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Abstract: The Painlevé equations and their solutions occur in some areas of theoretical physics, pure and applied mathematics.  
This paper applies natural decomposition method (NDM) and Laplace decomposition method (LDM) to solve the second-order Painlevé 
equation. These methods are based on the Adomain polynomial to find the non-linear term in the differential equation. The approximate 
solution of Painlevé equations is determined in the series form, and recursive relation is used to calculate the remaining components.  
The results are compared with the existing numerical solutions in the literature to demonstrate the efficiency and validity of the proposed 
methods. Using these methods, we can properly handle a class of non-linear partial differential equations (NLPDEs) simply. 
Novelty: One of the key novelties of the Painlevé equations is their remarkable property of having only movable singularities, which means 
that their solutions do not have any singularities that are fixed in position. This property makes the Painlevé equations particularly useful  
in the study of non-linear systems, as it allows for the construction of exact solutions in certain cases. Another important feature  
of the Painlevé equations is their appearance in diverse fields such as statistical mechanics, random matrix theory and soliton theory.  
This has led to a wide range of applications, including the study of random processes, the dynamics of fluids and the behaviour  
of non-linear waves. 
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1. INTRODUCTION 

The special functions are vital in studying linear differential 
equations (LDEs) and are significant in mathematical physics. 
These functions include the Bessel, Whittaker, parabolic cylindri-
cal, Airy and hypergeometric functions. A few of them have the 
same names as those functions because they are solutions to 
LDEs with rational coefficients. The Bessel functions are solutions 
of the Bessel equation, the second-orderLODEswith single irregu-
lar singularity, and are utilised to explain the motion of planets and 
artificial satellites by employing the Kepler equation. The Painlevé 
equations were first discovered by Paul Painlevé and Gambier 
more than 100 years ago [1]. Painlevé investigated many second-
order equations and categorised the singularities form. Painlevé 
[2] and some of his collaborators derived the Painlevé equations 
while investigating the non-linear partial differential equations 
(NLPDEs). 

Consider the second-order non-linear equation of the form: 

(
𝑑2𝑦

𝑑𝑡2
) = 𝑅 (𝑡, 𝑣,

𝑑𝑣

𝑑𝑡
), 

where 𝑅 (𝑡, 𝑣,
𝑑𝑣

𝑑𝑡
) is rational in 𝑣 and 𝑣′ and function is analytic 

in 𝑡. 
The only movable singularity in these differential equations is 

a pole known as the Painlevé property. This significant property is 
expressed for all linear equations, but non-linear equations rarely 
have it. Painlevé and Gambier focused on the arrangement of the 

singularity structure with the polynomial coefficient of the second-
order differential equation. They established that subject to a 
certain transformation; any such equations can be transformed 
into one of the 50 canonical forms, which is a significant achieve-
ment. The question arose: Which of the following equations are 
irreducible and need to specify new transcendental functions? 
Painlevé described that 44 of these 50 equations are reducible, 
except only these six equations that require a new function for 
their solution, which are named Painlevé equations.Moreover, 
some experts believe that Painlevé functions will arise as a unique 
member of the special function in the 21stcentury. Many mathe-
maticians have used Painlevé equations to explain the growing 
nature of the systems since their discovery. Painleve equations 
play a vital role in many physical problems such as the asymptotic 
behaviour of the non-linear equation [3], superconductivity [4], 
negative curvature surfaces [5], Bose–Einstein condensation, 
Stokes phenomena [6], hyperasymtotics solution [7] and non-
linear optics [8]. Furthermore, some NLPDEs, including the Bous-
sinesq and Korteweg–de Vries (Kdv) equations, may be ex-
pressed in terms of the Painlevé transcendent [9, 10]. 

These six equations have a wide range of remarkable charac-
teristics and applications. The Painlevé equations were initially 
discovered from primarily mathematical considerations, but more 
recently, they have been used in several significant physical 
applications, such as statistical mechanics, plasma physics, non-
linear waves, quantum gravity, quantum field theory, general 
relativity, non-linear optics and fibre optics [11]. The Painlevé 
equations have also attracted significant interest because they are 
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reductions of the soliton equations that can be solved by inverse 
scattering [12] transform, such as the Kdv, the modified 
Kortewegde Vries equation (MKdv), the cylindrical Kortewegde 
Vries equation, the equations of the Boussinesq and Kadomtsev–
Petviashvili type, the non-linear Schrodinger equation and the 
sine-Gordon equation. Connections are briefly described in [13–
15]. Moreover, the Painlevé equations can be represented as 
equations of isomonodromic deformations of auxiliary linear sys-
tems of differential equations [16]. 

In recent years, a wide range of numerical methods has been 
developed to solve the second-order Painlevé differential equa-
tion, such as homotopyperturbation method (HPM) [17], sinc-
collocation method [18], optimisation method [19], variational 
iteration algorithm-I [20] and quasilinearisationmethod (QM) [21]. 

In this paper, the solution of the second-order Painlevé equa-
tion is obtained by two techniques Laplace decomposition method 
(LDM) and the natural decomposition method (NDM). Laplace 
transformation is the famous integral transform available to every 
researcher and can be used to solve linear ordinary, partial and 
integral equations in the time domain. Khan and his co-researcher 
[22] derived a new integral transform called N-transform; in 2012, 
it was renamed the natural transform [23]. The natural transform 
resembles Laplace [24] and Sumudu transforms [25]. Natural 
decomposition is used to solve a large number of the NLPDEs 
such as the sine-Gordon equation [26], time-fractional coupled 
KdVequation[27], gas dynamics equation[28] andinviscid burger 
equation[29]. 

There are several avenues of future work on the Painlevé I 
equation that could lead to new insights into its behaviour and 
applications in physics and mathematics. 

One area of research is the study of its solutions and their 
properties. While the Painlevé I equation is known to have special 
types of solutions, such as the Painlevé transcendents, there is 
still much to be understood about their behaviour and how they 
can be used to describe physical systems. In particular, the study 
of the Painlevé I equation in the context of complex analysis and 
differential geometry could lead to new insights into its solutions 
and their properties. 

Another area of research is the connection between the 
Painlevé I equation and other mathematical and physical systems. 
For example, recent work has shown that the Painlevé I equation 
arises in the study of the stability of certain non-linear waves in 
fluids. Investigating these connections could lead to new applica-
tions of the Painlevé I equation in other areas of physics and 
engineering.Finally, there is ongoing work on the numerical and 
computational aspects of the Painlevé I equation. While exact 
solutions can be constructed using certain methods, it is often 
necessary to use numerical techniques to study the behaviour of 
the equation in more complex settings. Developing efficient and 
accurate numerical methods for the Painlevé I equation could help 
to expand its use in a wide range of applications in physics and 
engineering.Overall, future work on the Painlevé I equation is 
likely to involve a combination of theoretical and computational 
approaches, with the goal of understanding its behaviour and 
applications in a wide range of contexts. 

The paper is structured as follows. In Section 2, methodolo-
gies and its implementations of proposed techniques are briefly 
discussed. In Section 3, we apply NDM and LDM to the Painlevé 
equation to show the efficiency and accuracy of our methods. In 
Section 4, the important results related to the Painlevé equations 
are explained briefly. Section 5 ends this paper with the conclu-
sions. 

2. METHODOLOGY 

In this section, we will discuss the methodologies of two pro-
posed methods and also discuss how these methods handle the 
NLPDEs. 

2.1. LDM 

The general form of the NLPDEis given as follows with condi-
tions: 

𝐿𝑣(𝑥, 𝑡) + 𝑅𝑣(𝑥, 𝑡) + 𝑁𝑣(𝑥, 𝑡) = 𝑓(𝑥, 𝑡)  (2.1.1) 

(with initial conditions: 

𝑣(𝑥, 0) = g(𝑥)  ,   𝑣𝑡(𝑥, 0) = ℎ(𝑥), 

(where L denotes thelinear differential operator of the second 
order: 

𝐿 =
𝜕2

𝜕𝑡2,                                                                                 (2.1.2) 

where 𝑅 represents the remaining less order linear operator, 𝑁𝑣 

is the non-linear operator and 𝑓(𝑥, 𝑡) is the non-homogeneous 
term. 

Applying Laplace transformationof Eq. (2.1.1) with initial con-
ditions: 

ℒ[𝐿𝑣(𝑥, 𝑡)] + ℒ[𝑅𝑣(𝑥, 𝑡)] + ℒ[𝑁𝑣(𝑥, 𝑡)] = ℒ[𝑓(𝑥, 𝑡)] (2.1.3) 

Using the differentiation property of the Laplace transform, we 
have 

ℒ[𝐿𝑣(𝑥, 𝑡)] =
1

𝑠
g(𝑥) +

1

s2 ℎ(𝑥) −
1

s2 ℒ[𝑅𝑣(𝑥, 𝑡) +

𝑁𝑣(𝑥, 𝑡)].                                                                             (2.1.4) 

In the next step,the solution of Laplace transform in the form 
of infinite series is given as follows: 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)

∞

𝑛=0

. (2.1.5) 

So that the non-linear operator is decomposed as 

𝑁𝑣(𝑥, 𝑡) = ∑ 𝐴𝑛

∞

𝑛=0

, 

 
(2.1.6) 

where 𝐴𝑛denotes theAdomain polynomials of the 

nents𝑣0, 𝑣1, 𝑣2 … … 𝑣𝑛and can be calculated using this formula: 
Substituting Eqs(2.1.5) and (2.1.6) into Eq.(2.1.4), we will get 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝑥𝑛
[𝑁(∑ 𝜆𝑖𝑣𝑖(𝑥, 𝑡)) ], 𝑛 = 0,1,2, …

∞

𝑛=0

 

 
(2.1.7) 

ℒ[∑ 𝑣𝑛(𝑥, 𝑡)] =
𝑔(𝑥)

𝑠
+

ℎ(𝑥)

𝑠2

∞

𝑛=0

+
1

𝑠2
ℒ[𝑓(𝑥, 𝑡)]

−
1

𝑠2
ℒ[𝑅𝑣(𝑥, 𝑡)] 

 
 (2.1.8) 

Using the linearity property to theLaplace transform, 

∑ ℒ[𝑣𝑛(𝑥, 𝑡)] =
𝑔(𝑥)

𝑠
+

ℎ(𝑥)

𝑠2

∞

𝑛=0

+
1

𝑠2
ℒ[𝑓(𝑥, 𝑡)] 
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−
1

𝑠2 ℒ[𝑅𝑣(𝑥, 𝑡)] −
1

𝑠2
[∑ ℒ[𝐴𝑛]∞

𝑛=0 ]                    (2.1.9) 

Now, comparing Eq. (2.1.9) on both sides, we have 

ℒ[𝑣0(𝑥, 𝑡)] =
𝑔(𝑥)

𝑠
+

ℎ(𝑥)

𝑠2 +
1

𝑠2 ℒ[𝑓(𝑥, 𝑡)] = 𝐻(𝑥, 𝑠),  (2.1.10) 

ℒ[𝑣1(𝑥, 𝑡)] = −
1

𝑠2 ℒ[𝑅𝑣0(𝑥, 𝑡)] + 𝐴0],                         (2.1.11) 

ℒ[𝑣2(𝑥, 𝑡)] = −
1

𝑠2 ℒ[𝑅𝑣1(𝑥, 𝑡)] + 𝐴1].                         (2.1.12) 

In general, we have 

ℒ[𝑣𝑛+1(𝑥, 𝑡)] = −
1

𝑠2
ℒ[𝑅𝑣𝑛(𝑥, 𝑡)] + 𝐴𝑛].                 (2.1.13) 

Applying the inverse Laplace transform to Eqs (2.1.10) –
(2.1.13), the required recurrence relation is given as follows: 

𝑣0(𝑥, 𝑡) = 𝐻(𝑥, 𝑡), 

𝑣𝑛+1(𝑥, 𝑡) = −ℒ− [
1

𝑠2 ℒ[𝑅𝑣𝑛(𝑥, 𝑡)] + 𝐴𝑛] , 𝑛 ≥ 0. 

𝐻(𝑥, 𝑡) Specifies specifies the initial conditions for the term 
occurring from the source term. 

By taking the Laplace transform ofEq. (2.1.13) and applying 
the Laplace inverse transform,we obtain the remaining terms  

of 𝑣0, 𝑣1, 𝑣2 … … 𝑣𝑛recursively. 

2.2. Analysis of the NDM 

The general form of the NDM is given below as follows: 

𝐿𝑣(𝑥, 𝑡) + 𝑀𝑣(𝑥, 𝑡) + 𝑁𝑣(𝑥, 𝑡) = ℎ(𝑥, 𝑡),    (2.2.1) 

with initial conditions: 

𝑣(𝑥, 0) = 𝑓(𝑥),      𝑣𝑡(𝑥, 0) = 𝑔(𝑥).   (2.2.2) 

Suppose L is the differential operator of the second order: 

𝐿 =
𝜕2

𝜕𝑡2. 

𝑀 is the less order remainder operator, 𝑁𝑣denotes the non-linear 
operator and ℎ(𝑥, 𝑡) represents the source term. 

Now,taking the N-transform of Eq. (2.2.1) on both sides, 

𝑁+[𝐿𝑣(𝑥, 𝑡)] + 𝑁+[𝑀𝑣(𝑥, 𝑡)] + 𝑁+[𝑁𝑣(𝑥, 𝑡)] =
𝑁+[𝑓(𝑥, 𝑡)].      (2.2.3) 

Using the N-transform properties, we have 

𝑠2

𝑣2 𝑅(𝑠, 𝑣) −
𝑠

𝑣2 𝑣(𝑥, 0) −
1

𝑣
𝑣′(𝑥, 0) + 𝑁+[𝑀𝑣(𝑥, 𝑡)] +

𝑁+[𝑁𝑣(𝑥, 𝑡)] = 𝑁+[𝑓(𝑥, 𝑡)].   (2.2.4) 

Substitute Eq.(2.2.2) into Eq.(2.2.4), we obtain 

𝑅(𝑠, 𝑣) =
𝑓(𝑥)

𝑢
+

𝑣𝑔(𝑥)

𝑠2 +
𝑣2

𝑠2 𝑁+[ℎ(𝑥, 𝑡)]  

−
𝑣2

𝑠2 𝑁+[𝑀𝑣(𝑥, 𝑡) + 𝑁𝑣(𝑥, 𝑡)].     (2.2.5) 

Now, applying the inverse of the natural transform  
of Eq.(2.2.5),we get 

𝑣(𝑥, 𝑡) = 𝐸(𝑥, 𝑡) − 𝑁− [
𝑣2

𝑠2 𝑁+[𝑀𝑣(𝑥, 𝑡) + 𝑁𝑣(𝑥, 𝑡)]]     (2.2.6) 

where 𝐸(𝑥, 𝑡)illustrates the term developed from initial conditions 
and source term. 

The next step is that we present the solution of non-linear 
terms in the form of infinite series: 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡).

∞

𝑛=0

 
 

(2.2.7) 
So that the non-linear operator is decomposed as 

𝑁𝑣(𝑥, 𝑡) = ∑ 𝐴𝑛

∞

𝑛=0

, 
 

(2.2.8) 

where 𝐴𝑛 denotes the Adomain polynomials  
of 𝑣0, 𝑣1,  𝑣2 … … 𝑣𝑛 and can be determined by this formula: 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝑥𝑛 [𝑁(∑ 𝜆𝑖𝑣𝑖(𝑥, 𝑡)) ] ,          = 0,1,2, …∞
𝑛=0      (2.2.9) 

Substituting Eqs (2.2.7)and (2.2.8) into Eq. (2.2.6), we will get 

∑ 𝑣𝑛(𝑥, 𝑡)∞
𝑛=0  = 𝐸(𝑥, 𝑡) − 𝑁− [

𝑣2

𝑠2 𝑁+[𝑀 ∑ 𝑣𝑛(𝑥, 𝑡)∞
𝑛=0  +

𝑁 ∑ 𝐴𝑛(𝑥, 𝑡)∞
𝑛=0 ]].                   (2.2.10) 

Now, comparing Eq. (2.2.10) on both sides, we get 

𝑣0(𝑥, 𝑡)  = 𝐸(𝑥, 𝑡), 

𝑣1(𝑥, 𝑡) = −𝑁− [
𝑣2

𝑠2 𝑁+[𝑀𝑣0(𝑥, 𝑡) + 𝐴0]],  

𝑣2(𝑥, 𝑡) = −𝑁− [
𝑣2

𝑠2 𝑁+[𝑀𝑣1(𝑥, 𝑡) + 𝐴1]].  

In general, we have 

𝑣𝑛+1(𝑥, 𝑡) = −𝑁− [
𝑣2

𝑠2
𝑁+[𝑀𝑣𝑛(𝑥, 𝑡) + 𝐴𝑛]],   

𝑛 ≥ 0.                    (2.2.11) 

By using the general recurrence relationgiven inEq. (2.2.11), 

we determineeasily the remaining terms of 𝑣(𝑥, 𝑡) 
as 𝑣0, 𝑣1, 𝑣2 … … 𝑣𝑛where𝑣0 is given the initial condition. 

3. APPLICATIONS 

In this section, we show the efficiency and high accuracy  
of the NDM andLDM for the solution of Painlevé equation I.  

3.1. NDM for Painlevéequation 

The second-order Painleve equation [20,32]can be formulated 
as 

𝑣′′(𝑡) = 6𝑣2 + 𝑡,       (3.1.1) 

subject to the initial conditions: 

𝑣(0) = 0,           𝑣′(0) = 1.    (3.1.2) 

By applying N-transform on both sides of Eq. (3.1.1), 

𝑁+[𝑣′′(𝑡)] = 𝑁+[6𝑣2 + 𝑡].   (3.1.3)
  

Using the properties of N-transform,we obtain 
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𝑠2

𝑣2 𝑅(𝑠, 𝑣) −
𝑘

𝑣2 𝑣(0) −
1

𝑣
𝑣′(0) = 𝑁+[6𝑣2] +

𝑣

𝑠2.   (3.1.4) 

Substituting Eq. (3.1.2) into Eq. (3.1.2), we have 

𝑅(𝑠, 𝑣) =
𝑣

𝑠2 +
𝑣3

𝑠4 +
𝑣2

𝑠2 𝑁+[6𝑣2].    (3.1.5) 

Now, applying the inverse of N-transform, we have 

𝑁−1[𝑅(𝑠, 𝑣)] = 𝑁−1 [
𝑣

𝑠2 +
𝑣3

𝑠4 +
𝑣2

𝑠2 𝑁+[6𝑣2]]  (3.1.6) 

Eq. (3.1.6) becomes 

𝑣(𝑥, 𝑡) = 𝑡 +
𝑡3

3!
+ 𝑁−1 [

𝑣2

𝑠2 𝑁+[6𝑣2]].   (3.1.7) 

Eq. (3.1.7) can be written as 

𝑣(𝑥, 𝑡) = 𝑡 +
𝑡3

3!
+ 𝑁−1 [

𝑣2

𝑠2 𝑁+[∑ 𝐴𝑛]∞
𝑛=0 ].   (3.1.8) 

From Eq. (3.1.8), we can conclude that 

 𝑣0(𝑥, 𝑡) =  𝑡 +
𝑡3

3!
,  

𝑣1(𝑥, 𝑡) = 𝑁−1 [
𝑣2

𝑠2 𝑁+[𝐴0]],  

 𝑣2(𝑥, 𝑡) = 𝑁−1 [
𝑣2

𝑠2 𝑁+[𝐴1]],  

𝑣𝑛+1(𝑥, 𝑡) = 𝑁−1 [
𝑣2

𝑠2 𝑁+[𝐴𝑛]] ,   𝑛 ≥ 1.    (3.1.9) 

Therefore, from Eq. (3.1.9), the remaining terms of function 
𝑣(𝑥, 𝑡)can easily be computed as follows: 

𝑣1(𝑥, 𝑡) =
1

2
𝑡4 +

1

15
𝑡6 +

1

336
𝑡8,  

𝑣2(𝑥, 𝑡) =
1

7
𝑡7 +

1

40
𝑡9 +

71

46200
𝑡11 +

1

26208
𝑡13,  

𝑣3(𝑥, 𝑡) =
1

28
𝑡10 +

23

3080
𝑡12 +

5219

8408400
𝑡14 +

3551

144144000
𝑡16 +

95

224550144
𝑡18,  

𝑣4(𝑥, 𝑡) =
3

364
𝑡13 +

131

64680
𝑡15 +

19867

95295200
𝑡17 +

163469

14378364000
𝑡19 +

163451

491203440000
𝑡21 +

131

7101398304
𝑡23.  

In this way, we obtained the approximate result of the func-
tionv(x,t), which is given as 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡)∞
𝑛=0 ,                (3.1.10) 

𝑣(𝑥, 𝑡) =  𝑡 +
𝑡3

3!
+

1

2
𝑡4 +

1

15
𝑡6 +

1

336
𝑡8 +

1

7
𝑡7 +

1

40
𝑡9 +

71

46200
𝑡11 +

1

26208
𝑡13 +

1

28
𝑡10 +

23

3080
𝑡12 +

5219

8408400
𝑡14 +

3551

144144000
𝑡16 +

95

224550144
𝑡18 +

3

364
𝑡13 +

131

64680
𝑡15 +

19867

95295200
𝑡17 +

163469

14378364000
𝑡19 +

163451

491203440000
𝑡21 +

131

7101398304
𝑡23+, … …  

3.2. LDM for Painlevéequation 

Consider the general form of the Painlevéequation: 

𝑣′′(𝑡) = 6𝑣2 + 𝑡,     (3.2.1) 

subject to theinitial conditions: 

𝑣(0) = 0,           𝑣′(0) = 1.    (3.2.2) 

Now, applying Laplace transform on both sides of Eq. (3.2.1) 

with initial conditions: 

 ℒ[𝑣′′] = ℒ[6𝑣2] + ℒ[𝑡],  

𝑠2𝑣(𝑥, 𝑠) + 𝑣(0)𝑠 − 𝑣′(0) =  ℒ[6𝑣2] + ℒ[𝑡].  (3.2.3) 

Substituting Eq. (3.2.2) into Eq. (3.2.3), we have 

𝑣(𝑥, 𝑠) =
1

𝑠2 +
1

𝑠4 +  ℒ[6𝑣2].    (3.2.4) 

Now, taking the inverse of the Laplace transform,we obtain 

ℒ−1[𝑣(𝑥, 𝑠)] = ℒ−1 [
1

𝑠2 +
1

𝑠4 + 
1

𝑠2 ℒ[6𝑣2]].   (3.2.5) 

Eq. (3.2.5) becomes 

𝑣(𝑥, 𝑡) = 𝑡 +
𝑡3

3!
+ ℒ−1 [

1

𝑠2 ℒ[6𝑣2]].    (3.2.6) 

Eq. (3.2.6) can be written as 

𝑣(𝑥, 𝑡) = 𝑡 +
𝑡3

3!
+ ℒ−1 [

1

𝑠2 ℒ[∑ 𝐴𝑛]∞
𝑛=0 ].   (3.2.7) 

From Eq. (3.2.7), we can conclude that 

𝑣0(𝑥, 𝑡) =  𝑡 +
𝑡3

3!
,  

𝑣1(𝑥, 𝑡) = ℒ−1 [
1

𝑠2 ℒ[𝐴0]],  

𝑣2(𝑥, 𝑡) = ℒ−1 [
1

𝑠2 ℒ[𝐴1]],  

𝑣3(𝑥, 𝑡) = ℒ−1 [
1

𝑠2 ℒ[𝐴2]].  

Eventually, 

𝑣𝑛+1(𝑥, 𝑡) = ℒ−1 [
1

𝑠2 ℒ[𝐴𝑛]] ,     𝑛 ≥ 0.   (3.2.8) 

Therefore, from Eq. (3.2.8), the other remaining terms of the 
function u(x,t) can easily be computed as follows: 

𝑣1(𝑥, 𝑡) =
840𝑡4+112𝑡6+5𝑡8

1680
,  

𝑣2(𝑥, 𝑡) =
1029600𝑡7+180180𝑡9+11076𝑡11+275𝑡13

7207200
,  

𝑣3(𝑥, 𝑡) =
11027016000𝑡10+2305648800𝑡12+191641680𝑡14+7606242𝑡16+130625𝑡18

308756448000
,  

𝑣4(𝑥, 𝑡) =
19460562660000𝑡13

19460562660000𝑡13 +
4782299886000𝑡15

19460562660000𝑡13+
492262539300𝑡17

19460562660000𝑡13 +

26844879180𝑡19

19460562660000𝑡13 +
785708957𝑡21

19460562660000𝑡13 +

10307500𝑡23

19460562660000𝑡13+…….  

𝑣(𝑥, 𝑡)   =

 𝑡 +
𝑡3

3!
+

840𝑡4+112𝑡6+5𝑡8

1680
+

1029600𝑡7+180180𝑡9+11076𝑡11+275𝑡13

7207200
+

11027016000𝑡10

308756448000
+

2305648800𝑡12

308756448000
+

191641680𝑡14

308756448000
+

7606242𝑡16

308756448000
+

130625𝑡18

308756448000
+

19460562660000𝑡13

2361214936080000
+

4782299886000𝑡15

2361214936080000
+

492262539300𝑡17

2361214936080000
+

26844879180𝑡19

2361214936080000
+

785708957𝑡21

2361214936080000
+

10307500𝑡23

2361214936080000
  

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑛(𝑥, 𝑡),∞
𝑛=0      (3.2.9) 
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Tab. 1. Comparison of the approximate solution of Painlevé equation I 

t MADM [30] VIM [31] LDM NDM 

0.1 0.1002601271 0.1002167477 0.1002167476 0.1002167476 

0.2 0.2021288956 0.2021394527 0.2021394527 0.2021394527 

0.3 0.3086306987 0.3086307490 0.3086307491 0.3086307491 

0.4 0.4239860367 0.4239862788 0.4239862886 0.4239862891 

0.5 0.5543370146 0.5543399110 0.5543400885 0.5543401061 

0.7 0.8992199875 0.8992296944 0.899242462 0.8992475639 

0.9 1.4814889672 1.481778951 1.482022918 1.48237693 

1.0 1.9416721356 1.959421042 1.960056483 1.962154582 

LDM, laplace decomposition method;  
NDM, natural decomposition method. 

The numerical results in Tab.1 show that the second-order 
Painleve equation is convergence with four iterations by applying 
NDM.The given comparison in Tab.1 demonstrates that NDM 
converges more rapidly than LDM and others (VIM, MADM and 
VIA-1). 
 

4. IMPORTANT RESULTS OF THE PAINLEVE EQUATION I 

The Painlevé equation has a number of important results and 
applications in mathematics and physics. Some of the key results 
include the following: 

The Painlevé I equation is a completely integrablesystem, 
meaning that its solutions can be constructed using certain alge-
braic and analytic methods. This property has led to a deeper 
understanding of the behaviour of non-linear systems and their 
applications in physics and mathematics.The solutions of the 
Painlevé I equation are known as the Painlevé transcendent, 
which are a special class of functions with remarkable properties. 
They have been extensively studied in the context of special 
functions and have applications in a variety of areas, including 
random matrix theory, non-linear optics and statistical physics.The 
Painlevé I equation arises in the study of a wide range of physical 
systems, including the propagation of non-linear waves in fluids, 
the dynamics of magnetic vortices in superconductors and the 
behaviour of certain quantum mechanical systems. Its integrability 
properties make it a powerful tool for understanding the behaviour 
of these systems.The Painlevé I equation has connections to a 
number of other important mathematical and physical sys-
tems,including the Korteweg–de Vries equation, the using model 
in statistical physics and the theory of algebraic curves. Under-
standing these connections has led to new insights into the be-
haviour of the Painlevé I equation and its applications in various 
fields. 
Overall, the Painlevé I equation represents a significant contribu-
tion to the study of integrable systems and their applications in 
physics and mathematics. Its important results and connections to 
other systems continue to make it a subject of active research and 
interest in the scientific community. 
 

5. CONCLUSION 

This article applies the NDM and LDM to find the approximate 
solutions of the second-order Painleve equation. The properties of 
the NDM are used to obtain a series solution that converges 
rapidly to the approximate solution. Also, LDM was applied suc-
cessfully to solve the Painlevé equation. Furthermore, LDM does 
not require discretisation of the variable and avoids round-off 
errors. The numerical result shows that NDM is more attractive 
and powerful than LDM. In the future, we employ NDM and LDM 
to solve NLPDEs in science and engineering. 

The Painlevé equations are a set of NLODEs that are notable 
for their integrability properties and their appearance in various 
areas of physics and mathematics. They were first introduced by 
the French mathematician Paul Painlevé in the early 20th century. 

The novelty of this equation is describedas follows: 

 One of the key novelties of the Painlevé I equation is its 
integrability properties. Like the other Painlevé equations, it is 
integrable, meaning that its solutions can be constructed using 
certain algebraic and analytic methods. This property has led 
to a deeper understanding of the behaviour of non-linear 
systems and their applications in physics and mathematics. 

 Another important feature of the Painlevé I equation is its 
appearance in the study of random matrix theory, where it 
plays a crucial role in the description of the distribution of 
eigenvalues of certain random matrices. In particular, it is 
used to describe the scaling limit of the Tracy–Widom 
distribution, which arises in the study of the largest eigenvalue 
of random matrices. 
Overall, the Painlevé I equation represents a significant con-

tribution to the study of non-linear systems and their applications 
in mathematics and physics. Its simplicity and wide-ranging con-
nections continue to make it a subject of active research and 
interest in the scientific community. 

Overall, future work on the Painlevé I equation is likely to in-
volve a combination of theoretical and computational approaches, 
with the goal of understanding its behaviour and applications in a 
wide range of contexts. 
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