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Abstract: In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems
of heat conduction were formulated and solved for a homogeneous semi-space (a brake disc) heated on its free surface by frictional heat
fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based
on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods.
The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribu-

tion in brake disc.
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1. INTRODUCTION

Frictional characteristics and wear in an disc-pad contact area
are changing significantly depending on the way of absorbed heat
energy by a braking system. In some cases the major part
of braking work is accomplished in the initial stage of braking,
in other cases work is more evenly distributed in time. Essential
influence on value and evolution of the temperature has the na-
ture of change with time the specific power of friction. Classifica-
tion of the time courses of specific power of friction during single
braking was proposed in monograph (Chichinadze, 1967). Table
5.3 on page 78 in this study contains eleven different functions,
which describe change of the specific power of friction with brak-
ing time. Analysis of the influence of the each time course on the
temperature were conducted based on, received by author solu-
tion to the one-dimensional thermal problem of friction for semi-
space. However, these solutions were found with simplifying
assumptions, which refer to interior points of the half-space on the
axis perpendicular to the outer surface. It was assumed that, the
temperature is proportional to the braking time and the tempera-
ture increments and also the average volumetric temperature are
equal. The studies reviews of accurate (without mentioned above
simplifications) solutions to the one-dimensional thermal problems
of friction are in monographs (Jewtuszenko et al., 2014, Kuciej,
2012). They demonstrate that the vast majority of the received
accurate solutions usually concern only two elementary cases
from the above mentioned table. In first of them, specific power
of friction in the braking process has constant value, in second it
decreases linearly from maximum value in the initial moment
to zero in the standstill. The second time course of specific power
of friction is realizable during braking with constant deceleration
and an immediate increase of pressure to nominal value in the
initial time moment. Influence of the time of the contact pressure
increase to nominal value on the temperature distribution was
investigated in the article (Topczewska, 2016).

In this study the following simplification was adopted: a brake
disc was replaced by homogeneous semi-space and the friction
process of contacting bodies was replaced by heating process on
outer surface by heat flux with given intensity (Evtushenko et al.,
2007, Matysiak et al., 2007, Yevtushenko et al., 2005-2007,
2009-2012, 2014). Assuming one-dimensional direction of heat
conduction is correct for high values of the Peclet number (for
high velocity of braking). Taking into account mentioned above
assumptions, analytical solutions to the one-dimensional thermal
problems of friction for three time courses of specific power of
friction (VI, VIII and XI positions in table 5.3 in monograph (Chi-
chinadze, 1967)) were determined analytically. They reflect brak-
ing modes until the vehicle standstill.

2. STATEMENT OF THE PROBLEM

A considered semi-space orientation is given relative to
a Cartesian frame of reference Oxyz with origin placed on the
free surface (z-axis is vertical to this plane). The half-space z = 0
is heated on its outer surface z =0 by heat flux with time-
dependent 0 <t <ty intensity q;(t) =qeqi(t),i=123
(Fig. 1). Intensity of heat fluxes is proportional to the specific
power of friction (Ling, 1973). Therefore, omitting constant propor-
tional factor, the so-called heat partition ratio, the following three
dimensionless time courses of friction power (Chichinadze, 1967):

G®=3(1-2), go=6:(1-1)

(1)
q§(t)=6<\/tz—t£>, 0<t<t,.

were considered.
Functions (1) are selected such that, the following braking
work density:
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w;(t) = fot qi(s)ds, 0 <t <t,i=123, (2)

in moment of standstill is constant and equal to w;(ts) = qots.
Graphs of dimensionless braking work density evolutions
wi (t) = w;(t)/(qots) were presented in Fig. 2.
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Fig. 1. The time courses of the dimensionless specific power of friction
q; (@), i=123(1)
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Fig. 2. The time courses of the total dimensionless braking work density
wi(t),i =123(2)

Distributions of the one-dimensional transient dimensionless
temperature fields T;" (¢, t), i = 1,2,3 in semi-space were found
from solution to the following boundary-value problem of heat
conduction, formulated in dimensionless form:

’TT ¢ _ 9T D)

T—T,(ZO,OSTSTS. (3)
aTi;(zf,T) =—-q;/(1),i=1230<1t<T1, (4)
T{({,1) > 0,{ > »0=<T1<T, (5)
T7(,0)=0,{ = 0, (6)
where

z kt kts doa * Ti—Ty

(=ot=a@ = l="0T ==7% (7)

a = ,/ 3kt is effective depth of the heat penetration inside brake
disc (Chichinadze, et al., 1979), T, is initial temperature, K, k are
thermal conductivity and thermal diffusivity, respectively.
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3. SOLUTION OF THE PROBLEM

Solutions to the boundary-value problem (3)-(6) were found
based on Duhamel's theorem (Ozisik,1993):

TG0 = [, () =TV r-5)ds, (200<1<7, (8)
where (Carslaw H. S. et al. 1959):
T*© (¢, 1) = 2+/Tierfc (2%),( >0,0<t<T,, 9)

is solution to the problem (3)—(6) with constant in time ¢q*(z) = 1
intensity of heat flux in boundary condition (4).

Taking into account value of the following derivative of the
complementary error function (Abramowitz M. et al. 1972):

%erfc(x) = —j—;e_xz, (10
the following partial derivative was counted:

2 [T =5 ferfe ()] = il (11)
ot s/ T Jmtos)

Substituting relation (9) and derivative (11) to the formula (8),
we received:

2
2, (=)

TH((,7) = 3[0’(1—:—5) Ty ds{z00stsT, (12

o\2] e @)
)]ﬁdS,(ZO,OSTSTsx (13)

T s se_(z_i—s)
Tg*(z,r)=6fo(\f N dscz00<T<T, (1)

Ts s

16 =6 = (

Ts

Above equations (12)-(14) were written as difference inte-
grals:

T (¢, t) =3[, 1) —1,(,1)],{=00<71 <14 (15)
;1) =6[L( 1) - L({1],{=00<Tt<T7, (16)
T3, 1) =6[l/,({, 1) - L({,D]{=0,0<T <1, (17)
where

G = ffe @) as, (18)
L(¢,1) = Tj/EfJ\/:TSe_(Z\’%)st, (19)

1,(¢,7) =;frie_(2¢%) ds (20)
260 =55 h 7 '

2

I — L [
UZ(ZJ)_EIO € 2/t-s) ds. (21)

Using substitution x = 1/+/7 — s, the integrals (18)—(21) were
designated:

166D = =120, (22)
L@ 1) = =L@ D) — L, D), (23)
LG = =1L 1) = 2Ly 6 0) + Le(, D), (24)
where
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Ly(1)=[1 e\ k=246 (25)
NG
Based on recurrence relation (Prudnikov et al., 1986):
e—(ax)2 e—(ax)2 242 e—(ax)2
f xn dxz_(n—l)x"‘l_n—l xn—2 dx, a >0,
n=2,3,.., (26)
and the following solution (Prudnikov et al., 1986):
L, (¢, 1) = V/mrierfc (2%), (27)
we achieved:
2
L,(,7) = {[1 - 2 2\/_) ]1erfc (2\/_) + 2%erfc (%)},
(28)
T 2 2
Le(¢,7) = —<{1 - —(%) [1 -2 (2%) ]}lerfc (2() +
g
+ ‘/_erfc( \/_) [1 -= F ]) (29)

Taking into account results (27)—(29) in equations (22)—(24),
we obtain:

1,(¢,7) = 2+/tierfc (%), (30)
L) = ﬂ{ [1 + (%) ]1erfc (2\/_) +Ferfc( )} (31)

L@ =25( Tl {[8 +18 (%) +4 (2%)4] ferfe () -
— F erfc (2\/_)} (32)

Subsequently integral (21) will be counted. Using the same
substitution x = 1/+/t — s , we have:

Im@ﬂ=ﬁgﬂmm (33)

where

_ 5 frmte@ra
J@D =[x Jx-7e W5 (34)

Integrating (34) by parts, we have:

]((r T) = %]1 ({' T) - %2]2 ({r T)' (35)
where
o (8 x ax
K@ = [7 e W, (36)
@) = [P Te O e (37)
NG X

Based on the following formula (Prudnikov et al., 1998):
fu de =u’T(v + DI'(—v,up),
u > 0,Rev > —1,Reu > 0, (38)

functions (36) and (37) were written in the forms:

K@ =vr(Hri;e), (39)
1260 =5 ()r (-3.5) (40)

Taking into account relation (Prudnikov et al., 1998):
F'(v+1,2z) =vl'(v,z) + z%e7%, (41)
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we receive:

r(-35) =29 () ere () “2)
In regard to the following (Prudnikov et al., 1998):

(@)= Q)= )= (D) @

and (42), we can write:

J1(¢,7) = mrerfe (%) (44)

160 =E () erte(). )
Using solutions (44) and (45), we write (35) in form:

160 =5 et () -2 (5 ere () “
Substituting above formula to equation (33), we receive:

Ly2(67) = '\F lerfe (;77) - Fierfe (;57)] - (47)

Having regard relations (30)-(32) and (47) we determine
searched temperature fields from (15)-(17):

T (¢, r)_zf( [8+18 f) +4(\{/_)4]1erfc(3_)

[7 + 2 2\/_)2] Ferfc (2\/_) + 3ierfc (2\/_) i: {2 [1 +

+ () Tierte () + zerte (Z)pe 2 0.0 v w (49)

) ;wmQA}

+4(2= )4] ierfe (= [7 +

Tz(zr>—4f< {2 [1+

) [ 0

( )]—erfc( ))(>OO<T<TS, (49)

;1) = 3T\E [erf (—) - —1erfc (zf/—)] - %{2 [1 +

( )]1erfc(i\/_)—i\/_ ( )}(>00<‘L’<1’S (50)
4. NUMERICAL ANALYSIS

Numerical analysis of the temperature distributions in a disc
(semi-space) during single braking, for three different time cours-
es of heat flux intensities, was conducted based on the found
analytical solutions (48)—(50). The dimensionless input parame-
ters used in calculations are: spatial coordinate ¢, time t and
braking time t5 = 1, which are defined by formulas (7). Accord-
ing to equations (1) and (2) total amount of thermal energy ab-
sorbed by the disc during braking for considered intensities
of heat flux is equal.

Evolutions of the dimensionless temperature on the friction
surface and selected depths C inside semi-space for three chang-
es with time of heat flux densities (Fig. 2), were shown in Fig. 3.
The temperature distribution for intensity of heat flux g (t), when
its value is the largest on the initial stage of braking and decreas-
es to zero with time, were presented in Fig. 3a. At the beginning of
the braking temperature T; on outer surface of semi-space
(T = 0) rapidly increases, to achieve maximum value Tj.x =
1.20 in time t/ts = 0.32, and then decreases until the end
of the process.
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Fig. 3. Evolutions of the dimensionless temperatures a) Ty, b) T, ¢) T3
on few distances ¢ from the friction surface

In the cases, when in initial stage of braking the heat flux in-
tensity increase reaching maximum value in 25% (t/ts = 0.25
for q3(t)) or 50% (t/ts = 0.5 for q3(t)), of total braking time,
reaching largest temperature value on the working surface also
gets longer, and equals to, t/ts = 0.75 for Typax = 1.17
(Fig. 3b) and t/ts = 0.6 for T5,.x = 1.09 (Fig. 3c), respective-
ly. In both cases after reaching maximum values, the temperature
of the surface decreases to the standstill. The dimensionless
temperature on the friction surface ¢ = 0 in the stop time moment
T/t = 1 is higher in the case heating disc by heat flux intensity
q5(t) (Fig. 3b) and q5(t) (Fig. 3c) compared with temperature
value in brake disc heated by flux with intensity q7 (t) (Fig. 3a). In
the all considered cases, increasing distance  from the frictional
surface (Fig. 3) the temperature value is getting lower and time to
reach maximum increases. The monotonically temperature in-
crease during the entire heating process with intensity q3(t) can
be observed (Fig. 3b) on the distance ¢ = 0.75, and with q; (t)
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and q%(t) (Fig. 3a, 3c) under the effective depth of the heat
penetration { > 1.

0
0 0.5 1 ¢ 15
Fig. 4. Distribution of the dimensionless temperatures a) Ty, b) T, ¢) T5
inside disc at few different dimensionless time moments t

The dimensionless temperature changes with depth  for dif-
ferent intensities of heat flux qj(t),i = 1,2,3 in selected time
moments T, are shown in Fig. 4. In the all cases, the temperature
monotonically decreases with increasing the distance { from
heated surface. In the considered distance range 0 < 7 < 1.5,
the largest gradients of the temperature inside the disc AT, =
1.15 (Fig. 4a), AT, = 1.05 (Fig. 4b) and AT; = 0.98 (Fig. 4c),
occurs in the moments of reaching maximum temperature values
on the friction surface ¢ = 0. The most uniform distributions of the
temperature in disc are in standstill moment t/ts = 1, tempera-
tures on the working surface have lower values T; = 0.68 (Fig.
4a), T, = 0.9 (Fig. 4b) and T; = 0.8 (Fig. 4c). Mentioned gradi-
ents reach minimum values AT; = 0.38 (Fig. 4a), AT, = 0.64
(Fig. 4b) and AT; = 0.54 (Fig. 4c) in the stop moment.
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5. CONCLUSIONS

Analytical solutions to the heat conduction problems for semi-
space heated on outer surface by heat flux with different time
courses of intensity were determined. Numerical analysis of evolu-
tion and spatial distribution of the dimensionless temperature
(along the distance from the friction surface) were carried out
based on obtained solutions. In results the following conclusions
were formulated:

— there is a strict relation between the time moment of reaching
maximum values of dimensionless temperature on the heated
surface and the time moment of maximum intensity occur-
rence of corresponding heat flux. In the considered cases, ex-
treme temperature value is reached ca. 30% of braking time
later than maximum of the heat flux intensity time function;

— maximum values of dimensional temperature on the friction
surface of the disc, in all cases are similar. The largest differ-
ence between them is only 9% of this value. While, in these
cases, maximum values of the friction power differ twofold;

— gradients of the dimensionless temperature inside the disc are
the lowest in the standstill z/z; = 1. The most intense cooling
of the outer surface after reached maximum temperature, oc-
curs in the first case q;(t), while the temperature achieve the
largest maximum values.

Nomenclature: a - effective depth of heat penetration [m]; erf(x) —
Gauss error function; erfc(x) = 1 — erf(x) — complementary error
function;  ierfc(x) = m~1/2 exp(—x2) —xerfc(x) - integral
of complementary error function; K - thermal conductivity [W K-1 m-1];
k — thermal diffusivity [m2 s-1]; q - intensity of the heat flux [W m-2];
T - temperature [K]; T* — dimensionless temperature; T, - initial tem-
perature [K]; T, —temperature scaling factor [K]; t — time [s]; ts— braking
time [s]; w — braking work density [W m-2 s-1];, w* — dimensionless
braking work density; xyz — spatial coordinates [m]; I'(v,z) — gamma
function; T — dimensionless time (Fourier number); T — dimensionless
braking time; ¢ — dimensionless depth.

REFERENCES

1. Abramowitz M., Stegun L.A. (1972), Handbook of Mathematical
Functions with Formulas, Graphs, and Tables, National Bureau of
Standards, Washington.

2. Carlslaw H.S., Jaeger J. C. (1959), Conduction of Heat in Solids,
2nd ed.Clarendon Press, Oxford.

3. Chichinadze A.V. (1967), Estimation and investigation of external
friction during braking, Nauka, Moscow. — 231 p. (in Russian).

4. Chichinadze A.V., Braun E.D., Ginsburg A.G., Ignat'eva Z.\V.
(1979), Calculation, Test and Selection of Frictional Couples, Nauka,
Moscow (in Russian).

5. Evtushenko A., Kutsei, M. (2007), Non-stationary frictional heat
problem for plane-parallel layer—half-space system, Journal of
Friction and Wear, 28(3), 246-259.

acta mechanica et automatica, vol.11 no.2 (2017)

6. Jewtuszenko O. (red) (2014), Analytical and numerical modelling of
process of transient heat generation in friction components of brake
systems, Publisher of Technical University of Bialystok, Bialystok (in
Polish).

7. Kuciej M. (2012), Analytical models of transient frictional heating,

Publisher of Technical University of Bialystok, Bialystok (in Polish).

Ling F.F. (1973), Surface Mechanics, Wiley, New York.

Matysiak S., Evtushenko 0., Kuciej M. (2007), Temperature field in

the process of braking of a massive body with composite coating,

Materials Science, 43(1), 62-69.

10. Ozisik M.N. (1993), Heat conduction, 2nd Ed. Wiley: New York.

11. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. (1986), Integrals
and Series. Vol. 1: Elementary Functions, Gordon and Breach: New
York.

12. Prudnikov A.P., Brychkov Yu.A., Marichev O. I. (1998), Integrals
and Series. Vol. 2: Special Functions, New York-London: Taylor &
Francis.

13. Topczewska K. (2016), Temperature distribution in a brake disc with
variable contact pressure, Technical Issues, 1, 90-95.

14. Yevtushenko A. A., Kuciej M., Rézniakowska M. (2005), Thermal
cleavage stresses in a piecewise homogeneous plate, Materials
Science, 41 (5) 581-588.

15. Yevtushenko A.A., Kuciej M. (2006), Initiating of thermal cracking
of materials by frictional heating, J. Friction and Wear, 27(2) 9-16.

16. Yevtushenko A.A., Kuciej M. (2009), Influence of convective
cooling on the temperature in a frictionally heated strip and
foundation, International Communications in Heat and Mass
Transfer, 36(2), 129-136.

17. Yevtushenko A.A., Kuciej M. (2010), Two heat conduction
problems with frictional heating during braking, J. Theor. Appl. Mech.,
48(2), 367-380.

18. Yevtushenko A.A., Kuciej M., Yevtushenko 0.0. (2011),
Temperature and thermal stresses in material of pad during braking,
Arch. Appl. Mech., 81(6), 715-726.

19. Yevtushenko A.A., Kuciej M. (2012), One-dimensional thermal
problem of friction during braking: The history of development and
actual state, International Journal of Heat and Mass Transfer, 55(15),
4148-4153.

20. Yevtushenko A.A., Kuciej M., Yevtushenko O. (2014), The
asymptotic solutions of heat problem of friction for a three-element
tribosystem with generalized boundary conditions on the surface
of sliding, International Journal of Heat and Mass Transfer, 70,
128-136.

21. Yevtushenko A.A., Rozniakowska M., Kuciej M. (2007a),
Transient temperature processes in composite strip and
homogeneous foundation, International Communications in Heat and
Mass Transfer, 34(9), 1108-1118.

22. Yevtushenko A.A., Rozniakowska M., Kuciej M. (2007b), Laser-
induced thermal splitting in homogeneous body with coating.
Numerical Heat Transfer, Part A: Applications, 52(4), 357-375.

© ©

This work is part of the project no. MB/WM/18/2017 which is carried out in
the Faculty of Mechanical Engineering, Bialystok University
of Technology.

15



