛽) = 1 + sinℎ𝛽, 𝛽 > 0.                    (31) 
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and IC: 

𝜒(𝛾, 0) = 𝛾, 𝜒𝛽(𝛾, 0) =  𝛾 2                            (32) 

By using ADM, Eq. (30) can be written in the form, 

𝐿𝛽𝜒 =  
1

2
  𝛾2 𝜕2𝜒

𝜕𝛾2 .                                        (33) 

where L =  Dβ
τ , 1 <  τ ≤ 2 . 

Taking Lβ
−1  of Eq. (33) enables us to find that: 

𝜒(𝛾, 𝛽) =  𝜒(𝛾, 0) + 𝛽𝜒𝛽(𝛾, 0) + 𝐿−1 [
1

2
  𝛾2𝜒𝛾𝛾].  

Using the initial approximation, we find that: 

𝜒0(𝛾, 𝛽) = 𝛾 + 𝛾2𝛽.                                        (34) 

By use of the new technique of initial approximation χρ
∗ , we 

have: 

𝜒𝜌+1 =
1

2
  𝛾2 𝐿−1[𝜒𝜌𝛾𝛾

∗ ]  ,   𝜌 = 0, 1, 2, 3, . ..             (35) 

By applying a new approximation χρ
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝛽) =  𝜒𝜌(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒𝜌(0, 𝛽)] +

𝛾[1 + sinℎ𝛽 − 𝜒𝜌(1, 𝛽)],   𝜌 = 0, 1, 2, …                           (36) 

Let  ρ = 0; we then obtain: 

𝜒0
∗(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒0(0, 𝛽)] +

𝛾[1 + sinℎ𝛽 − 𝜒0(1, 𝛽)].  

Using Eq. (35), we can obtain the following: 

𝜒1(𝛾, 𝛽) =
𝛾2𝛽𝜏+1

Γ(𝜏+2)
 ,  

Let ρ = 1; this enables us to obtain the following: 

𝜒1
∗(𝛾, 𝛽) =  𝜒1(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒1(0, 𝛽)] +

𝛾[1 + sinℎ𝛽 − 𝜒1(1, 𝛽)].  

Using Eq. (35), we can obtain: 

𝜒2(𝛾, 𝛽) =
𝛾2𝛽2𝜏+1

Γ(2𝜏+2)
 ,  

Let ρ = 2; we may then obtain: 

𝜒2
∗(𝛾, 𝛽) =  𝜒2(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒2(0, 𝛽)] +

𝛾[1 + sinℎ𝛽 − 𝜒2(1, 𝛽)].  

Using Eq. (35), we can obtain: 

𝜒3(𝛾, 𝛽) =
𝛾2𝛽3𝜏+1

Γ(3𝜏+2)
 ,  

Thus, the new ADM solution for Eq. (30) can be written in a 
series form: 

𝜒(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + 𝜒1(𝛾, 𝛽) + 𝜒2(𝛾, 𝛽) + 𝜒3(𝛾, 𝛽) + ⋯   

=  𝛾 +  𝛾2𝛽 + 𝛾2 [
𝛽𝜏+1

Γ(𝜏+2)
+

𝛽𝜏+3

Γ(𝜏+4)
+

𝛽𝜏+5

Γ(𝜏+6)
+ ⋯ ] ,            (37) 

If τ = 2, we obtain: 

𝜒(𝛾, 𝛽) =  𝛾 + 𝛾2 ( 𝛽 +  
𝛽3

3!
+ 

𝛽5

5!
+

𝛽7

7!
+ ⋯ ) 

= 𝛾 + 𝛾2sinℎ𝛽.                                                   (38) 

which is the exact solution of Eq. (30). 
 

 
 

Example 3. Consider the following two-dimensional linear  [32]. 
 

𝐷𝛽
𝜏𝜒 =

𝜕2𝜒

𝜕𝛾2
+  

𝜕2𝜒

𝜕𝜂2
,   0 <  𝛾, 𝜂 < 2𝜋  ,0 <  𝜏 ≤ 1, 𝛽 > 0.       (39) 

Subject to the BC: 

𝜒(0, 𝜂, 𝛽) = 𝜒(2𝜋, 𝜂, 𝛽) = 0

𝜒(𝛾, 0, 𝛽) = 𝜒(𝛾, 2𝜋, 𝛽) = 0
                       (40) 

and IC: 

𝜒(𝛾, 𝜂, 𝛽) = sin𝛾 sin𝜂                               (41) 

By using ADM, Eq. (39) can be written in the form, 

𝐿𝜒 =  
𝜕2𝜒

𝜕𝛾2 + 
𝜕2𝜒

𝜕𝜂2 ,                                       (42) 

where L =  Dβ
τ , 0 <  τ ≤ 1 . 

Taking  L−1  of Eq. (42), we find that: 

𝜒(𝛾, 𝜂, 𝛽) =  𝜒(𝛾, 𝜂, 0) + 𝐿−1 [ 
𝜕2𝜒

𝜕𝛾2 + 
𝜕2𝜒

𝜕𝜂2].                (43) 

Using the initial approximation, we find that: 

𝜒0(𝛾, 𝜂, 𝛽) = sin𝛾 sin𝜂.                                  (44) 

By use of the new technique of initial approximation χρ
∗ , we 

have: 

𝜒𝜌+1 =  𝐿−1[𝜒𝜌𝛾𝛾
∗ + 𝜒𝜌𝛾𝛾

∗ ]  ,   𝜌 = 0, 1, 2, 3, . ..            (45) 

By applying a new approximation χρ
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝜂, 𝛽) =  𝜒𝜌(𝛾, 𝜂, 𝛽) + (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒𝜌(0, 𝜂, 𝛽)] + 𝛾[𝜒(2𝜋, 𝜂, 𝛽) − 𝜒𝜌(2𝜋, 𝜂, 𝛽)] +

(1 − 𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒𝜌(𝛾, 0, 𝛽)] + 𝜂[𝜒(𝛾, 2𝜋, 𝛽) −

𝜒𝜌(𝛾, 2𝜋, 𝛽)],   𝜌 = 0, 1, 2, …                                              (46) 

Let  ρ = 0; we then obtain: 

𝜒0
∗(𝛾, 𝜂, 𝛽) =  𝜒0(𝛾, 𝜂, 𝛽) +  (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒0(0, 𝜂, 𝛽)] + 𝛾[𝜒(2𝜋, 𝜂, 𝛽) − 𝜒0(2𝜋, 𝜂, 𝛽)] +
(1 − 𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒0(𝛾, 0, 𝛽)] + 𝜂[𝜒(𝛾, 2𝜋, 𝛽) −
𝜒0(𝛾, 2𝜋, 𝛽)] = sin𝛾 sin𝜂 .                   (47) 

Using Eq. (45), we obtain: 

𝜒1(𝛾, 𝜂, 𝛽) = 𝐿−1[𝜒0𝛾𝛾
∗ + 𝜒0𝛾𝛾

∗ ] =  −2sin𝛾 sin𝜂
𝛽𝜏

Γ(𝜏+1)
 ,  (48) 

Let ρ = 1;  c 

𝜒1
∗(𝛾, 𝜂, 𝛽) =  𝜒1(𝛾, 𝜂, 𝛽) + (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒1(0, 𝜂, 𝛽)] + 𝛾[𝜒(2𝜋, 𝜂, 𝛽) − 𝜒1(2𝜋, 𝜂, 𝛽)] +
(1 − 𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒1(𝛾, 0, 𝛽)] + 𝜂[𝜒(𝛾, 2𝜋, 𝛽) −

𝜒1(𝛾, 2𝜋, 𝛽)]  = −2sin𝛾 sin𝜂
𝛽𝜏

Γ(𝜏+1)
 .                          (49) 

Using Eq. (49), we obtain:  

𝜒2(𝛾, 𝜂, 𝛽) = 4sin𝛾 sin𝜂
𝛽2𝜏

Γ(2𝜏+1)
 ,                      (50) 

Let 𝜌 = 2;  we thus obtain: 

𝜒2
∗(𝛾, 𝜂, 𝛽) =  𝜒2(𝛾, 𝜂, 𝛽) +  (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒2(0, 𝜂, 𝛽)] + 𝛾[𝜒(2𝜋, 𝜂, 𝛽) − 𝜒2(2𝜋, 𝜂, 𝛽)] +
(1 − 𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒2(𝛾, 0, 𝛽)] + 𝜂[𝜒(𝛾, 2𝜋, 𝛽) −

𝜒2(𝛾, 2𝜋, 𝛽)] = 4sin𝛾 sin𝜂
𝛽2𝜏

Γ(2𝜏+1)
 .                         (51) 
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Us Eq. (45), we obtain: 

𝜒3(𝛾, 𝜂, 𝛽) = −8sin𝛾 sin𝜂
𝛽3𝜏

Γ(3𝜏+1)
  ,                       (52) 

Thus, the new ADM solution for Eq. (39) can be written in a 
series form: 

𝜒(𝛾, 𝜂, 𝛽) =  𝜒0(𝛾, 𝜂, 𝛽) + 𝜒1(𝛾, 𝜂, 𝛽) + 𝜒2(𝛾, 𝜂, 𝛽) +

𝜒3(𝛾, 𝜂, 𝛽) + ⋯   =  sin𝛾 sin𝜂 − 2sin𝛾 sin𝜂
𝛽𝜏

Γ(𝜏+1)
+

4sin𝛾 sin𝜂
𝛽2𝜏

Γ(2𝜏+1)
 − 8sin𝛾 sin𝜂

𝛽3𝜏

Γ(3𝜏+1)
+ ⋯,         

=  sin𝛾 sin𝜂 [1 − 2
𝛽𝜏

Γ(𝜏+1)
+ 4

𝛽2𝜏

Γ(2𝜏+1)
− 8

𝛽3𝜏

Γ(3𝜏+1)
+ ⋯ ]  (53) 

If τ = 1, we obtain: 

𝜒(𝛾, 𝜂, 𝛽) =   sin𝛾 sin𝜂 𝑒−2𝛽                           (54) 

which is the exact solution of Eq. (39). 
 

Example 4. We examine a fractional wave-like equation in two 
dimensions [33]. 

𝐷𝛽𝛽
𝜏 𝜒 =

1

12
[𝛾2 𝜕2𝜒

𝜕𝛾2 + 𝜂2  
𝜕2𝜒

𝜕𝜂2]

0 <  𝛾, 𝜂 < 1, , ,1 <  𝜏 ≤ 2, 𝛽 > 0.
,                   (55) 

Subject to the BC: 

𝜒(0, 𝜂, 𝛽) = 0  ,   𝜒(1, 𝜂, 𝛽) = 4cosℎ𝛽

𝜒(𝛾, 0, 𝛽) = 0 , 𝜒(𝛾, 2𝜋, 𝛽) = 4sinℎ𝛽
                     (56) 

and IC: 

𝜒(𝛾, 𝜂, 0) = 𝛾2, 𝜒𝛽(𝛾, 𝜂, 0) = 𝜂2                              (57) 

By using ADM, Eq. (58) can be written in the form, 

𝐿𝛽𝜒 =
1

12
[𝛾2 𝜕2𝜒

𝜕𝛾2 + 𝜂2  
𝜕2𝜒

𝜕𝜂2] ,                                    (58) 

where 𝐿 =  𝐷𝛽
𝜏 , 1 <  𝜏 ≤ 2 . 

Taking  𝐿𝛽
−1  of Eq. (58), we find that: 

𝜒(𝛾, 𝜂, 𝛽) =  𝛾4 + 𝜂4𝛽 + 𝐿𝛽
−1 [

1

12
(𝛾2 𝜕2𝜒

𝜕𝛾2 + 𝜂2  
𝜕2𝜒

𝜕𝜂2)].     

Using the initial approximation, we find that: 

𝜒0(𝛾, 𝜂, 𝛽) =  𝛾4 + 𝜂4𝛽.                                 (59) 

By using the new technique of initial approximation 𝜒𝜌
∗ , we 

have: 

𝜒𝜌+1 =  
1

12
𝐿𝛽

−1 [𝛾2(𝜒𝜌
∗ )

𝛾𝛾
+ 𝜂2(𝜒𝜌

∗ )
𝜂𝜂

] , 𝜌 = 0, 1, 2, . ..    (60) 

By applying a new approximation 𝜒𝜌
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝜂, 𝛽) =  𝜒𝜌(𝛾, 𝜂, 𝛽) + (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒𝜌(0, 𝜂, 𝛽)] + 𝛾[𝜒(1, 𝜂, 𝛽) − 𝜒𝜌(1, 𝜂, 𝛽)] + (1 −

𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒𝜌(𝛾, 0, 𝛽)] +

𝜂[𝜒(𝛾, 1, 𝛽) − 𝜒𝜌(𝛾, 1, 𝛽)],   𝜌 = 0, 1, 2, …                        (61) 

Let  𝜌 = 0; we then obtain: 

𝜒0
∗(𝛾, 𝜂, 𝛽) =  𝜒0(𝛾, 𝜂, 𝛽) +  (1 − 𝛾)[𝜒(0, 𝜂, 𝛽) −

𝜒0(0, 𝜂, 𝛽)] + 𝛾[𝜒(1, 𝜂, 𝛽) − 𝜒0(1, 𝜂, 𝛽)] + (1 −
𝜂)[𝜒(𝛾, 0, 𝛽) − 𝜒0(𝛾, 0, 𝛽)] + 𝜂[𝜒(𝛾, 1, 𝛽) − 𝜒0(𝛾, 1, 𝛽)] =
𝛾4 + 𝜂4𝛽 .         

 

Using Eq. (60), we obtain: 

𝜒1 =  
1

12
𝐿𝛽

−1[𝛾2(𝜒0
∗)𝛾𝛾 + 𝜂2(𝜒0

∗)𝜂𝜂]

= 𝛾4 𝛽𝜏

Γ(𝜏+1)
+ 𝜂4 𝛽𝜏+1

Γ(𝜏+2)

    

𝜒2 =  
1

12
𝐿𝛽

−1[𝛾2(𝜒1
∗)𝛾𝛾 + 𝜂2(𝜒1

∗)𝜂𝜂]

= 𝛾4 𝛽2𝜏

Γ(2𝜏+1)
+ 𝜂4 𝛽2𝜏+1

Γ(2𝜏+2)

    

𝜒3 =  
1

12
𝐿𝛽

−1[𝛾2(𝜒2
∗)𝛾𝛾 + 𝜂2(𝜒2

∗)𝜂𝜂]

= 𝛾4 𝛽3𝜏

Γ(3𝜏+1)
+ 𝜂4 𝛽3𝜏+1

Γ(3𝜏+2)

  

                    (62) 

Thus, the new ADM solution for Eq. (55) can be written in a 
series form: 

𝜒(𝛾, 𝜂, 𝛽) =  𝜒0(𝛾, 𝜂, 𝛽) + 𝜒1(𝛾, 𝜂, 𝛽)                                                               

+𝜒2(𝛾, 𝜂, 𝛽) + 𝜒3(𝛾, 𝜂, 𝛽) + ⋯                                      

=  𝛾4 [1 +
𝛽𝜏

Γ(𝜏+1)
+

𝛽2𝜏

Γ(2𝜏+1)
+

𝛽3𝜏

Γ(3𝜏+1)
+ ⋯ ]

+𝜂4 [𝛽 +
𝛽𝜏+1

Γ(𝜏+2)
+

𝛽𝜏+3

Γ(2𝜏+2)
+

𝛽𝜏+5

Γ(3𝜏+2)
+ ⋯ ] .

  

(63) 

If 𝜏 = 2, we obtain: 

𝜒(𝛾, 𝜂, 𝛽) = 𝛾4 ( 1 + 
𝛽2

2!
+  

𝛽4

4!
+

𝛽6

6!
+ ⋯ ) +     

𝜂4 ( 𝛽 +  
𝛽3

3!
+ 

𝛽5

5!
+

𝛽7

7!
+ ⋯ )

= 𝛾4cosℎ𝛽 +𝜂4sinℎ𝛽         

               (64)    

which is the exact solution of Eq. (55). 
 

Example 5. Consider the following one-dimensional nonlinear 
heat – similar to Eq. (34): 

 
𝐷𝛽

𝜏𝜒 = 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏+2

Γ(𝜏+2)2 + 2𝛾2𝛽𝜏

0 <  𝛾, 𝜏 ≤ 1  ,, , 𝛽 > 0.
,                   (65) 

Subject to the BC: 

𝜒(0, 𝛽) = 0  ,   𝜒(1, 𝛽) =
2𝛽𝜏+1

Γ(𝜏+2)
   ,   𝛽 > 0                       (66) 

and IC: 

𝜒(𝛾, 0) = 0                                          (67) 

By using ADM, Eq. (65) can be written in the form, 

𝐿𝜒 = 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏+2

Γ(𝜏+2)2 + 2𝛾2𝛽𝜏 ,                       (68) 

where 𝐿 =  𝐷𝛽
𝜏 , 0 <  𝜏 ≤ 1 . 

Taking  𝐿−1  of Eq. (68), we find that: 

𝜒(𝛾, 𝛽) =  𝜒(𝛾, 0) + 𝐿−1[2𝛾2𝛽𝜏]

 + 𝐿−1 [ 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏+2

Γ(𝜏+2)2] .
                    (69) 

Using the initial approximation, we find that: 

𝜒0(𝛾, 𝛽) = 2𝛾2 𝛽2𝜏

Γ(2𝜏+1)
.                                 (70) 

By using the new technique of initial approximation 𝜒𝜌
∗ , we 

have: 

𝜒𝜌+1 =  𝐿−1 [𝛾𝜒𝜌
∗ 𝜒𝜌𝛾𝛾

∗ − 8𝛾3  
𝛽2𝜏+2

Γ(𝜏+2)2]  , 𝜌 = 0, 1, 2, 3, . .. (71) 
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By applying a new approximation 𝜒𝜌
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝛽) =  𝜒𝜌(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒𝜌(0, 𝛽)]

+𝛾 [
2𝛽𝜏+1

Γ(𝜏+2)
− 𝜒𝜌(1, 𝛽)] ,   𝜌 = 0, 1, 2, …

                (72) 

Let  𝜌 = 0; we then obtain: 

𝜒0
∗(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒0(0, 𝛽)]

+𝛾 [
2𝛽𝜏+1

Γ(𝜏+2)
− 𝜒0(1, 𝛽)]

 

Using Eq. (71), we obtain: 

𝜒1(𝛾, 𝛽) = 0 ,                                   (73) 

Thus, the new ADM solution for Eq. (65) can be written in a 
series form: 

𝜒(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + 𝜒1(𝛾, 𝛽),

 =  2𝛾2 𝛽2𝜏

Γ(2𝜏+1)
     

                          (74) 

Let 𝜌 = 1; we then obtain: 

𝜒(𝛾, 𝛽) = 𝛾2 𝛽2                                           (75) 
 

Example 6. Consider the following one-dimensional nonlinear 
wave – similar to Eq. (34): 

 
𝐷𝛽

𝜏𝜒 = 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏

Γ(𝜏+2)2 + 2𝛾2

1 <  𝛾, 𝜏 ≤ 2  ,, , 𝛽 > 0.
,                   (76) 

Subject to the BC: 

𝜒(0, 𝛽) = 0  ,   𝜒(1, 𝛽) =
2𝛽𝜏

Γ(𝜏+1)
   ,   𝛽 > 0                 (77) 

and IC: 

𝜒(𝛾, 0) = 0  ,   𝜒𝛽(𝛾, 0) =  0                         (78) 

By using ADM, Eq. (76) can be written in the form, 

𝐿𝜒 = 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏

Γ(𝜏+1)2 + 2𝛾2 ,                        (79) 

where 𝐿 =  𝐷𝛽
𝜏 , 1 <  𝜏 ≤ 2 . 

Taking  𝐿−1  of Eq. (79), we find that: 

𝜒(𝛾, 𝛽) =  𝜒(𝛾, 0) + 𝐿−1[2𝛾2]

                       + 𝐿−1 [ 𝛾𝜒
𝜕2𝜒

𝜕𝛾2 − 8𝛾3  
𝛽2𝜏

Γ(𝜏+1)2] .
                       (80) 

Using the initial approximation, we have: 

𝜒0(𝛾, 𝛽) = 2𝛾2 𝛽𝜏

Γ(𝜏+1)
.                                 (81) 

By using the new technique of initial approximation 𝜒𝜌
∗ , we 

have: 

𝜒𝜌+1 =  𝐿−1 [𝛾𝜒𝜌
∗ 𝜒𝜌𝛾𝛾

∗ − 8𝛾3  
𝛽2𝜏

Γ(𝜏+1)2]  , 𝜌 = 0, 1, 2, 3, . .. (82) 

By applying a new approximation 𝜒𝜌
∗ , we have: 

𝜒𝜌
∗ (𝛾, 𝛽) =  𝜒𝜌(𝛾, 𝛽) +  (1 − 𝛾)[0 − 𝜒𝜌(0, 𝛽)]

+𝛾 [
2𝛽𝜏

Γ(𝜏+1)
− 𝜒𝜌(1, 𝛽)] ,   𝜌 = 0, 1, 2, …

                (83) 

Let  𝜌 = 0; we then obtain: 

𝜒0
∗(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + (1 − 𝛾)[0 − 𝜒0(0, 𝛽)]

+𝛾 [
2𝛽𝜏

Γ(𝜏+1)
− 𝜒0(1, 𝛽)]

        

Using Eq. (71), we obtain: 

𝜒1(𝛾, 𝛽) = 0 ,                                    (84) 

Thus, the new ADM solution for Eq. (76) can be written in a 
series form: 

𝜒(𝛾, 𝛽) =  𝜒0(𝛾, 𝛽) + 𝜒1(𝛾, 𝛽),

 =  2𝛾2 𝛽𝜏

Γ(𝜏+1)
     

                          (85) 

Let 𝜌 = 1; we then obtain: 

𝜒(𝛾, 𝛽) = 𝛾2 𝛽2                                      (86) 

5. NUMERICAL RESULT   

The derived solutions from Example 1 are displayed at various 
fractional orders of the derivatives in Figs. 1(a) and 1(b).  

 

 
Fig. 1. Comparison between exact and approximate solutions 
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Fig. 2. Comparison between exact and approximate solutions 

 
Fig. 3. Comparison between exact and approximate solutions 

 
Fig. 4. Comparison between exact and approximate solutions 

The graphs of the 2D and 3D ADM solutions in Figs. 1(a) and 
1(b) corroborate the closed contact with the precise solution of 

Example 1 and show the 2D and 3D ADM solutions τ.The closed 
contact between Example 1’s precise and found solutions at the 
integer derivative order is being investigated. The graphs show 
how closely related the exact and derived outcomes are. The 
proposed approach yields an accurate solution for Example 1 as a 

consequence. Figs. 2(a) and 2(b) show the obtained solutions 
from Example 2 at different fractional orders of the derivative 
solution for Example 1 as a consequence. Figs. 2(a) and 2(b) 
show the obtained solutions from Example 2 at different fractional 
orders of the derivatives. The closed contact with the exact solu-
tion of Example 2 is supported by the graphs of the 2D and 3D 
ADM solutions. As a consequence, using the provided technique, 
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it can be ascertained that Example 2’s solution is correct. Figs. 
3(a) and 3(b) show the analytical and exact solutions for χ (γ,β) of 
Example 3 at β = 0.1,0.2 and 0 < γ ≤ 2π for various fractional-
orders. The graphical behavior of the exact and analytical solu-
tions to χ (γ,β) Figs. 4(a) and 4(b) show the analytical and exact 
solutions for χ (γ,β) of Example 4 at  β= 0.2 and 0 < γ,≤ 1 for 
various fractional-orders. The graphical behaviour of the exact 

and analytical solutions to χ (γ,β).Tabs. 1–4 contrast the exact 
answers that have been presented with the absolute inaccuracy at 
various fractional orders. The findings in the figures and tables 
clearly show that our approach to finding a solution quickly con-
verges on a correct response. Last but not least, the images and 
figures show that the suggested processes are more exact and 
quickly converge to accurate results. 

Tab. 1. Solution for the (first three approximations) with exact solution, with mesh points 𝛽 =  0.01, for Eq. (21) 

𝜷 𝜸 𝝉 = 𝟎. 𝟕𝟓 𝝉 = 𝟎. 𝟖𝟓 𝝉 = 𝟏 𝐄𝐱𝐚𝐜𝐭 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟎. 𝟕𝟓 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟎. 𝟖𝟓 𝑬𝒓𝒓𝒐𝒓 𝝉 = 𝟏 

0.01 0 0 0 0 0 0 0 0 

 0.1 0 0.010213602 0.010100502 0.010100502 0.000251223 0.000113101 8.34575 × 10−15 

 0.2 0.041406899 0.04085441 0.040402007 0.040402007 0.001004892 0.000452403 3.3383× 10−14 

 0.3 0.093165522 0.091922422 0.090904515 0.090904515 0.002261007 0.001017907 7.51066 × 10−14 

 0.4 0.165627595 0.163417639 0.161608027 0.161608027 0.004019568 0.001809612 1.33532 × 10−13 

 0.5 0.258793117 0.255340061 0.252512542 0.252512542 0.006280575 0.002827519 2.08611 × 10−13 

 0.6 0.372662089 0.367689688 0.36361806 0.36361806 0.009044029 0.004071628 3.00426 × 10−13 

 0.7 0.50723451 0.50046652 0.494924582 0.494924582 0.012309928 0.005541938 4.0884 × 10−13 

 0.8 0.66251038 0.653670556 0.646432107 0.646432107 0.016078273 0.007238449 5.34128 × 10−13 

 0.9 0.8384897 0.827301798 0.818140635 0.818140635 0.020349064 0.009161162 6.7590377 × 10−13 

 1 1.035172469 1.021360244 1.010050167 1.010050167 0.025122301 0.011310077 8.34443× 10−13 

Tab. 2. Solution for the (first three approximations) with exact solution, with mesh points 𝛽 =  0.02, for Eq. (30)    

𝜷 𝜸 𝝉 = 𝟏. 𝟕𝟓 𝝉 = 𝟏. 𝟖𝟓 𝝉 = 𝟐 𝐄𝐱𝐚𝐜𝐭 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟏. 𝟕𝟓 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟏. 𝟖𝟓 𝑬𝒓𝒓𝒐𝒓 𝝉 = 𝟐 

0.02 0 0 0 0 0 0 0 0 

 0.1 0.1002 0.1002 0.1002 0.1001 1.18937 × 10−7 6.89018 × 10−8 2.66667× 10−8 

 0.2 0.200801 0.2008 0.2008 0.2004 4.75748 × 10−7 2.75607 × 10−7 1.06667× 10−7 

 0.3 0.301801 0.301801 0.3018 0.3009 1.07043 × 10−6 6.20116 × 10−7 2.4 × 10−6 

 0.4 0.403202 0.403201 0.403201 0.4016 1.90299 × 10−6 1.10243 × 10−6 4.26667× 10−7 

 0.5 0.505003 0.505002 0.505001 0.5025 2.97343 × 10−6 1.72254 × 10−6 6.66667× 10−7 

 0.6 0.607205 0.607203 0.607201 0.6036 4.28173 × 10−6 2.48046 × 10−6 9.6× 10−7 

 0.7 0.709806 0.709804 0.709802 0.7049 5.82792 × 10−6 3.37619 × 10−6 1.30667× 10−6 

 0.8 0.812808 0.812805 0.812803 0.8064 7.61197 × 10−6 4.40971 × 10−6 1.70667× 10−6 

 0.9 0.916211 0.916207 0.916203 0.9081 9.6339 × 10−6 5.58104 × 10−6 2.16× 10−6 

 1 1.02001 1.02001 1.02 1.01 1,18937 × 10−5 6.89018 × 10−6 2.66667× 10−6 

Tab. 3. Solution for the (first three approximations) with exact solution, with mesh points 𝛽 =  0.02, for Eq. (30) 

𝜷 𝜼 𝜸 𝝉 = 𝟎. 𝟕𝟓 𝝉 = 𝟎. 𝟖𝟓 𝝉 = 𝟏 𝐄𝐱𝐚𝐜𝐭 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟎. 𝟕𝟓 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟎. 𝟖𝟓 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟏 

0.1 
2𝜋

3
 

2𝜋

3
 0.517896942 0.559870154 0.614 0.614048065 0.096151123 0.05417791 4.80648E-05 

  
4𝜋

3
 –0.517896942 –0.559870154 –0.614 –0.614048065 0.096151123 0.05417791 4.80648E-05 

0.2  
2𝜋

3
 0.400780878 0.443831887 0.502 0.502740035 0.101959157 0.058908148 0.000740035 

  
4𝜋

3
 –0.400780878 –0.443831887 –0.502 –0.502740035 0.101959157 0.058908148 0.000740035 

Tab. 4. Solution for the (first three approximations) with exact solution, with mesh points 𝛽 =  0.2, for Eq. (55) 

𝜷 𝜼 𝜸 𝝉 = 𝟏. 𝟕𝟓 𝝉 = 𝟏. 𝟖𝟓 𝝉 = 𝟐 𝐄𝐱𝐚𝐜𝐭 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟏. 𝟕𝟓 𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟏. 𝟖𝟓 
𝐄𝐫𝐫𝐨𝐫 𝝉 = 𝟐 

= 𝟐 

0.2 0.1 0.25 0.000791879 0.000789268 0.000786479 0.000786479 5.40013 × 10−6 2.78865 × 10−6 5.51412 × 10−15 

  0.5 0.01266991 0.012628127 0.01258351 0.01258351 0.0000864 0.0000446 8.82159 × 10−14 

  0.75 0.064141377 0.063929852 0.06370398 0.06370398 0.000437397 0.000225873 4.46601 × 10−13 

 0.05 0.25 0.000798353 0.00079569 0.000792844 0.000792844 5.5089 × 10−6 2.84615 × 10−6 5.91053 × 10−6 

  0.5 0.012676384 0.01263455 0.012589876 0.012589876 0.0000865 0.0000447 8.86131 × 10−14 

  0.75 0.064147851 0.063936275 0.063710345 0.063710345 0.000437506 0.00022593 4.47004 × 10−14 
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6. CONCLUSION 

 Fractional-order heat-like and wave-like equations with initial 
and boundary conditions are studied analytically in this paper.  
A novel approach based on ADM is provided for the solution of 
specified problems in a very easy and effective manner. For each 
case, fractional derivatives are defined in the Caputo sense. The 
approach is particularly well-suited to solving fractional PDEs with 
beginning and boundary conditions. Additionally, information 
demonstrating the output of this approach is presented in the form 
of graphs and tables to highlight the current technique’s best 
applicability. The results also show that the techniques are a very 
effective, useful and accurate way to solve heat and wave equa-
tions with initial and boundary conditions. 
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