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Abstract: The Painlevé equations and their solutions occur in some areas of theoretical physics, pure and applied mathematics.
This paper applies natural decomposition method (NDM) and Laplace decomposition method (LDM) to solve the second-order Painlevé
equation. These methods are based on the Adomain polynomial to find the non-linear term in the differential equation. The approximate
solution of Painlevé equations is determined in the series form, and recursive relation is used to calculate the remaining components.
The results are compared with the existing numerical solutions in the literature to demonstrate the efficiency and validity of the proposed
methods. Using these methods, we can properly handle a class of non-linear partial differential equations (NLPDES) simply.

Novelty: One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means
that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful
in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature
of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory.
This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour

of non-linear waves.

Keywords: natural decomposition method, Laplace decomposition method, series solution, Adomain polynomial, Painlevéequation

1. INTRODUCTION

The special functions are vital in studying linear differential
equations (LDEs) and are significant in mathematical physics.
These functions include the Bessel, Whittaker, parabolic cylindri-
cal, Airy and hypergeometric functions. A few of them have the
same names as those functions because they are solutions to
LDEs with rational coefficients. The Bessel functions are solutions
of the Bessel equation, the second-orderLODEswith single irregu-
lar singularity, and are utilised to explain the motion of planets and
artificial satellites by employing the Kepler equation. The Painlevé
equations were first discovered by Paul Painlevé and Gambier
more than 100 years ago [1]. Painlevé investigated many second-
order equations and categorised the singularities form. Painlevé
[2] and some of his collaborators derived the Painlevé equations
while investigating the non-linear partial differential equations
(NLPDEs).

Consider the second-order non-linear equation of the form:

d’y\ R (t dv)
acz) ~ “\"Vac)
where R (t, v, %) is rational in v and v’ and function is analytic
int.
The only movable singularity in these differential equations is
a pole known as the Painlevé property. This significant property is

expressed for all linear equations, but non-linear equations rarely
have it. Painlevé and Gambier focused on the arrangement of the

singularity structure with the polynomial coefficient of the second-
order differential equation. They established that subject to a
certain transformation; any such equations can be transformed
into one of the 50 canonical forms, which is a significant achieve-
ment. The question arose: Which of the following equations are
ireducible and need to specify new transcendental functions?
Painlevé described that 44 of these 50 equations are reducible,
except only these six equations that require a new function for
their solution, which are named Painlevé equations.Moreover,
some experts believe that Painlevé functions will arise as a unique
member of the special function in the 21stcentury. Many mathe-
maticians have used Painlevé equations to explain the growing
nature of the systems since their discovery. Painleve equations
play a vital role in many physical problems such as the asymptotic
behaviour of the non-linear equation [3], superconductivity [4],
negative curvature surfaces [5], Bose-Einstein condensation,
Stokes phenomena [6], hyperasymtotics solution [7] and non-
linear optics [8]. Furthermore, some NLPDEs, including the Bous-
sinesq and Korteweg-de Vries (Kdv) equations, may be ex-
pressed in terms of the Painlevé transcendent [9, 10].

These six equations have a wide range of remarkable charac-
teristics and applications. The Painlevé equations were initially
discovered from primarily mathematical considerations, but more
recently, they have been used in several significant physical
applications, such as statistical mechanics, plasma physics, non-
linear waves, quantum gravity, quantum field theory, general
relativity, non-linear optics and fibre optics [11]. The Painlevé
equations have also attracted significant interest because they are
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reductions of the soliton equations that can be solved by inverse
scattering [12] transform, such as the Kdv, the modified
Kortewegde Vries equation (MKdv), the cylindrical Kortewegde
Vries equation, the equations of the Boussinesq and Kadomtsev—
Petviashvili type, the non-linear Schrodinger equation and the
sine-Gordon equation. Connections are briefly described in [13—
15]. Moreover, the Painlevé equations can be represented as
equations of isomonodromic deformations of auxiliary linear sys-
tems of differential equations [16].

In recent years, a wide range of numerical methods has been
developed to solve the second-order Painlevé differential equa-
tion, such as homotopyperturbation method (HPM) [17], sinc-
collocation method [18], optimisation method [19], variational
iteration algorithm-I [20] and quasilinearisationmethod (QM) [21].

In this paper, the solution of the second-order Painlevé equa-
tion is obtained by two techniques Laplace decomposition method
(LDM) and the natural decomposition method (NDM). Laplace
transformation is the famous integral transform available to every
researcher and can be used to solve linear ordinary, partial and
integral equations in the time domain. Khan and his co-researcher
[22] derived a new integral transform called N-transform; in 2012,
it was renamed the natural transform [23]. The natural transform
resembles Laplace [24] and Sumudu transforms [25]. Natural
decomposition is used to solve a large number of the NLPDEs
such as the sine-Gordon equation [26], time-fractional coupled
KdVequation[27], gas dynamics equation[28] andinviscid burger
equation[29].

There are several avenues of future work on the Painlevé |
equation that could lead to new insights into its behaviour and
applications in physics and mathematics.

One area of research is the study of its solutions and their
properties. While the Painlevé | equation is known to have special
types of solutions, such as the Painlevé transcendents, there is
still much to be understood about their behaviour and how they
can be used to describe physical systems. In particular, the study
of the Painlevé | equation in the context of complex analysis and
differential geometry could lead to new insights into its solutions
and their properties.

Another area of research is the connection between the
Painlevé | equation and other mathematical and physical systems.
For example, recent work has shown that the Painlevé | equation
arises in the study of the stability of certain non-linear waves in
fluids. Investigating these connections could lead to new applica-
tions of the Painlevé | equation in other areas of physics and
engineering.Finally, there is ongoing work on the numerical and
computational aspects of the Painlevé | equation. While exact
solutions can be constructed using certain methods, it is often
necessary to use numerical techniques to study the behaviour of
the equation in more complex settings. Developing efficient and
accurate numerical methods for the Painlevé | equation could help
to expand its use in a wide range of applications in physics and
engineering.Overall, future work on the Painlevé | equation is
likely to involve a combination of theoretical and computational
approaches, with the goal of understanding its behaviour and
applications in a wide range of contexts.

The paper is structured as follows. In Section 2, methodolo-
gies and its implementations of proposed techniques are briefly
discussed. In Section 3, we apply NDM and LDM to the Painlevé
equation to show the efficiency and accuracy of our methods. In
Section 4, the important results related to the Painlevé equations
are explained briefly. Section 5 ends this paper with the conclu-
sions.
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2. METHODOLOGY

In this section, we will discuss the methodologies of two pro-
posed methods and also discuss how these methods handle the
NLPDEs.

2.1. LDM

The general form of the NLPDE:is given as follows with condi-
tions:

Lv(x,t) + Rv(x,t) + Nv(x,t) = f(x,t) (2.1.1)
(with initial conditions:
U(x, 0) = g(x) ’ vt(x: 0) = h(x):

(where L denotes thelinear differential operator of the second
order:

aZ

= E’

(2.12)

where R represents the remaining less order linear operator, Nv
is the non-linear operator and f(x,t) is the non-homogeneous
term.
Applying Laplace transformationof Eq. (2.1.1) with initial con-
ditions:
L[Lv(x, t)] + LIRv(x, t)] + L[Nv(x, t)] = L[f (x,t)](2.1.3)
Using the differentiation property of the Laplace transform, we
have
L[Lv(x, D] = 18(x) + 5 h(x) — 5 LIRv(x, £) +
Nv(x, t)]. (2.1.4)

In the next step,the solution of Laplace transform in the form
of infinite series is given as follows:

[ee]

v(x,t) = Z v, (%, 0). (2.15)

n=0

So that the non-linear operator is decomposed as
Nv(x,t) = Z A, (2.1.6)

where  A,denotes  theAdomain  polynomials of the
nentsvy, v4, V3 ... ... vpand can be calculated using this formula:
Substituting Eqs(2.1.5) and (2.1.6) into Eq.(2.1.4), we will get

1
" n'dxn[ (Z Avi(x, 1)), n=0,1.2,. (2.1.7)
L[Z va (3, 0)] = 9 | A h(x) L[f (x, )]
h (2.1.8)
— L[Rv(x,t)]

Using the linearity property to theLapIace transform,

Zz[w I L o)
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— S LIRv(x, )] — 5 (X0 LIA,]] (21.9)
Now, comparing Eq. (2.1.9) on both sides, we have

Lo, )] =22+ 2D 4 L L[f(x, 0] = H(x, 5), (2.1.10)

L[y, (x, )] = =5 L[Rvo(x, )] + A, (2.1.11)
L[v, (6, 6)] = =5 L[Rvy (x,£)] + Aq]. (2.1.12)

In general, we have
1
L[vpi1(x,0)] = —S—ZL[Rvn(x, )]+ A,] (2.1.13)

Applying the inverse Laplace transform to Egs (2.1.10) -
(2.1.13), the required recurrence relation is given as follows:
UO(xﬁ t) = H(xl t);

Vel (6, t) = =L~ [S%L[Rvn(x, )] + An], n=>0.

H(x, t) Specifies specifies the initial conditions for the term
occurring from the source term.

By taking the Laplace transform ofEq. (2.1.13) and applying
the Laplace inverse transform,we obtain the remaining terms
of vg, Uy, Vg ver v vy, recursively.

2.2. Analysis of the NDM

The general form of the NDM is given below as follows:

Lv(x,t) + Mv(x,t) + Nv(x,t) = h(x,t), (2.2.1)
with initial conditions:
v(x,0) = f(x), v:(x,0) = g(x). (222)
Suppose L is the differential operator of the second order:

=

M is the less order remainder operator, Nvdenotes the non-linear
operator and h(x, t) represents the source term.
Now,taking the N-transform of Eq. (2.2.1) on both sides,

NF[Lv(x,t)] + Nt [Mv(x,t)] + N*T[Nv(x,t)] =
N*[f(x, 0)]. (2.2.3)

Using the N-transform properties, we have
i—zR(s, v) — vizv(x, 0) — %v’(x, 0) + N*[Mv(x,t)] +
N*[Nv(x,t)] = N*[f(x,0)]. (2.2.4)
Substitute Eq.(2.2.2) into Eq.(2.2.4), we obtain

2
R(s,v) = % + vi(zx) + Z—2N+[h(x, t)]

~ZN*[Mu(x,6) + Nv(x, 0. (2.25)

Now, applying the inverse of the natural transform
of Eq.(2.2.5),we get

v(x,t) = E(x,t) — N~ [§N+[Mu(x, 0+ Nv(x, 0| (226)

where E (x, t)illustrates the term developed from initial conditions
and source term.
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The next step is that we present the solution of non-linear
terms in the form of infinite series:

[oe]

v(x, t) = Z v, (x, t).
n=0 (2.2.7)
So that the non-linear operator is decomposed as

Nv(x,t) = Z A,
n=0 (2.2.8)

where A, denotes the Adomain polynomials
of vy, vy, vy e . v,, and can be determined by this formula:

An = = N Ao (x, D) 1,
Substituting Eqs (2.2.7)and (2.2.8) into Eq. (2.2.6), we will get

=012, .. (229

Sovn(0,6) = E(x,6) = N- [Z—§N+[M Tiova(x,t) +

N Y=o An(x, t)]]- (2.2.10)

Now, comparing Eg. (2.2.10) on both sides, we get
vo(x, t) = E(x,t),

v, (x,t) = =N~ [Z—jNJr[Mvo(x, t) + AO]],

v,(x,t) = =N~ [Z—jN*[le(x, t) +A1]].

In general, we have

2
v
S—2N+[Mvn(x, t) + 4,]

vn+1(x» t) =—-N

)

n=0. (2.2.11)

By using the general recurrence relationgiven inEq. (2.2.11),
we determineeasily the remaining terms of wv(x,t)
as vy, vy, Uy e - v, Wherev, is given the initial condition.

3. APPLICATIONS

In this section, we show the efficiency and high accuracy
of the NDM andLDM for the solution of Painlevé equation I.

3.1. NDM for Painlevéequation

The second-order Painleve equation [20,32]can be formulated

as

v"'(t) = 6V +t, (3.1.1)

subject to the initial conditions:

v(0) =0, v'(0) = 1. (3.1.2)
By applying N-transform on both sides of Eq. (3.1.1),

N*[v" ()] = N*[6v? + t]. (3.1.3)

Using the properties of N-transform,we obtain
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P R(s,v) — Lv0) = 1v'(0) = N*[6v2] + 2. (314)

v2 ’ v2 v 52" o
Substituting Eq. (3.1.2) into Eq. (3.1.2), we have

v 1]3 172

R(S,U) =S—2+S—4+S—2N+[6U2]. (315)

Now, applying the inverse of N-transform, we have
v  v3 w2

N_l[R(S,U)] =N_1 [s_2+s_4+s_2N+[6v2]] (316)
Eq. (3.1.6) becomes

v(x,t) =t +t3—3‘+N‘1 [:—2N+[6v2]]. (3.1.7)
Eq. (3.1.7) can be written as

v t) = t+ 5+ N LN S04, (3.1.8)
T 3! 52 n=0nlf: o
From Eq. (3.1.8), we can conclude that

vo(x,t) =t +;—3‘,

v () = N7 [N+ (Aol
v(e0) = N [ N4,

Vpar () = N7 [SN[4,]], n>1. (3.1.9)

Therefore, from Eq. (3.1.9), the remaining terms of function
v(x, t)can easily be computed as follows:

14,16 1.8
vi(x,t) =-t*"+—=t>+—t¢t
106, 1) 2 15 336 '
1 1 71 1
v, t) =-t7 + —t° + —— 1+ ——¢13,
7 40 46200 26208
1 23 5219 3551
va(x, t) = =t + =12 14 t16 +
28 3080 8408400 144144000
95 18
224550144 '
3 131 19867
v, (x, ) = £13 4 15 17
364 64680 95295200
163469 19 163451 21 131 23
14378364000 491203440000 7101398304

In this way, we obtained the approximate result of the func-
tionv(x,t), which is given as

_ oo
v(x, t) = Yoo (x, t), (3.1.10)
t3 1 1 1 1 1
v t) = t+ -+t —tC ¥+ otT +—t% +
o 32 s ,336 7 0 ¥
t11 + t13 + _t10 + 12 t14 +
4—620505 26208 5 28 3080 8408400
3551 9 3 131
16 18 t13 + t15 +
144144000 224550144 364 64680
19867 17 163469 19 163451 21
95295200 14378364000 491203440000
131 23
— "7,
7101398304

3.2. LDM for Painlevéequation

Consider the general form of the Painlevéequation:

v"(t) = 6v? +t, (3.2.1)
subject to theinitial conditions:
v(0) =0, v'(0) = 1. (3.2.2)

Now, applying Laplace transform on both sides of Eq. (3.2.1)

420

with initial conditions:

L[v"] = L[6v?] + L[t],

s2v(x,s) + v(0)s — v'(0) = L[6v?] + L[t]. (3.2.3)
Substituting Eq. (3.2.2) into Eq. (3.2.3), we have

v(x,s) = Slz + S% + L[6v2]. (3.2.4)
Now, taking the inverse of the Laplace transform,we obtain

L7 v(x,s)] =L [Slz + S% + S%L[6v2]]. (3.2.5)
Eq. (3.2.5) becomes

v t) =t +5 4+ L7 Lizz;[st]]. (3.26)
Eqg. (3.2.6) can be written as

) = t+5+ L7 [S L[5S0 A, (32.7)

VX, - 31 52 [ n=0 n]- e
From Eq. (3.2.7), we can conclude that

volx,t) = t+ ;—3',

v (e ) = L7 [5 L[4o]]
vy, 0) = L7 [ 5 £[41]),
va(x,t) = L1 [SiZL[Az]].
Eventually,
Voot t) = L1 [S%L[An]], n=0. (3.2.8)

Therefore, from Eq. (3.2.8), the other remaining terms of the
function u(x,t) can easily be computed as follows:

v (x, ) = 840t*+112¢6+5¢8
1 2S = 1680 '
__1029600t7+180180t%+11076t11+275¢13
UZ (x) t) - 72 y
07200
V3 (.x, t) =
11027016000t1°+2305648800t'2+191641680t*+7606242t°+130625t18
308756448000 !
v, (x, t) =
19460562660000t13  4782299886000t1° | 492262539300t17

19460562660000t13 ~ 19460562660000t13 19460562660000t13
26844879180t1° 78570895721

19460562660000t13 = 19460562660000t13
10307500t23

19460562660000t13

v(x, t) =

t3  840t*+112t%+5t8
t+—+—m-——

3! 1680
1029600t7+180180t°+11076t11+275t13 11027016000t 10

7207200 308756448000
2305648800t12 = 191641680t 7606242t

308756448000 308756448000 308756448000

130625t18 194605626600006'>  4782299886000¢'°
308756448000  2361214936080000  2361214936080000
492262539300t 26844879180t"7 785708957t 10307500623

2361214936080000 2361214936080000 2361214936080000 2361214936080000

v(x,t) = Xpovn(x,t), (3.2.9)
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Tab. 1. Comparison of the approximate solution of Painlevé equation |

t | MADM[30] | VIM[31] LDM NDM

0.1 | 0.1002601271 | 0.1002167477 | 0.1002167476 | 0.1002167476

0.2 | 0.2021288956 | 0.2021394527 | 0.2021394527 | 0.2021394527

0.3 | 0.3086306987 | 0.3086307490 | 0.3086307491 | 0.3086307491

04 | 0.4239860367 | 0.4239862788 | 0.4239862886 | 0.4239862891

0.5 | 05543370146 | 0.5543399110 | 0.5543400885 | 0.5543401061

0.7 | 0.8992199875 | 0.8992296944 | 0.899242462 | 0.8992475639

0.9 | 14814889672 | 1.481778951 1.482022918 1.48237693

1.0 | 1.9416721356 | 1.959421042

LDM, laplace decomposition method;
NDM, natural decomposition method.

1.960056483 1.962154582

The numerical results in Tab.1 show that the second-order
Painleve equation is convergence with four iterations by applying
NDM.The given comparison in Tab.1 demonstrates that NDM
converges more rapidly than LDM and others (VIM, MADM and
VIA-1).

4. IMPORTANT RESULTS OF THE PAINLEVE EQUATION |

The Painlevé equation has a number of important results and
applications in mathematics and physics. Some of the key results
include the following:

The Painlevé | equation is a completely integrablesystem,
meaning that its solutions can be constructed using certain alge-
braic and analytic methods. This property has led to a deeper
understanding of the behaviour of non-linear systems and their
applications in physics and mathematics.The solutions of the
Painlevé | equation are known as the Painlevé transcendent,
which are a special class of functions with remarkable properties.
They have been extensively studied in the context of special
functions and have applications in a variety of areas, including
random matrix theory, non-linear optics and statistical physics.The
Painlevé | equation arises in the study of a wide range of physical
systems, including the propagation of non-linear waves in fluids,
the dynamics of magnetic vortices in superconductors and the
behaviour of certain quantum mechanical systems. Its integrability
properties make it a powerful tool for understanding the behaviour
of these systems.The Painlevé | equation has connections to a
number of other important mathematical and physical sys-
tems,including the Korteweg-de Vries equation, the using model
in statistical physics and the theory of algebraic curves. Under-
standing these connections has led to new insights into the be-
haviour of the Painlevé | equation and its applications in various
fields.

Overall, the Painlevé | equation represents a significant contribu-
tion to the study of integrable systems and their applications in
physics and mathematics. Its important results and connections to
other systems continue to make it a subject of active research and
interest in the scientific community.

acta mechanica et automatica, vol. 17 no.3 (2023)

5. CONCLUSION

This article applies the NDM and LDM to find the approximate
solutions of the second-order Painleve equation. The properties of
the NDM are used to obtain a series solution that converges
rapidly to the approximate solution. Also, LDM was applied suc-
cessfully to solve the Painlevé equation. Furthermore, LDM does
not require discretisation of the variable and avoids round-off
errors. The numerical result shows that NDM is more attractive
and powerful than LDM. In the future, we employ NDM and LDM
to solve NLPDEs in science and engineering.

The Painlevé equations are a set of NLODEs that are notable
for their integrability properties and their appearance in various
areas of physics and mathematics. They were first introduced by
the French mathematician Paul Painlevé in the early 20th century.

The novelty of this equation is describedas follows:

— One of the key novelties of the Painlevé | equation is its
integrability properties. Like the other Painlevé equations, it is
integrable, meaning that its solutions can be constructed using
certain algebraic and analytic methods. This property has led
to a deeper understanding of the behaviour of non-linear
systems and their applications in physics and mathematics.

— Another important feature of the Painlevé | equation is its
appearance in the study of random matrix theory, where it
plays a crucial role in the description of the distribution of
eigenvalues of certain random matrices. In particular, it is
used to describe the scaling limit of the Tracy-Widom
distribution, which arises in the study of the largest eigenvalue
of random matrices.

Overall, the Painlevé | equation represents a significant con-
tribution to the study of non-linear systems and their applications
in mathematics and physics. Its simplicity and wide-ranging con-
nections continue to make it a subject of active research and
interest in the scientific community.

Overall, future work on the Painlevé | equation is likely to in-
volve a combination of theoretical and computational approaches,
with the goal of understanding its behaviour and applications in a
wide range of contexts.
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