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Abstract: The paper presents an analysis of the state of stress and crack tip opening displacement (strain) in specimens with rectangular
cross-section subjected to torsion and combined bending with torsion. The specimens were made of the EN AW-2017A aluminium alloy.
The specimens had an external unilateral notch, which was 2 mm deep and its radius was 22.5 mm. The tests were performed at constant
moment amplitude M; = Mg;= 15.84 N-m and under stress ratio R= -1. The exemplary results of numerical computations being obtained
by using the FRANC3D software were shown in the form of stress and crack tip opening displacement (CTOD) maps. The paper presents
the differences of fatigue cracks growth under torsion and bending with torsion being derived by using the FRANC3D software.

Keywords: Numerical Method, Fatigue Crack Growth, Torsion and Bending with Torsion

1. INTRODUCTION

Extremely fast development of technology causes that the cur-
rent numerical methods often replace analytical methods and they
reinforce the analysis of experimental research studies. The dis-
advantages associated with experimental tests are their time-
consumption and costs for performing them. Nowadays, basic
numerical methods being commonly used in engineering calcula-
tions are the finite element method (FEM) (Zienkiewicz and Tay-
lor, 2000; Kleiber, 1995; Szusta and Seweryn, 2010) and the
boundary element method (BEM) (Becker, 1992). Those methods
allow achieving fast and relatively accurate solutions to many
issues in the design of machines, which would be exceptionally
difficult or even impossible when using analytical methods
(Rusinski, 2002). Today, many large and medium-sized enterpris-
es could not imagine starting production of a new product, before
it undergoes positive verification by using numerical methods.
These methods allow for modeling the maps of stress, displace-
ment and strain in accordance with the analytical solution in terms
of both, the linear and non-linear range. Moreover, they allow for
calculation of many others parameters required by the user, such
as: the stress intensity factor, the crack tip opening displacement
or the J-integral (Rozumek and Macha, 2006; Déring et al., 2006).
Using the numerical methods, it should be kept in mind that it is
recommended to compare the obtained results with analytical
calculations or experimental research carried out in the field,
as far as it is possible. It should be considered that the results
of numerical calculations describing the behavior of the complex
model will be presented in an approximate manner. Moreover,
it should be also note that these results are subject to a certain
error. One method for solving such complex models is their trans-
formation into several simplified models. The main purpose of the
finite element method is to divide the continuous geometric model
into finite elements being combined into the so-called nodes,

the result of which is the development of discrete geometric mod-
el. Boundary element method employs the fundamental solution
(differential equations). Approximation takes place explicity on the
edge of the tested area of the body without any interference in the
internal area. Finite (boundary) elements are interrelated in nodes,
and this ensures the system parameters’ continuity (Rozumek
and Macha, 2006). The research paper (Derpenski and Seweryn,
2007) presents the results of numerical analysis of stress field
and strain under tensile in notch type specimens. The specimens
were made of the EN 2024 aluminum alloy. Moreover, the stress
criterion of specimens cracks emanating from notched, consider-
ing the maximum values of plastic shear strain. The authors of the
research paper (Duchaczek and Marko, 2012) proposed methods
for determining value of the stress intensity factor by using the
FRANC2D software. The research work (Seweryn, 2002) indi-
cates the accuracy of calculation of the stress intensity factor and
the way in which the stress values near the crack tip are being
changed.

The aim of the paper is the analysis of the state of stress
and the crack tip opening displacement (strain) at the bottom
of the notch, as well as presenting the changes in fatigue cracks
growth behaviour under torsion and bending with torsion in spec-
imens with rectangular cross-section.

2. SUBJECT OFSTUDY

Specimens with rectangular cross-section and gross dimen-
sion 8x10 mm were the subject of numerical computations
(Fig. 1). The specimens were made of the EN AW-2017A (PAG)
aluminium alloy with mechanical properties shown in Tab. 1.

The specimens had an external unilateral notch, which was a,,
= 2 mm deep and its radius was o = 22.5 mm. The theoretical
stress concentration factor in the specimen was estimated accord-
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ing to the equation provided in the research work (Thum et al.,
1960), which under bending was K, = 1.04.
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Fig. 1. Shape and dimensions of specimens for fatigue crack growth
tests, dimensions in mm

Tab. 1. Mechanical properties of the EN AW-2017A aluminium alloy
o, (MPa) o, (MPa) E (GPa) V()
382 480 72 0.32

Alloys of aluminium with copper and magnesium -that is du-
ralumin- belong to alloys characterised by supreme strength
properties. Chemical composition of the tested EN AW-2017A
aluminium alloy shown in Table 2 (Rozumek and Macha, 2009).
The longitudinal microsection shown in Fig. 2 indicate structures
heavily dominated by elongated grains of the solid solution
aof various sizes and at width of approx. 50 ym. Between large
elongated grains clusters of very small equiaxed a phase grains in
the system band are visible, as well. On the base of solid solution
a, numerous precipitation of intermetallic phases, particularly
Al2Cu, as well as Mg.Si and AICuMg are seen. Precipitations
of the Al2Cu phase occur mainly in the chain system on grain
boundaries of the solid solution, and their size does not exceed 5
um (Rozumek et al., 2015).
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Fig. 2. Microstructure of the EN AW-2017A aluminium alloy,
magnification 500x

Tab. 2. Chemical composition of the tested EN AW-2017A alloy (wt%)

Cu-4.15% | Mn-0.65% | Zn-0.50% | Mg-0.69% | Fe-0.70%
Cr-0.10% | Si-0.45% | Ti-0.20% | Al-Balance

Numerical computations were carried out under torsion and
proportional bending with torsion. Proportional bending with tor-
sion was obtained through the ratio of torsional and bending
moments, which amounted to M/ Mg=tana=1.The computa-
tions were performed at constant moment amplitude M, = Mg,=
15.84 N-m. The tests were performed at load frequency 28.4 Hz
and stress ratio R = -1.

3. NUMERICAL COMPUTATIONS OF STATE OF STRESS
AND CRACK TIP OPENING DISPLACEMENT

3.1. Description of the softwarefor numerical computations
(FRANC3D)

The state of stress and crack tip opening displacement (strain)
in the examined specimens was analysed with boundary element
method with the FRANC3D software (www.cfg.cornell.edu/softwa-
re/software.htm). Geometric model of the specimen was per-
formed using the OSM software application. The work in the OSM
application began with modeling specimens by introducing coordi-
nates of points forming a flat figure with a notch. The next step
was to transform the flat outline of the specimen into 3D object.
Then, the work in the FRANC3D software was started with intro-
duction of operating range (linear-elastic, elastic-plastic) and
material data. After entering the above data, the required speci-
mens surfaces needed to be confirmed. For the presented exam-
ple of numerical computations, the specimens is fixed by one end
(taking away the numbers of degrees of freedom of nodes) (Fig.
3). The next step is to determine the method and load value of the
specimens. The specimens was subjected under torsion (Fig. 3a)
and bending with torsion (Fig. 3b) in accordance with the direc-
tions of the x, y and z axes.
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Fig. 3. The geometry of the specimen model with selected method
of support and load for: a) torsion, b) bending with torsion

Bearing defined restrain and load, the boundary element
mesh formation can be started. The size and shape of boundary
elements depends on the division of section closing a given area
(Faszynka and Rozumek, 2014). Fig. 4 shows networks of bound-
ary elements for spatial model, consisting of 1209 triangular ele-
ments.
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Fig. 4. Division into boundary elements of a specimen model
around the bottom of the notch

First numerical computations of the state of stress without
crack were performed on such a model of specimen. Furthermore,
the next step of computations is the numerical analysis of stress
and CTOD being performed around the crack tip opening dis-
placement. In the calculation model, torsion crack were initiated
in the form of the arc at the bottom of the notch with initial length
of 0.1 mm on a side surface, and 0.1 mm on the upper surface.
At the time of bending with torsion, the crack was initiated in the
form of the arc of 0.1 mm length on the side surface, and of 0.3
mm on the upper surface. Introduced points were connected with
curve in such a way that they anabled forming an edge of the
crack. At the first steps of the crack growth, the FRANC3D soft-
ware will form a surface of quarter-elliptic edge crack in the bot-
tom of the notch, as shown in Fig. 5. Then, the crack goes across
the specimen (various length of the crack at front and edge of the
specimen), as shown in Fig. 6.

Fig. 5. Plane of quarter-elliptic crack at the edge of the notch:
a) torsion, b) bending with torsion
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Fig. 6. Plane of through crack with division into boundary elements under:
a) torsion, b) bending with torsion

The obtained plane of cracks should be divided into boundary
elements. The method of division and the way in which the
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boundary element mesh is made at the place of crack initiation
are the same as at the time, when the mesh was generated for
the whole model. The next step is to perform numerical computa-
tions. For further recalculations on the crack growth, numerical
values of crack growth and the total length of the crack were
introduced. After the crack growth is being accepted, the program
automatically enlarges the crack by a predetermined value (the
program itself will set the path of crack growth according to the
given load). In order to perform numerical analysis of crack
growth, new planes should be further divided into smaller surface
and a mesh of boundary elements should be developed. The
process of distribution of new plane into smaller surfaces should
be repeated as long as the desired length of the crack will be
obtained or as the complete destruction of the test specimen will
be reached (Faszynka and Rozumek, 2014).

3.2. The results of numerical computations

The results of numerical computations were presented in the
form of maps of stress and crack tip opening displacement
(CTOD) for spatial model of the specimen. Fig. 7 shows a speci-
men model without crack.
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Fig. 7. Distribution of stresses in the specimen model (according to
Huber-Mises) under: a) torsion, b) bending with torsion
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Figs. 8+11 present a model of the specimen with quarter-
elliptic edge crack. While in Figs. 12+15 a model of the specimen
with a through the thickness crack. Computations were made
for a specimen model under torsion (Fig. 3a) and proportional
bending with torsion (Fig. 3b). The exemplary results of the nu-
merical computations for the specimen model without crack are
shown in Fig. 7a (torsion) and in Fig. 7b (bending with torsion)
as stress maps. Numerical computations on the crack growth
were performed by employing the incremental method for crack
lengths, corresponding to the cracks obtained during experimental
tests (Faszynka et al., 2015). A non-uniform fatigue cracks growth
on both lateral surfaces of specimens (active side and passive
side) was observed during experimental tests under torsion and
bending with torsion. The development of fatigue cracks in the
specimens was performed in two stages: at first, the quarter-
elliptic edge cracks were observed and then they were transform-
ing into the through the thickness crack. Fig. 8 shows the stress
distribution in the model of the specimen (according to Huber-
Mises Hypothesis) for load M, = 15.84 N-m (R=-1) under torsion,
with a quarter-elliptic edge crack and the length of a = 2.00 mm
(lateral side of the specimen) and ¢ = 2.20 mm depth (at the notch
root).

a) ¥

MPa XQ

Fig. 8. Distribution of stresses in the specimen model (according to
Huber-Mises) for quarter-elliptic edge crack length of @ = 2.00 mm
and depth of ¢ = 2.20 mm under torsion: a) active side,

b) passive side
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Fig. 9. Crack tip opening displacement maps for a quarter-elliptic edge
crack length of a = 2.00 mm and depth of c= 2.20 mm (active side)
under torsion

MPa XZ>\

Fig. 10. Distribution of stresses in the specimen model (according to
Huber-Mises) for quarter-elliptic edge crack length
of @ =2.50 mm and depth of ¢ = 2.80 mm under bending
with torsion: a) active side, b) passive side
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Fig. 9 presents the crack tip opening displacement (CTOD)
atload M = 15.84 N-m (R = -1) under torsion, with a quarter-
elliptic edge crack with the length of a = 2.00 mm (lateral side
of the specimen) and ¢ = 2.20 mm depth (at the notch root).

Fig. 10 indicates distribution of stresses in the specimen
model (according to Huber-Mises) for the load Mg, = 15.84 N-m
(R = -1) under bending with torsion, with a quarter-elliptic edge
crack length of a = 2.50 mm and depth of ¢ = 2.80 mm. Fig. 8 and
10 ensure that the highest value of stress are at the notch root
than on the lateral side of the specimen (h peak values, Fig. 3).
By comparing the Figs. 8 and 10 it can be noted that greater
stress values in crack tip opening occur for bending with torsion
than for torsion. Fig. 11 presents CTOD maps for the load Mg, =
15.84 N-m (R = -1) under bending with torsion, for a quarter-
elliptic edge crack length of @ = 2.50 mm and depth of ¢ = 2.80
mm. During comparison of Figs. 9 and 11, the greater CTOD
values for bending with torsion rather than for torsion were
observed.
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Fig. 11. Crack tip opening displacement maps for a quarter-elliptic edge
crack length of a = 2.50 mm and depth of ¢=2.80 mm under
bending with torsion: a) active side, b) passive side

Figs. 12+15 represent exemplary results of numerical
computations for the specimen model with the through the
thickness crack. Measurement of the crack length was carried out
on both sides of specimens. On the active side (Fig. 12a) the
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cracks were a greater than on the passive side (Fig. 12b). Larger
crack length on the active side causes reduction of cross-section
of the specimen without crack, which leads to stress increase.
For calculations purposes, the greater lengths of cracks are
assumed simple because they obtain the greatest stress values
and have major impact on the specimen failure. On the active
side, the crack lengths were marked with the letter "a", and on the
passive side with the letter "a*". Fig. 12 indicate distribution
of stresses in the specimen model (according to Huber-Mises)
forthe load M; = 15.84 N-m (R = -1) under torsion, with the
through the thickness crack length of a = 8.00 mm (active side
of the specimen) and the length of a* = 2.50 mm (passive side
of the specimen).
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Fig. 12. Distribution of stresses in the specimen model (according to
Huber-Mises) for through crack length of a = 8.00 mm
and the length of a* = 2.50 mm under torsion: a) active side,
b) passive side

Fig. 13 presents crack tip opening displacement maps for the
load M; = 15.84 N-m (R = -1) under torsion, with through
the thickness crack length of @ = 8.00 mm and the length of a*=
2.50 mm.

Fig. 14 shows distribution of stresses in the specimen model
(according to Huber-Mises) for the load MBT = 15.84 N-m (R =-1)
under bending with torsion, with through the thickness crack
length of @ = 6.10 mm and the length of a*= 2.60 mm. Comparing
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Figs. 12 and 14, the various lengths of cracks at both sides of the
specimen can be distinguished under torsion and under bending
with torsion. Despite the My to My ratio being applied during the
research tests, differences in length of crack growth on the active
and passive side of the specimen could be always observed.
By comparing Figs. 12 and 14 could be easily seen that greater
stress in crack tip opening displacement are observed for torsion
rather than for bending with torsion. Comparison of Figs. 8 and 12
with Figs. 10 and 14 shows that longer cracks indicate higher
stress values.

Fig. 15 presents crack tip opening displacement maps for the
load Mg, = 15.84 N-m (R = -1) under bending with torsion, for
through the thickness crack length of a = 6.10 mm and the length
of a*=2.60 mm. Crack tip opening displacement for the quarter-
elliptic edge cracks and the through the thickness cracks
is greater under bending with torsion than under torsion.
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Fig. 13. Crack tip opening displacement maps for through the thickness
crack length of a = 8.00 mm and the length of a*=2.50 mm
under torsion: a) active side, b) passive side
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Fig. 14. Distribution of stresses in the specimen model (according to
Huber-Mises) for through the thickness crack length of a = 6.10
mm and the length of a* = 2.60 mm under bending with torsion:
a) active side, b) passive side

During numerical computations, the observed track of crack
growth (the quarter-elliptic edge and the through the thickness
crack) under torsion and under bending with torsion was at the
same direction as during experimental tests (Zappalorto et al.,
2011; Brighenti et al., 2012). To illustrate it, the nominal stress
values obtained by using the BEM method (numerical calcula-
tions) were compared to these values received from analytical
calculations (Susmel and Taylor, 2007). The stress values for the
active length quarter-elliptic edge cracks a = 2.00 mm (for torsion)
and a = 2.50 mm (for bending with torsion) were z,,= 175.7 MPa
(for torsion) when using BEM method, and z,, = 162.1 MPa when
applying the analytical method. The stress values for bending with
torsion were o;,= 242.7 MPa when using BEM method, and o;,=
266.6 MPa when applying the analytical method. By comparing
both methods of computation for the presented example, it was
marked that the relative error does not exceed 10%. Superiority
of the BEM method over the analytical method is derived from the
ability to obtain stress distribution near the crack tip opening
displacement.
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