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Abstract: This paper introduces a novel form of the Adomian decomposition (ADM) method for solving fractional-order heat-like
and wave-like equations with starting and boundary value problems. The derivations are provided in the sense of Caputo. In order to help
understanding, the generalised formulation of the current approach is provided. Several numerical examples of fractional-order
diffusion-wave equations (FDWEs) are solved using the suggested method in this context. In addition to examining the applicability
of the suggested method to the solving of fractional-order heat-like and wave-like equations, a graphical depiction of the solutions to three
instructive cases was constructed. Solution graphs were arrived at for integer and fractional-order problems. The derived and exact
solutions to integer-order problems were found to be in excellent agreement. The subject of the present research endeavour
is the convergence of fractional-order solutions. This strategy is considered to be the most successful way of addressing fractional-order
initial-boundary value issues in science and engineering. This strategy is presented here.
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1. INTRODUCTION

Fractional calculus is the study of derivatives and integrals of
fractional order. In addition to fluid dynamics, viscoelasticity,
chemistry, physics and finance, these approaches may also be
used in other fields. Fractional differential equations are used in
several scientific and engineering fields.

The fractional method is currently regarded as the most pow-
erful modelling tool in wave propagation, anomalous diffusion
tools, turbulence and mechanics [1, 2, 3]. It is an extension of the
conventional integer-order partial differential equations and frac-
tional partial differential equations (FPDEs). In the past 10 years,
scientists and engineers have paid a lot of attention to nonlinear
equations due to the fact that nonlinearity is present in almost all
physical situations. Nonlinear partial differential equations of
fractional order are used in chemistry, biology, physics, vibration,
acoustics, signal processing, electromagnetics, polymeric materi-
als and fluid dynamics, as well as superconductivity, optics and
quantum mechanics [4-7]. For the description of many elements
of natural phenomena, such as the dynamics of complex materi-
als, quasi-chaotic dynamical systems and random walks with
memory, FPDEs are better suited than traditional PDEs [8,9,10].

Since FDEs typically lack accurate analytical solutions, the
manner of solving these equations in approximate and numerical
ways has been subject to much investigation [11-13]. Methods
such as variational iteration, Adomian decomposition (ADM),
homotopy perturbation, Lagrange multiplier technique and others
are used to provide analytical approximations for linear and non-
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linear FDEs. It is necessary to build an effective and user-friendly
method for solving these equations. The ADM method may be
used to solve this issue with ordinary, partial and nonlinear differ-
ential equations [14-17].

A broad class of linear or nonlinear differential equations has
been approximated using the decomposition approach [18,19].
The method’s use for fractional differentia equations has recently
been broadened [20-23]. Researchers are expected to work on
the resolution of fractional-order diffusion-wave equations
(FDWEs) using the ADM approach, which is a novel technology
[24]. FDWEs are the most important type of anomalous diffusion
equation derived from classical diffusion-wave equations [25]. Anh
and Leonenko [26] provide the mean-square solution comprising
the Green function and the spectral representation of FDWEs. Ali
[27] uses a new ADM method to solve FDWEs having both start-
ing and ending conditions.

In this paper, we will concentrate on solving FDWEs using a
novel ADM methodological approach. Initial and boundary value
issues are dealt with using ADM and its variants. The solutions to
a few test problems and their graphical representation are arrived
at using the Mathematica program to demonstrate the applicability
of the current technique.

The remainder of the article is structured as follows: In Section
2, the details of the new iterative method, theorem proofs and its
convergence are discussed. The model's description and how it is
used to obtain the exact analytical solutions to the specified frac-
tional heat-like and wave-like equations are also discussed. In
Section 3, we demonstrate the proposed method’s reliability,
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convergence and efficiency using four exemplary instances. In
Section 4, a debate over the examples provided in the article is
presented, with the aid of some graphs and tables, and related
discussion. Finally, Section 5 describes the conclusions we have
drawn from the study.

Definition 1: provides the Reimann—Liouville (RL) integral opera-
tor of arbitrary order t(z = 0) for a function y(8) [28, 29]

JxB) = == J3 (B = D"y Wd. (1)
The gamma function that permits Eq. (10) to converge on
(0, ) point-wise is I'(7) = fom BT e Bdp. The integral oper-
ator (RL) has the following properties.
J T xB) =] x(B),

T xB) =T x(B),

I'(p+)
TRU —
] ﬁ F(pu+t+1)°

.
()

Definition 2: For the function y(B), the Caputo operator of frac-
tional order an is shown [28].

1 t x®
Dtx(B)szo(B{Tf:)l_gdt£—1<T<e,£=[s]+1. (2)

The following conditions must be met by Eq. (2).
{O.k EN,k < |1|,

r'(k+1) -
AT kk T,
1+k—-7

DTXk —
Definition 3:The Mittage—Leffler function [30] is expressed as:

M,(B) = 0 —2

r(nt+1)’

>0,B€C. (3)

2. BASED CONCEPT ON ADM

Adomian devised this approach for solving differentials and in-
tegrating differential problems in 1994. The following process can
be used to illustrate the current method. Let

d(x() =v») (4)

If Yr(x) stands for the known function, ¢ stands for the differ-
ential operator, which may be broken down as follows:

¢(x) =Ly, +R,+N,, (%)

where R and N are linear and nonlinear terms, respectively, and L
is the invertible operator of the largest derivative. Eq. (4) therefore
has the following representation:

Ly+R,+N, =1 (6)
Taking L™ of Eq. (5), we have
x=n+L7 W) - L (Ry) — L (7)

The integration constant 1 is used here. The following are in-
finite series representations of the ADM

solution:
X = Z;ozo Xp (8)

The nonlinear term N, is denoted by A, Adomian polynomials
and is defined as:

Ny = X204, ()
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We can compute A, with the aid of the formula below.

1

A, =L LN x0),

pl dAP p=012,..

The following connection is used to represent the solution
of Eq. (4):

{xo=n+L‘1(¢).p=0

Xps1 =L (Rxp) —L7'(4,),p 20 1o

3. MODIFIED ADM FOR INTINAL-BOUNDARY VALUE
PROBLEMS

Consider the one-dimensional differential equation below to
convey the key concept of treating initial and boundary conditions
with the ADM approach for resolving initial-boundary value difficul-
ties.

Dix(,B) =Dyx(,.B) + R, B),0<y <1,
f>01<T<2. (11)

The IC for Eqg. (11) is of the following type:
xX@,0) =680 xp(y,0) =6:(y),0<y <1
Hence, the BC is defined as follows:
x0,8) =2B)x(,B) =4(B), p=0
The operator form of ADM Eq. (11) is:
Ly =Dy, x(v,B)+R(,B) (12)

where L is defined as,
T

= W ,
Hence, L™ is defined as,
L71(.) = I7(.)dg. (13)
Applying L~to Eq. (12), we obtain:
X, B) =1+ L7 (D x(r. ) + R, B)) (14)

when using ADM, the initial approximation becomes more accu-
rate.

20 B) = x7,0) + B (30, 0) + LH(R(. B)).

The iteration formula becomes more powerful when used with
the new ADM technique.

Xp+1(0,B) = L1 (Dyy x5 ) p = 0,1,2, .. (15)

where the new y,, is then computed using the newly suggested
method.

X = %08 + (1 =1) () — x,(0,8)) +
v (LB -4, (L)), p =012, (16)

It is clear that the new successive initial solutions x;, of Eq.
(11) satisfy both the initial and boundary conditions when

p=012,.
At B=0,

L 1<T<2

X7, 0) = x,(,0),
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]/ZO; X;(O'B)ZAO(B);
)/:1; X;(llﬂ)zll(ﬁ)

Theorem 1. (Uniqueness theorem) We consider the following
general time FPDE.

L'xv.B) + Rxy.B) + Nx(v.B) = v(¥.B), (17)

m—1<T<m,y>0,8>0 where L is a fractional-order
derivative, R is a linear differential operator, is a nonlinear opera-
tor and i is a source term, and where R(y) and N(y) satisfy
the Lipschitz condition with the constants L, and L, Then, Eq.
(17) has a unique solution whenever 0 < K < 1forK =
(L1+L2)BT
I'(T+1)

Proof: Let 8 be the Banach space of all continuous functions
onl = [0,T] with the norm |l ¥ (8) Il = max |y (B)]. We
define amappingw : 6 — 6, where

w(x(®) =B + Ty, B) —J[RY(y, Bl —
J*NY(y, B)} (18)

Letx,x €6

lloy = wgll = max|w, — wyl,
=B +J . B) — " [RY (v, B)] = TNy (y, B)]
—oB) =], B) + T [RY (v, B)]
+ "Ny, B)II
Now, we suppose that R(x) and N(x) satisfy the Lipschitz

condition with the constants L;and L,.
Therefore,

llw, — wgll < maxUTIRY (¥, B) — Ry (¥, B)I
+ JTING(y, B)
— Ny, B,

llwy — wz|| < max[Ly JT W, B) — w(y, B)I
+ L "G, B) — (. A1,
,BT

|, = wgll < Ly + LDINP W, B) = ¥, B TT+1)

_ @i+Lp)BT
< K"lp(%ﬂ) _lp(%ﬁ)”,WhereK - I(T+1)

4. APPLICATIONS

In this part, we will show how to solve various exemplary prob-
lems utilising the new ADM-based method.

Example 1.We examine a fractional heat-like equation in one

dimension. [31]
1 5,8%y

D,§)(=E m,0<r,y <1,p>0. (21)
Subject to the BC:

x(0,8)=0, x(1,B)=¢e*, g>0. (22)

and IC:

x(,0) =y2 (23)

By using ADM, Eg. (21) can be written in the form,
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L= 122k, (24)
whereL = Dg, 0 < T <1

Taking L1, of Eq. (24), we find that:
X0 B) = 2, 0) + L5 v2x, ).

Using the initial approximation, we find that:

Xo. B) = v>. (25)

By use of the new technique of initial approximation x;, we
have

1 - *
Xor1= 5 VL ] p=0,1,2,3, . (26)
By applying a new approximation xj,, we have:

@B = X8+ (L-[0-x,0,] +
y[ef —)(p(l,ﬁ)], p=012,.. (27
Let p = 0; we then obtain:

X0, B) = xo(v,B) + (1 =)0 — x,(0,3)] +
vlef — xo (1, B)].

Using Eq. (26), we can obtain:

0. p) = L5

r'(t+1)’

Let p = 1; we then obtain:

xW,B) = xir.B)+ (A —=y)[0—x.(0,)] +
vlef — . (1L, B)].

Using Eq. (26), we can obtain:

_ ,}/ZI;ZT
X2 (yl B) - r'(27+1) )

Let p = 2; we then obtain:

LW, B) = x2(v,8)+ (1 =y)[0— x,(0,8)] +
vlef — x.(1,B)].

Using Eq. (26), we can obtain:

_ y2ﬁ3’r
VeV

Thus, the new ADM solution for Eq. (21) can be written in a
series form:

X0, B) = o, B)+ 1, B) + x2(v, B) + x:(v, B) +
- = yEM(B). (28)

where M. (B) is the Mittag-Leffler function.
If t = 1, we obtain:

2 3
B = (1+ p+ L+ L )=y (29)
which is the exact solution of Eq. (21).
Example 2. We examine a fractional wave-like equation in one
dimension [32].

2
DE;;X:% 237)2(,0<y<1,0<’r£2,,8>0. (30)

Subject to the BC:
x(0,8) =0, x(1,8)=1+sinhB, B> 0. (31)
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and IC:
X¥,0) =y, x3(¥,0) = y? (32)
By using ADM, Eg. (30) can be written in the form,
62
Lgy =5 V255 (33)

whereL = Dg, 1 < 1 <2.
Taking Lgl of Eq. (33) enables us to find that:
X0 B) = x(r,0) + Brp(r,0) + L[5 vy |
Using the initial approximation, we find that:
X, B) =y +v*B. (34)

By use of the new technique of initial approximation x;, we
have:

1 - *
Xor1=5 VL 0] p=01,23,.. (35)
By applying a new approximation y;,, we have:

K @B = x,@.B) + (L=[0—x,0,p] +
y[l + sinhf —)(p(l,ﬁ)], p=0,12,.. (36)
Let p = 0; we then obtain:

X0, B) = xo,B)+ (1 —=y)[0— x0(0,8)] +
y[1+ sinhf — xo(1, B)].

Using Eq. (35), we can obtain the following:

_ y2ﬁT+1
B =T

Let p = 1, this enables us to obtain the following:

LB = xir,B)+ A —=y)[0—x.(0,)] +
y[1 + sinhg — x, (1, B)].

Using Eq. (35), we can obtain:
x(v.B) =

Let p = 2; we may then obtain:

LW, B) = x:(v.B)+ (1 =)0 - x,(0,8)] +
y[1 + sinhg — x, (1, B)].

Using Egq. (35), we can obtain:
xs(v. B) =

Thus, the new ADM solution for Eq. (30) can be written in a
series form:

X0, B) = x0@.B)+x1(v, B) + X2 (v, B) + xs(v, B) + -
_ 2 2 [ BT+1 + BT+3 + ﬁr+5 + ] (37)
=v+rvhty I'(t+2) T(t+4) T(t+6) ’

If T = 2, we obtain:

y2ﬁ2T+1

rr+2)’

.VZB3‘L'+1

rdr+2)’

3 5 7
x,B) = y+y2</3+ %+ %J,%Jr)

=y + yZsinhp. (38)

which is the exact solution of Eq. (30).

acta mechanica et automatica, vol.17 no.3 (2023)

Example 3. Consider the following two-dimensional linear [32].

D§x=‘;27f+ ZZT)Z‘, 0<yn<2mr,0<t<1,B8>0. (39
Subject to the BC:

x0,n,8) = x2m,n,p) =0 (@0)

x,0,8) =x(,2m,p) =0

and IC:

x(,n, B) = siny sinn @1)
By using ADM, Eq. (39) can be written in the form,
_ %x, 9%

L, = ﬁ"' p (42)

whereL = Dg, 0 < T <1.
Taking L™ of Eq. (42), we find that:

—1[2* 9?2
X B) = x(n,0) + L 35+ 35 (43)

Using the initial approximation, we find that:
Xo(y,n, B) = siny sinn. (44)
By use of the new technique of initial approximation x;, we
have:
Xoe1 = L xpyy + X0yl » p=0,1,2,3,... (45)
By applying a new approximation y;,, we have:
nonB) = x,¥nB)+ A -V[xOnp) -
x,0,n,B)] + v[x@@m,n,B) — x, 2,1, B)] +

(1 —n[x@.0.8) = x,(. 0. )] +n[x(y.2m ) —
x,@.2m,p)], p=012,.. (46)

Let p = 0; we then obtain:

xo.mB) = xov,n,B)+ (1 —=y)x©O,np) -

X0(0,1, )]+ v[x(2m,m, B) — xo(2rr,n, B)] +

(1 - TI)[X(V: 0' B) - XO(V' 0'18)] + 77[)((% 27-[' ﬂ) -

Yoy, 2m, B)] = siny sinn. (47)

Using Egq. (45), we obtain:

- * * . . BT
X1(V, n, .8) =L 1[)(0}/}/ + XOyy] = —2siny sinn T+’ (48)
Letp=1;c

@B = xv,np)+ A-ykxOnp) -
x100,n, B+ yxQ@m,n, B) — x12m,n, B] +
(1 - TI)[X(V: 0, B) - Xl(]/! 0, B)]r—l— T][X(Y! 2”! B) -

x1(y,2m, B)] = —2siny siny e (49)
Using Egq. (49), we obtain:
27T
x2(v,m, B) = 4siny siny F(fm), (50)

Let p = 2; we thus obtain:

xWnB) = x0.np)+ A =VkOnp) -
XZ(O! T’Jﬁ)] + V[X(Zﬂ, U:ﬁ) _X2(27T, n, ﬁ)] +

x2(v, 2m, B)] = 4siny siny

(51)

r2r+1)
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Us Eq. (45), we obtain:

3T
= —8siny sinn g (52)

xs(v.m, B) TG

Thus, the new ADM solution for Eq. (39) can be written in a
series form:

xv:n.B) = xo,nB) +x1(v,n.B) + x2(v, n.Tl?) +

x3(v, 1, B) + -+ = siny sinn — 2siny sing g+

Asiny sinn r(f:n — 8siny siny r(frs;)

= siny siny [1 -2 r(f;) +4 F(f:n -8 F(le) + ] (53)
If t = 1, we obtain:

x&,n,B) = siny sinn e 2F (54)

which is the exact solution of Eq. (39).

Example 4. We examine a fractional wave-like equation in two
dimensions [33]

T 2 82 X 2 o2 X

Dgpx = [V , (55)
0< y,n<1,,,1< TS2,3>0.

Subject to the BC:
x0,1,8) =0, x(1,1,B) = 4coshp (56)
x,0,8) =0, x(y,2m, B) = 4sinhf
and IC:
x¥,n,0) =v2 xp(v,n,0) =7n* (57)

By using ADM, Eq. (58) can be written in the form,

1 2 92 X 2 62_)(

Loy =5 |2 55 +n% 54, (58)

where L = Dg, 1 < 1 <2.
Taking L,}l of Eq. (58), we find that:

— 4 4 - 292 X 2 0%x
xG.n.B) =y +n'p+ Lg' [12 (V U anz)]-
Using the initial approximation, we find that:

xor,n.B) = v* +n*B. (59)

By using the new technique of initial approximation y,, we
have:

Xp+1 = %Lgl [VZ()(,’;)W + nz(x,’s)m]] ,p=0,1,2,... (60)
By applying a new approximation y,,, we have:

@B = x,0.nB) + (L=)[x0,n,p) -

X, 0.0, B +v[x(Ln.B) —x,Ln. B+ (1 -
Mx@.0.8) - x,.0,p)] +

Mx. LB —x,>. LB p=0,12,.. (61)

Let p = 0; we then obtain:

X @B = xo,np)+ A—=yxOnp) -
X000, +vIx(L,n,B) —xo(Ln, I+ (1 —

77)[)((% O,B) _XO(]/' O;B)] + 77[)((% 1iﬁ) _XO(Yl 1'ﬁ)] =
y*+n'B.

376

Using Eg. (60), we obtain:

1 .- * *
X1 = _Lﬁl[VZO(O)yy + 7720(0)1117]
4 ﬁ‘[+1
r'(t+2)

=y r(f+1) T T

X2 = E B []/ (Xl)yy+n2(XI)nn]
ﬁZT 4 BZT+1 (62)

— 4,4
=V T +tn r(27+2)
1 - * *
X3 = ELﬁl[yz(Xz)yy + 772()(2)7117]
4 ﬁ3r 4 ﬁ3‘[+1
=Y r3r+1) +n r(3t+2)
Thus, the new ADM solution for Eq. (55) can be written in a
series form:

xv.n,B) = xor,n,B) +x1(v,n, B)
+x2(v,n,B) + x3(v.m, B) + -+
BT BZ‘E B3T
=Y [1 T(z+1) | [(2t+1) ' TGBr+1) ]
BT+1 BT+3 BT+5
+t [’8 I(z+2) F(21+2)+[‘(31’+2)+m]
(63)

If T = 2, we obtain:
4 6
B =y (1+ L+ il )y
5 7
(ﬁ+—+ﬁ—,+ﬁ+ ) (64)
= y*coshf +n*sinhp
which is the exact solution of Eq. (55).

Example 5. Consider the following one-dimensional nonlinear
heat - similar to Eq. (34):

2y 3 Bzr
Dgx = yx° ayz 8 rmme T 2y%p" ’ (65)
0<yt<1, ,8>0.
Subject to the BC:
x0, B)=0, x(1,B) = r( = B>0 (66)
and IC:
x(y,0)=0 (67)
By using ADM, Eq. (65) can be written in the form,
3 ﬁ2T+2 2
w( — 8yt TR, (68)
where L = Dg, 0<7<1.
Taking L™ of Eq. (68), we find that:
x,B) = x(y,0) + L7 [2y*B7] )
1 62_)(_ 3 B2TH2
+1L [VX dy? 8y F(‘r+2)2] '
Using the initial approximation, we find that:
2T
X008 = 2r 2 (70)

r2z+1)

By using the new technique of initial approximation y,, we
have:

ﬁZT+Z

Xp+1 = L~ [yXpoyy - 8]/3 F(T+2)2] ,p=0,1,2,3,.. (71)
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By applying a new approximation y,,, we have:
X, B) = X, B) + (1= 1)[0 = x,(0,8)]

2ﬁ1+1 _
+ [~ % W), p=01,2,..

Let p = 0; we then obtain:
X6 B) = xo, ) + (1 =)0 — x0(0, 8]
+y [25 = x(1, /3)]

r(t+2)

Using Eq. (71), we obtain:

ny.p)=0, (73)

Thus, the new ADM solution for Eq. (65) can be written in a
series form:

xW.B) = xo.B) + (v, B),
= 22 [ (74)

r2z+1)

Let p = 1; we then obtain:

xW.B) =v*B* (75)
Example 6. Consider the following one-dimensional nonlinear
wave — similar to Eq. (34):

T, X g3 BT 2
Dex =vx52=8r" g T 2r° (76)
1<y,t<2,,8>0.
Subject to the BC:
- — _2B°
X(O' ﬁ)_ol X(l'ﬂ)_r(‘[+1) ) .8>0 (77)
and IC:
x&,0) =0, xs(y,00=0 (78)
By using ADM, Eg. (76) can be written in the form,
_ azx [;’27
Ly =vXx552 =8V s + 217 (79)

where L = Dg, 1 < 1 <2.
Taking L™ of Eq. (79), we find that:

800000 ¢
600000}
400000}

200000

720

(a) 3D approximate solution — Example 1

Fig. 1. Comparison between exact and approximate solutions

acta mechanica et automatica, vol.17 no.3 (2023)

xv.B) = x(,0) + L7[2y?]

-1 ?Px .3 _B* (80)
+L []/X ay? 8]/ I‘(‘r+1)2] '

Using the initial approximation, we have:

Xov, B) = 2y*

By using the new technique of initial approximation y,, we
have:

i (81)

r'(t+1)

*

Xpsr = L7 [Vxpxpyy — 87°

ﬁZT
].p=0123,.@

r(z+1)2
By applying a new approximation y,, we have:
@B = X, B+ (L=1)[0—x,00,B)]
+y [%—Xp(l,ﬁ)], p=012,..
Let p = 0; we then obtain:
X0, B) = xo(r, )+ (1 = y)[0 = x(0, )]
)
Using Eq. (71), we obtain:

xn@,B)=0, (84)

Thus, the new ADM solution for Eq. (76) can be written in a
series form:

x¥.B) = xo.B) + xa(v, B),
— 92 B (85)
=2y [(z+1)

Let p = 1; we then obtain:
X, B) =v*p? (86)

5. NUMERICAL RESULT

The derived solutions from Example 1 are displayed at various
fractional orders of the derivatives in Figs. 1(a) and 1(b).

1075

=085

Eract

(b) 2D approximate solution — Example 1
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The graphs of the 2D and 3D ADM solutions in Figs. 1(a) and
1(b) corroborate the closed contact with the precise solution of
Example 1 and show the 2D and 3D ADM solutions t.The closed
contact between Example 1’s precise and found solutions at the
integer derivative order is being investigated. The graphs show
how closely related the exact and derived outcomes are. The
proposed approach yields an accurate solution for Example 1 as a

378

consequence. Figs. 2(a) and 2(b) show the obtained solutions
from Example 2 at different fractional orders of the derivative
solution for Example 1 as a consequence. Figs. 2(a) and 2(b)
show the obtained solutions from Example 2 at different fractional
orders of the derivatives. The closed contact with the exact solu-
tion of Example 2 is supported by the graphs of the 2D and 3D
ADM solutions. As a consequence, using the provided technique,
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it can be ascertained that Example 2's solution is correct. Figs.
3(a) and 3(b) show the analytical and exact solutions for ¥ (y,B) of
Example 3 at B = 0.1,0.2 and 0 < y < 21 for various fractional-
orders. The graphical behavior of the exact and analytical solu-
tions to x (v,B) Figs. 4(a) and 4(b) show the analytical and exact
solutions for x (y,B) of Example 4 at = 0.2 and 0 < y,< 1 for
various fractional-orders. The graphical behaviour of the exact

acta mechanica et automatica, vol.17 no.3 (2023)

and analytical solutions to x (y,B).Tabs. 1-4 contrast the exact
answers that have been presented with the absolute inaccuracy at
various fractional orders. The findings in the figures and tables
clearly show that our approach to finding a solution quickly con-
verges on a correct response. Last but not least, the images and
figures show that the suggested processes are more exact and
quickly converge to accurate results.

Tab. 1. Solution for the (first three approximations) with exact solution, with mesh points 8 = 0.01, for Eq. (21)

B Y T=0.75 7=0.85 =1 Exact Errort=0.75 | Errort=0.85 Errort=1
0.01 0 0 0 0 0 0 0 0
0.1 0 0.010213602 | 0.010100502 | 0.010100502 0.000251223 0.000113101 8.34575 x 10715
0.2 | 0.041406899 0.04085441 0.040402007 | 0.040402007 0.001004892 0.000452403 3.3383x 10714
0.3 | 0.093165522 | 0.091922422 | 0.090904515 | 0.090904515 0.002261007 0.001017907 7.51066 x 10~1*
04 | 0.165627595 | 0.163417639 | 0.161608027 | 0.161608027 0.004019568 0.001809612 1.33532 x 10713
0.5 | 0.258793117 | 0.255340061 | 0.252512542 | 0.252512542 0.006280575 0.002827519 2.08611 x 10713
0.6 | 0.372662089 | 0.367689688 | 0.36361806 0.36361806 0.009044029 0.004071628 3.00426 x 10713
0.7 0.50723451 0.50046652 | 0.494924582 | 0.494924582 0.012309928 0.005541938 4,0884 x 10713
0.8 0.66251038 0.653670556 | 0.646432107 | 0.646432107 0.016078273 0.007238449 534128 x 10713
09 0.8384897 0.827301798 | 0.818140635 | 0.818140635 0.020349064 0.009161162 6.7590377 x 10713
1 1.035172469 1.021360244 | 1.010050167 | 1.010050167 0.025122301 0.011310077 8.34443x 10713

Tab. 2. Solution for the (first three approximations) with exact solution, with mesh points 8 = 0.02, for Eq. (30)

)
7=1.85 T=2

B Yy | =175 = Exact Errort=1.75 Errort =1.85 Errort=2
0.02 0 0 0 0 0 0 0 0

0.1 0.1002 0.1002 0.1002 | 0.1001 1.18937 x 1077 6.89018 x 1078 2.66667x 1078
0.2 | 0.200801 0.2008 0.2008 | 0.2004 4.75748 x 1077 2.75607 x 1077 1.06667x 10~7
0.3 | 0.301801 0.301801 0.3018 | 0.3009 1.07043 x 1076 6.20116 x 1077 2.4x107°
04 | 0.403202 0.403201 | 0.403201 | 0.4016 1.90299 x 1076 1.10243 x 10~° 4.26667x 10~7
0.5 | 0.505003 0.505002 | 0.505001 | 0.5025 297343 x 107° 1.72254 x 10~° 6.66667x 10~7
0.6 | 0.607205 0.607203 | 0.607201 | 0.6036 428173 x 107° 2.48046 x 1076 9.6x 1077
0.7 | 0.709806 0.709804 | 0.709802 | 0.7049 5.82792 x 107 3.37619 x 107 1.30667x 10~°
0.8 | 0.812808 0.812805 | 0.812803 | 0.8064 7.61197 x 107 4.40971 x 1076 1.70667x 10~°
09 | 0916211 0.916207 | 0.916203 | 0.9081 9.6339 x 1076 558104 x 107 2.16x 107°
1 1.02001 1.02001 1.02 1.01 1,18937 x 1075 6.89018 x 1076 2.66667x 1076

Tab. 3. Solution for the (first three approximations) with exact solution, with mesh points 8 = 0.02, for Eq. (30)

B n Y 7=0.75 7=0.85 =1 Exact Errort=0.75 | Errort = 0.85 Errort=1
0.1 2?” 2?” 0.517896942 | 0.559870154 | 0.614 | 0.614048065 0.096151123 0.05417791 4.80648E-05
4?” -0.517896942 | -0.559870154 | -0.614 | -0.614048065 0.096151123 0.05417791 4.80648E-05
0.2 2?” 0.400780878 | 0.443831887 | 0.502 | 0.502740035 0.101959157 0.058908148 0.000740035
%’T -0.400780878 | -0.443831887 | -0.502 | -0.502740035 0.101959157 0.058908148 0.000740035

Tab. 4. Solution for the (first three approximations) with exact solution, with mesh points § = 0.2, for Eq. (55)

Errort =2
p n Y T=1.75 7=1.85 T=2 Exact Errort=1.75 | Errort = 1.85 —>
0.2 | 0.1 | 0.25 | 0.000791879 | 0.000789268 | 0.000786479 | 0.000786479 | 5.40013 x 107¢ | 2.78865 x 1076 | 551412 x 10715
0.5 | 0.01266991 | 0.012628127 | 0.01258351 | 0.01258351 0.0000864 0.0000446 8.82159 x 10714
0.75 | 0.064141377 | 0.063929852 | 0.06370398 | 0.06370398 0.000437397 0.000225873 4.46601 x 10713
0.05 | 0.25 | 0.000798353 | 0.00079569 | 0.000792844 | 0.000792844 | 5.5089 x 1076 2.84615x 107¢ | 5.91053 x 107
0.5 | 0.012676384 | 0.01263455 | 0.012589876 | 0.012589876 0.0000865 0.0000447 8.86131 x 10714
0.75 | 0.064147851 | 0.063936275 | 0.063710345 | 0.063710345 0.000437506 0.00022593 447004 x 10714
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6. CONCLUSION

Fractional-order heat-like and wave-like equations with initial
and boundary conditions are studied analytically in this paper.
A novel approach based on ADM is provided for the solution of
specified problems in a very easy and effective manner. For each
case, fractional derivatives are defined in the Caputo sense. The
approach is particularly well-suited to solving fractional PDEs with
beginning and boundary conditions. Additionally, information
demonstrating the output of this approach is presented in the form
of graphs and tables to highlight the current technique’s best
applicability. The results also show that the techniques are a very
effective, useful and accurate way to solve heat and wave equa-
tions with initial and boundary conditions.
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