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Abstract: In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems 
of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc) heated on its free surface by frictional heat 
fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based 
on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. 
The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribu-
tion in brake disc.  
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1. INTRODUCTION 

Frictional characteristics and wear in an disc-pad contact area 
are changing significantly depending on the way of absorbed heat 
energy by a braking system. In some cases the major part 
of braking work is accomplished in the initial stage of braking, 
in other cases work is more evenly distributed in time. Essential 
influence on value and evolution of the temperature has the na-
ture of change with time the specific power of friction. Classifica-
tion of the time courses of specific power of friction during single 
braking was proposed in monograph (Chichinadze, 1967). Table 
5.3 on page 78 in this study contains eleven different functions, 
which describe change of the specific power of friction with brak-
ing time. Analysis of the influence of the each time course on the 
temperature were conducted based on, received by author solu-
tion to the one-dimensional thermal problem of friction for semi-
space. However, these solutions were found with simplifying 
assumptions, which refer to interior points of the half-space on the 
axis perpendicular to the outer surface. It was assumed that, the 
temperature is proportional to the braking time and the tempera-
ture increments and also the average volumetric temperature are 
equal. The studies reviews of accurate (without mentioned above 
simplifications) solutions to the one-dimensional thermal problems 
of friction are in monographs (Jewtuszenko et al., 2014, Kuciej, 
2012). They demonstrate that the vast majority of the received 
accurate solutions usually concern only two elementary cases 
from the above mentioned table. In first of them, specific power 
of friction in the braking process has constant value, in second it 
decreases linearly from maximum value in the initial moment 
to zero in the standstill. The second time course of specific power 
of friction is realizable during braking with constant deceleration 
and an immediate increase of pressure to nominal value in the 
initial time moment. Influence of the time of the contact pressure 
increase to nominal value on the temperature distribution was 
investigated in the article (Topczewska, 2016). 

In this study the following simplification was adopted: a brake 
disc was replaced by homogeneous semi-space and the friction 
process of contacting bodies was replaced by heating process on 
outer surface by heat flux with given intensity (Evtushenko et al., 
2007, Matysiak et al., 2007, Yevtushenko et al., 2005–2007, 
2009–2012, 2014). Assuming one-dimensional direction of heat 
conduction is correct for high values of the Peclet number (for 
high velocity of braking). Taking into account mentioned above 
assumptions, analytical solutions to the one-dimensional thermal 
problems of friction for three time courses of specific power of 
friction (VI, VIII and XI positions in table 5.3 in monograph (Chi-
chinadze, 1967)) were determined analytically. They reflect brak-
ing modes until the vehicle standstill.  

2. STATEMENT OF THE PROBLEM 

A considered semi–space orientation is given relative to 
a Cartesian frame of reference Oxyz with origin placed on the 

free surface (z-axis is vertical to this plane). The half-space z ≥ 0 

is heated on its outer surface z = 0 by heat flux with time-
dependent 0 < t < ts intensity qi(t) = q0qi

∗(t), i = 1,2,3 
(Fig. 1). Intensity of heat fluxes is proportional to the specific 
power of friction (Ling, 1973). Therefore, omitting constant propor-
tional factor, the so-called heat partition ratio, the following three 
dimensionless time courses of friction power (Chichinadze, 1967): 

𝑞1
∗(𝑡) = 3 (1 −

𝑡

𝑡𝑠
)

2
, 𝑞2

∗(𝑡) = 6
𝑡

𝑡𝑠
(1 −

𝑡

𝑡𝑠
),

  

𝑞3
∗(𝑡) = 6 (√

𝑡

𝑡𝑠
−

𝑡

𝑡𝑠
) , 0 ≤ 𝑡 ≤ 𝑡𝑠. 

(1) 

were considered. 
Functions (1) are selected such that, the following braking 

work density: 
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𝑤𝑖(𝑡) = ∫ 𝑞𝑖(𝑠)𝑑𝑠,
𝑡

0
 0 ≤ 𝑡 ≤ 𝑡𝑠, 𝑖 = 1,2,3, (2) 

in moment of standstill is constant and equal to wi(ts) = q0ts. 
Graphs of dimensionless braking work density evolutions 

wi
∗(t) = wi(t) (q0ts)⁄   were presented in Fig. 2. 

 
Fig. 1. The time courses of the dimensionless specific power of friction 
            𝑞𝑖

∗(𝑡), 𝑖 = 1,2,3 (1) 

 
Fig. 2. The time courses of the total dimensionless braking work density     
            𝑤𝑖

∗(𝑡), 𝑖 = 1,2,3 (2) 

Distributions of the one-dimensional transient dimensionless 

temperature fields Ti
∗(ζ, t), i = 1,2,3  in semi-space were found 

from solution to the following boundary-value problem of heat 
conduction, formulated in dimensionless form: 

𝜕2𝑇𝑖
∗(𝜁,𝜏)

𝜕𝜁2 =
𝜕𝑇𝑖

∗(𝜁,𝜏)

𝜕𝜏
, 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 . (3) 

𝜕𝑇𝑖
∗(𝜁,𝜏)

𝜕𝜁
|

𝜁=0
= − 𝑞𝑖

∗(𝜏), 𝑖 = 1,2,3, 0 ≤ 𝜏 ≤ 𝜏𝑠 , (4) 

𝑇𝑖
∗(𝜁, 𝜏) → 0, 𝜁 → ∞, 0 ≤ 𝜏 ≤ 𝜏𝑠 , (5) 

𝑇𝑖
∗(𝜁, 0) = 0, 𝜁 ≥  0, (6) 

where 
 

𝜁 =
𝑧

𝑎
, 𝜏 =

𝑘𝑡

𝑎2 , 𝜏𝑠 =
𝑘𝑡𝑠

𝑎2 , 𝑇0 =
𝑞0𝑎

𝐾
, 𝑇𝑖

∗ =
𝑇𝑖−𝑇𝑎

𝑇0
, (7) 

a = √3kts is effective depth of the heat penetration inside brake 

disc (Chichinadze, et al., 1979), Ta is initial temperature, K, k are 
thermal conductivity and thermal diffusivity, respectively. 

3. SOLUTION OF THE PROBLEM 

Solutions to the boundary-value problem (3)–(6) were found 
based on Duhamel's theorem (Ozisik,1993): 

𝑇𝑖
∗(𝜁, 𝜏) = ∫ 𝑞𝑖

∗(𝑠)
𝜕

𝜕𝜏
𝑇

∗(0)(𝜁, 𝜏 − 𝑠)𝑑𝑠,
𝑡

0
 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,   (8) 

where (Carslaw H. S. et al. 1959): 

𝑇∗(0)(𝜁, 𝜏) = 2√𝜏ierfc (
𝜁

2√𝜏
) , 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠,   (9) 

is solution to the problem (3)–(6) with constant in time 𝑞∗(𝜏) = 1 
intensity of heat flux in boundary condition (4).  

Taking into account value of the following derivative of the 
complementary error function (Abramowitz M. et al. 1972): 

𝜕

𝜕𝑥
erfc(𝑥) = −

2𝑥

√𝜋
𝑒−𝑥2

,   (10) 

the following partial derivative was counted: 

𝜕

𝜕𝜏
[2√𝜏 − 𝑠 ierfc (

𝜁

2√𝜏−𝑠
)] =

𝑒
−(

𝜁

2√𝜏−𝑠
)

2

√𝜋(𝜏−𝑠)
.   (11) 

Substituting relation (9) and derivative (11) to the formula (8), 
we received: 

𝑇1
∗(𝜁, 𝜏) = 3 ∫ (1 −

𝑠

𝜏𝑠
)

2 𝑒
−(

𝜁

2√𝜏−𝑠
)

2

√𝜋(𝜏−𝑠)

𝜏

0
𝑑𝑠, 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠,   (12) 

𝑇2
∗(𝜁, 𝜏) = 6 ∫ [

𝑠

𝜏𝑠
− (

𝑠

𝜏𝑠
)

2
]

𝑒
−(

𝜁

2√𝜏−𝑠
)

2

√𝜋(𝜏−𝑠)

𝜏

0
𝑑𝑠, 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠,   (13) 

𝑇3
∗(𝜁, 𝜏) = 6 ∫ (√

𝑠

𝜏𝑠
−

𝑠

𝜏𝑠
)

𝑒
−(

𝜁

2√𝜏−𝑠
)

2

√𝜋(𝜏−𝑠)

𝜏

0
𝑑𝑠, 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠.   (14) 

Above equations (12)–(14) were written as difference inte-
grals:  

𝑇1
∗(𝜁, 𝜏) = 3[𝐼0(𝜁, 𝜏) − 𝐼2(𝜁, 𝜏)], 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,   (15) 

𝑇2
∗(𝜁, 𝜏) = 6[𝐼1(𝜁, 𝜏) − 𝐼2(𝜁, 𝜏)], 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,   (16) 

𝑇3
∗(𝜁, 𝜏) = 6[𝐼1 2⁄ (𝜁, 𝜏) − 𝐼1(𝜁, 𝜏)], 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,   (17) 

where 

𝐼0(𝜁, 𝜏) =
1

√𝜋
∫

1

√𝜏−𝑠

𝜏

0
𝑒

−(
𝜁

2√𝜏−𝑠
)

2

𝑑𝑠,   (18) 

𝐼1(𝜁, 𝜏) =
2

𝜏𝑠√𝜋
∫

𝑠

√𝜏−𝑠

𝜏

0
𝑒

−(
𝜁

2√𝜏−𝑠
)

2

𝑑𝑠,   (19) 

𝐼2(𝜁, 𝜏) =
1

𝜏𝑠
2√𝜋

∫
𝑠2

√𝜏−𝑠

𝜏

0
𝑒

−(
𝜁

2√𝜏−𝑠
)

2

𝑑𝑠,   (20) 

𝐼1 2⁄ (𝜁, 𝜏) =
1

√𝜏𝑠𝜋
∫ √

𝑠

𝜏−𝑠

𝜏

0
𝑒

−(
𝜁

2√𝜏−𝑠
)

2

𝑑𝑠.   (21) 

Using substitution 𝑥 = 1 √𝜏 − 𝑠⁄ , the integrals (18)–(21) were 
designated: 

𝐼0(𝜁, 𝜏) =
2

√𝜋
𝐿2(𝜁, 𝜏),   (22) 

𝐼1(𝜁, 𝜏) =
2

𝜏𝑠√𝜋
[𝜏𝐿2(𝜁, 𝜏) − 𝐿4(𝜁, 𝜏)],   (23) 

𝐼2(𝜁, 𝜏) =
2

𝜏𝑠
2√𝜋

[𝜏2𝐿2(𝜁, 𝜏) − 2𝜏𝐿4(𝜁, 𝜏) + 𝐿6(𝜁, 𝜏)],   (24) 

where  
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𝐿𝑘(𝜁, 𝜏) = ∫ 𝑒
−(

𝜁

2
)

2
𝑥2 𝑑𝑥

𝑥𝑘

∞
1

√𝜏

, 𝑘 = 2,4,6.   (25) 

Based on recurrence relation (Prudnikov et al., 1986): 

∫
𝑒−(𝑎𝑥)2

𝑥𝑛 𝑑𝑥 = −
𝑒−(𝑎𝑥)2

(𝑛 − 1)𝑥𝑛−1 −
2𝑎2

𝑛 − 1
∫

𝑒−(𝑎𝑥)2

𝑥𝑛−2 𝑑𝑥,  𝑎 > 0,   

𝑛 = 2, 3, …,   (26) 

and the following solution (Prudnikov et al., 1986): 

𝐿2(𝜁, 𝜏) = √𝜋𝜏ierfc (
𝜁

2√𝜏
),   (27) 

we achieved: 

𝐿4(𝜁, 𝜏) =
𝜏√𝜋𝜏

3
{[1 − 2 (

𝜁

2√𝜏
)

2
] ierfc (

𝜁

2√𝜏
) +

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)},

   (28) 

𝐿6(𝜁, 𝜏) =
𝜏2√𝜋𝜏

5
〈{1 −

2

3
(

𝜁

2√𝜏
)

2
[1 − 2 (

𝜁

2√𝜏
)

2
]} ierfc (

𝜁

2√𝜏
) +

+
𝜁

2√𝜏
erfc (

𝜁

2√𝜏
) [1 −

2

3
(

𝜁

2√𝜏
)

2
]〉.   (29) 

Taking into account results (27)–(29) in equations (22)–(24), 
we obtain: 

𝐼0(𝜁, 𝜏) = 2√𝜏ierfc (
𝜁

2√𝜏
),   (30) 

𝐼1(𝜁, 𝜏) =
2𝜏√𝜏

3𝜏𝑠
{2 [1 + (

𝜁

2√𝜏
)

2
] ierfc (

𝜁

2√𝜏
) +

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)}, (31) 

𝐼2(𝜁, 𝜏) =
2√𝜏

15
(

𝜏

𝜏𝑠
)

2
{[8 + 18 (

𝜁

2√𝜏
)

2
+ 4 (

𝜁

2√𝜏
)

4
] ierfc (

𝜁

2√𝜏
) −

−
𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)}.   (32) 

Subsequently integral (21) will be counted. Using the same 
substitution  𝑥 = 1 √𝜏 − 𝑠⁄  , we have: 

𝐼1 2⁄ (𝜁, 𝜏) = √
𝜏

𝜏𝑠𝜋
 𝐽(𝜁, 𝜏),   (33) 

where  

𝐽(𝜁, 𝜏) = ∫ √𝑥 −
1

𝜏
𝑒

−(
𝜁

2
)

2
𝑥 𝑑𝑥

𝑥2

∞
1

√𝜏

.   (34) 

Integrating (34) by parts, we have: 

𝐽(𝜁, 𝜏) =
1

2
𝐽1(𝜁, 𝜏) −

𝜁2

4
𝐽2(𝜁, 𝜏),   (35) 

where 

𝐽1(𝜁, 𝜏) = ∫
1

√𝑥−𝜏−1
𝑒

−(
𝜁

2
)

2
𝑥 𝑑𝑥

𝑥

∞
1

√𝜏

,   (36) 

𝐽2(𝜁, 𝜏) = ∫ √𝑥 − 𝜏−1𝑒
−(

𝜁

2
)

2
𝑥 𝑑𝑥

𝑥

∞
1

√𝜏

.   (37) 

Based on the following formula (Prudnikov et al., 1998): 

∫
(𝑥−𝑢)𝑣𝑒−𝜇𝑥

𝑥

∞

𝑢
𝑑𝑥 = 𝑢𝑣Γ(𝑣 + 1)Γ(−𝑣, 𝑢𝜇),  

𝑢 > 0, Re𝑣 > −1, Re𝜇 > 0,   (38) 

functions (36) and (37) were written in the forms: 

𝐽1(𝜁, 𝜏) = √𝜏Γ (
1

2
) Γ (

1

2
,

𝜁2

4𝜏
),   (39) 

𝐽2(𝜁, 𝜏) =
1

√𝜏
Γ (

3

2
) Γ (−

1

2
,

𝜁2

4𝜏
).   (40) 

Taking into account relation (Prudnikov et al., 1998): 

Γ(𝑣 + 1, 𝑧) = 𝑣Γ(𝑣, 𝑧) + 𝑧𝑣𝑒−𝑧,   (41) 

we receive: 

Γ (−
1

2
,

𝜁2

4𝜏
) = 2√𝜋 (

𝜁

2√𝜏
)

−1
ierfc (

𝜁

2√𝜏
).   (42) 

In regard to the following (Prudnikov et al., 1998): 

Γ (
1

2
) = √𝜋, Γ (

3

2
) =

√𝜋

2
,   Γ (

1

2
,

𝜁2

4𝜏
) = √𝜋erfc (

𝜁

2√𝜏
),   (43) 

and (42), we can write: 

𝐽1(𝜁, 𝜏) = 𝜋√𝜏erfc (
𝜁

2√𝜏
),   (44) 

𝐽2(𝜁, 𝜏) =
𝜋

√𝜏
(

𝜁

2√𝜏
)

−1
ierfc (

𝜁

2√𝜏
).   (45) 

Using solutions (44) and (45), we write (35) in form: 

𝐽(𝜁, 𝜏) =
𝜋√𝜏

2
[erfc (

𝜁

2√𝜏
) − 2 (

𝜁

2√𝜏
) ierfc (

𝜁

2√𝜏
)],   (46) 

Substituting above formula to equation (33), we receive: 

𝐼1 2⁄ (𝜁, 𝜏) =
𝜏

2
√

𝜋

𝜏𝑠
[erfc (

𝜁

2√𝜏
) −

𝜁

√𝜏
ierfc (

𝜁

2√𝜏
)] .   (47) 

Having regard relations (30)–(32) and (47) we determine 
searched temperature fields from (15)–(17): 

𝑇1
∗(𝜁, 𝜏) = 2√𝜏 〈

1

5
(

𝜏

𝜏𝑠
)

2
[8 + 18 (

𝜁

2√𝜏
)

2
+ 4 (

𝜁

2√𝜏
)

4
] ierfc (

𝜁

2√𝜏
) −

− [7 + 2 (
𝜁

2√𝜏
)

2
]

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
) + 3ierfc (

𝜁

2√𝜏
) −

2𝜏

𝜏𝑠
{2 [1 +

+ (
𝜁

2√𝜏
)

2
] ierfc (

𝜁

2√𝜏
) +

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)}〉 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠,    (48) 

𝑇2
∗(𝜁, 𝜏) = 4√𝜏 〈

𝜏

𝜏𝑠
{2 [1 + (

𝜁

2√𝜏
)

2
] ierfc (

𝜁

2√𝜏
) −

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)} −

−
1

5
(

𝜏

𝜏𝑠
)

2
[8 + 18 (

𝜁

2√𝜏
)

2
+ 4 (

𝜁

2√𝜏
)

4
] ierfc (

𝜁

2√𝜏
) − [7 +

2 (
𝜁

2√𝜏
)

2
]

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)〉 , 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,    (49) 

𝑇3
∗(𝜁, 𝜏) = 3𝜏√

𝜋

𝜏𝑠
[erfc (

𝜁

2√𝜏
) −

𝜁

√𝜏
ierfc (

𝜁

2√𝜏
)] −

4𝜏√𝜏

𝜏𝑠
{2 [1 +

(
𝜁

2√𝜏
)

2
] ierfc (

𝜁

2√𝜏
) −

𝜁

2√𝜏
erfc (

𝜁

2√𝜏
)} , 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠.   (50) 

4. NUMERICAL ANALYSIS 

Numerical analysis of the temperature distributions in a disc 
(semi-space) during single braking, for three different time cours-
es of heat flux intensities, was conducted based on the found 
analytical solutions (48)–(50). The dimensionless input parame-

ters used in calculations are: spatial coordinate ζ, time τ and 

braking time τs = 1, which are defined by formulas (7). Accord-
ing to equations (1) and (2) total amount of thermal energy ab-
sorbed by the disc during braking for considered intensities 
of heat flux is equal. 

Evolutions of the dimensionless temperature on the friction 

surface and selected depths ζ inside semi-space for three chang-
es with time of heat flux densities (Fig. 2), were shown in Fig. 3. 

The temperature distribution for intensity of heat flux q1
∗ (t), when 

its value is the largest on the initial stage of braking and decreas-
es to zero with time, were presented in Fig. 3a. At the beginning of 

the braking temperature T1
∗ on outer surface of semi-space 

(ζ = 0) rapidly increases, to achieve maximum value  T1max
∗ =

1.20 in time τ τs = 0.32⁄ , and then decreases until the end 
of the process.  

 



Katarzyna Topczewska           DOI 10.1515/ama-2017-0017 
Frictional Heating with Time-Dependent Specific Power of Friction  

114 

 

 

              
Fig. 3. Evolutions of the dimensionless temperatures a) 𝑇1

∗, b) 𝑇2
∗, c) 𝑇3

∗   

            on few distances 𝜁 from the friction surface 

In the cases, when in initial stage of braking the heat flux in-

tensity increase reaching maximum value in 25% (τ τs = 0.25⁄  
for q3

∗ (t)) or 50% (τ τs = 0.5⁄  for q2
∗ (t)), of total braking time, 

reaching largest temperature value on the working surface also 

gets longer, and equals to, τ τs = 0.75⁄   for T2max
∗ = 1.17 

(Fig. 3b) and τ τs = 0.6⁄  for T3max
∗ = 1.09 (Fig. 3c), respective-

ly. In both cases after reaching maximum values, the temperature 
of the surface decreases to the standstill. The dimensionless 
temperature on the friction surface ζ = 0 in the stop time moment 

τ τs = 1⁄  is higher in the case heating disc by heat flux intensity 

q2
∗ (t) (Fig. 3b) and q3

∗ (t) (Fig. 3c) compared with temperature 
value in brake disc heated by flux with intensity q1

∗ (t) (Fig. 3a). In 

the all considered cases, increasing distance ζ from the frictional 
surface (Fig. 3) the temperature value is getting lower and time to 
reach maximum increases. The monotonically temperature in-

crease during the entire heating process with intensity q2
∗ (t) can 

be observed (Fig. 3b) on the distance  ζ ≥ 0.75, and with q1
∗ (t) 

and q3
∗ (t) (Fig. 3a, 3c) under the effective depth of the heat 

penetration ζ ≥ 1. 

 

 

 
Fig. 4. Distribution of the dimensionless temperatures a) 𝑇1

∗, b) 𝑇2
∗, c) 𝑇3

∗  

            inside disc at few different dimensionless time moments 𝜏 

The dimensionless temperature changes with depth ζ for dif-

ferent intensities of heat flux qi
∗(t), i = 1,2,3 in selected time 

moments τ, are shown in Fig. 4. In the all cases, the temperature 

monotonically decreases with increasing the distance ζ from 

heated surface. In the considered distance range 0 ≤ ζ ≤ 1.5, 

the largest gradients of the temperature inside the disc ∆T1
∗ =

1.15 (Fig. 4a), ∆T2
∗ = 1.05 (Fig. 4b) and ∆T3

∗ = 0.98 (Fig. 4c), 
occurs in the moments of reaching maximum temperature values 

on the friction surface ζ = 0. The most uniform distributions of the 
temperature in disc are in standstill moment τ τs = 1⁄ , tempera-

tures on the working surface have lower values  T1
∗ = 0.68 (Fig. 

4a), T2
∗ = 0.9 (Fig. 4b) and T3

∗ = 0.8 (Fig. 4c). Mentioned gradi-
ents reach minimum values ∆T1

∗ = 0.38 (Fig. 4a), ∆T2
∗ = 0.64 

(Fig. 4b) and ∆T3
∗ = 0.54 (Fig. 4c) in the stop moment. 
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5. CONCLUSIONS 

Analytical solutions to the heat conduction problems for semi-
space heated on outer surface by heat flux with different time 
courses of intensity were determined. Numerical analysis of evolu-
tion and spatial distribution of the dimensionless temperature 
(along the distance from the friction surface) were carried out 
based on obtained solutions. In results the following conclusions 
were formulated: 

 there is a strict relation between the time moment of reaching 
maximum values of dimensionless temperature on the heated 
surface and the time moment of maximum intensity occur-
rence of corresponding heat flux. In the considered cases, ex-
treme temperature value is reached ca. 30% of braking time 
later than maximum of the heat flux intensity time function; 

 maximum values of dimensional temperature on the friction 
surface of the disc, in all cases are similar. The largest differ-
ence between them is only 9% of this value. While, in these 
cases, maximum values of the friction power differ twofold; 

 gradients of the dimensionless temperature inside the disc are 
the lowest in the standstill 𝜏 𝜏𝑠 = 1⁄ . The most intense cooling 
of the outer surface after reached maximum temperature, oc-
curs in the first case 𝑞1

∗(𝑡), while the temperature achieve the 
largest maximum values. 
 

Nomenclature: a – effective depth of heat penetration [m]; erf(x) – 

Gauss error function; erfc (x) = 1 − erf(x) – complementary error 

function; ierfc(x) =  π−1 2⁄ exp(−x2) − xerfc(x) – integral 
of complementary error function; K – thermal conductivity [W K-1 m-1];  

k – thermal diffusivity [m2 s-1]; q – intensity of the heat flux [W m-2];  

T – temperature [K]; T∗ – dimensionless temperature; Ta – initial tem-

perature [K]; T0 –temperature scaling factor [K]; t – time [s]; ts– braking 

time [s]; w – braking work density [W m-2 s-1]; w∗ – dimensionless 

braking work density;  xyz – spatial coordinates [m]; Γ(v, z) – gamma 

function; τ – dimensionless time (Fourier number); τs – dimensionless 
braking time; ζ – dimensionless depth. 
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