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Abstract: One-dimensional heat conduction problem of friction for two bodies (half spaces) made of thermosensitive materials was consid-
ered. Solution to the nonlinear boundary-value heat conduction problem was obtained in three stages. At the first stage a partial linearization
of the problem was performed by using Kirchhoff transform. Next, the obtained boundary-values problem by using the method of lines was
brought to a system of nonlinear ordinary differential equations, relatively to Kirchhoff's function values in the nodes of the grid on the spatial
variable, where time is an independent variable. At the third stage, by using the Adams's method from DIFSUB package, a numerical solution
was found to the above-mentioned differential equations. A comparative analysis was conducted (Och, 2014) using the results obtained with

the proposed method and the method of successive approximations.
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1. INTRODUCTION

Almost all elements of machine that work together are accom-
panied by the friction processes. Influenced by the friction forces,
on the contact surfaces of the body, the heat is generated, which -
as the heat fluxes — penetrates the elements of the system and
heats them up. The temperature increase may lead to changes in
physical and chemical properties of friction materials, friction coef-
ficients and termomechanical wear, etc. (Chichinadze et al., 1979;
Rhee et al., 1991; Kalin, 2004).

One of the methods to estimate the distribution of transient tem-
perature fields in elements of heavily loaded nodes of friction is the
use of analytical models, where the real friction elements (pad, disk)
are replaced by half-limited (half space) or limited (layer) bodies
(Nosko et al., 2009; Kuciej, 2012; Yevtushenko and Kuciej, 2012).
Most of the models were developed basing on the solution to linear
boundary-values problems of heat conduction, where changes in
sliding velocity and pressure with time; inhomogeneity of friction
materials; or different types of boundary conditions on the friction
surface and on the free surfaces of elements were all taken into
account (Sazonov, 2008; Belyakov and Nosko, 2010; Yevtushenko
etal., 2013). But at the same time, the above solutions do not take
into account the changes (caused by the increase of temperature)
in coefficients of friction and wear, and thermal properties of mate-
rials.

Dependency of coefficients of friction and wear on the temper-
ature were considered when the one-dimensional nonlinear fric-
tional heating models were developed in articles (Olesiak et al.,
1997; Evtushenko and Pirev, 1999) and monographs (Pyr'yev,
2004; Awrejcewicz and Pyr'yev, 2009).

Models that take into account the change of the thermal-physi-
cal properties of friction materials along with increasing tempera-
ture were proposed for the materials with a so-called simple thermal
nonlinearity in articles (Och, 2013, Yevtushenko et al., 20144, b),
and for the materials with an arbitrary nonlinearity - in articles (Och,
2014; Yevtushenko et al., 2014c, 2015). Solutions to the respective
thermal problems of friction were obtained by using the iterative

methods (Kushnir, Popowych, 2011).

The main purpose of this paper is to show the effectiveness of
the methods of lines in solving nonlinear boundary-value problems
of heat conduction, with the heat generation due to friction taken
into account.

2. STATEMENT OF THE PROBLEM

Let two thermally sensitive half spaces be pressed at infinity by
constant pressure p, along the axis z (Fig. 1). At the time [ = 0,
taken as the initial, bodies begin to slide relatively to each other at
a constant speed V;, in the direction of the y axis in accordance
with a Cartesian coordinate system Oxyz. The initial temperature
of the bodies is the same and equal to T,. On the contact surface,
under the influence of friction forces, the heat is generated, which
in the form of heat fluxes penetrates each bodies in such a way that
their sum is equal to the specific power of friction q, = fVypo
(Yevtushenko and Kuciej, 2012). Thermal contact of considered
bodies is imperfect, i.e. through the friction surface the heat flow
takes place at a constant value of the thermal conductivity
of contact coefficient. We assume the Podstrigach's condition
of imperfect thermal contact, which take into account the thermal
resistance of a thin layer between bodies at friction (Podstrigach,
1963). Reviews of researches into imperfect frictional thermal
contact are given in the papers (Nosko et al., 2009, Belyakov
and Nosko, 2010; Kuciej, 2012).

Further, all values referring to the upper and lower half spaces
will respectively have subscripts 1 and 2.

We assume that the coefficients of thermal conductivity
K; and heat capacity c; of the bodies material depend on the
temperature K;, I = 1,2:

K\(T) = Ko K[ (T), K5 = K(Tp),
c(T) = ¢ ¢ (T), crp = ;(Ty),

and their density p,, I = 1, 2 is constant.

(1)
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Fig. 1. The scheme of frictional heating

Taking into account the above-mentioned assumptions, in or-
der to find the temperature of the sliding bodies, we have the fol-
lowing nonlinear boundary-values heat conduction problem
(Och, 2014):

%t} 1 T

o maap e 000 T>0 @)
%13 1 ar
o k() ot ¢<0 >0 ®)
aTy T
KIH= —K KIS =10 @
¢ fe=0" % M=ot
2\2) =7 o f1li1) 7~ =
% o0~ % ot (5)
= Bi[T;(0",7) —T,(07,1)], T>0
T} 1) = Ty, |7 > o, 1 =12 (6)
T)(§0) =To, 3 < oo, 1 =12 (7)
where:
_Z _ kapt « _ Kio x _ prx P2C20
‘= a’ = az’ KO B K20’ ko B KO P1C1,0 (8)
i =he p 0@ px _To opx _ T
Bi = Kz,o’Ta - Kz,o'To - Ta’Tl T T, (9)
« o _ KITD)
ki (T)) =—>1=12 10
(T ST (10)

where: a - is the effective depth of the heat penetration
(Chichinadze et al., 1979).

3. KIRCHHOFF TRANSFORMATION

We introduce the Kirchhoff's functions ©,(C,t) (Kirchhoff,
1894):
0.Q ) =y K (T dTy, 1=1,2 (1)

As a result, we obtained a partially linearized boundary-value
problems in relation to the functions ©, (¢, t):

%0, 1 40,
a2 kY kI(TY ot

{>0, T>0 (12)

%0, 1 90,
a2 T ky(Ty) ot

<0, t>0 (13)
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992 — KL =1,t>0 14
L (R ()
00, 290 = Bi[Ty(0,7) = T5(0,T)], T > 0
at =0 ag 7=0

(15)
0’@D -0, g >w, 20, 1=12 (16)
0(2,0)=0, [{ <o, 1=12 )
where:
ki (T%) = K (T™) /e (T™), 1 = 1,2 (18)

Solution to partially linearized boundary-values problem
(12)-(17) we obtain by using the methods of lines (Hall, Watt,
1976).

4. METHOD OF LINES

We choose layer in each half spaces 0 < |{| < §,, 1 =1,2
in such away that |¢| = &; boundary condition can be fulfilled (16).
Let us divide compartments [0,8;], [ = 1,2 into n; € N parts
with the points:

Q)= (—DHYjAG,AG = 8 /n,j = 0,1,...,n;,1 = 1,2 (19)

On the grid (19) we introduce central finite-difference
approximations of partial derivatives (Ozisik, 2000):

901(¢1) _ 01,j+1(1)=0;j-1(7) (20)
. 247,

8%20,({1) _ 01,j+1(1)=20,,j(D)+01,j-1(7) 21)
032 agpn?

where: Gl,j(T) = @l,j@l,jr)’ T= 0,] = 0,1, .. .,nl,l = 1,2
Taking into account the formulas (19)—(21), the boundary-value
problem (12)-(17) can be written in the form:

01,j4+1(T)=204 j(1)+04 j_1(T) _ 1 doq j(1)

(421)? kg k;lj(r) dar '’ (22)
j=01,...,n4,
02,j+1(1)=207 j(1)+07 j_1(T) _ 1 a0, (1)

(482)2 k@ dr (23)
j = 0,1,...,7’12,
021(0)—02-1(1) K; 01,1(M—01,-1(1) _ 1 (24)

247, 24,
0,1(1) — 0, _4(7) T K 011(t) — 0;,_1(7) (25)
240, 0 244,
= Bi [T{(7) — T30 (7)]

Ony+1(T) = Opny1 (1) = 0,1 = 1,2 (26)
0,;(00=0,7=01,...,n,1 =12 (27)
where:
;) =TG5 D), ki i (D) = k[T (0]
t>0j=01,...,n (28)

From the boundary conditions (24) and (25) on the contact
surface ¢ = 0 we find:
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0,-1(1) =0, (D) + (D g (1), T20,1=12 (29

91(7) = {1 = Bi[Ty (1) — T,0(D)}44: /Ky (30)
92(0) = {1 + Bi[T1,0(7) — T20() 1344, (31)
By introducing functions:
_ kpk; (D) k(@
Arj(®) = 55 A2 (D) = =3 (32)

and taking into account the relations (26), (29)—(31), Cauchy
problem for a system of ordinary differential equations (22)-(27) we
write in the form:
d T —

2L = A1o(D)[2011(1) = 201,4(7) + (—1) g, (1)]
>0 (33)

doy (1)

—ar = ALj([0j41(7) —20,;(7) + 6,1 (7)] (34)
>0 j=12,....ny—1

don 1 ()]
dat

0,/(0)=0,j=01,...,n=n+n, +2,[=12  (36)

= Ay (D[2015,-1(1) = 201, (D], >0 (39)

Integration of the problem (33)—(36) is carried out by using the
Adams’s method. The method was carried out in DIFSUB
procedure written in FORTRAN (Gear, 1971). This procedure
is used to perform one step of the independent variable 7, and
therefore the numerical integration of the initial value problem (33)-
(36) at a predetermined time interval requires a multiple “call” of this
procedure. The detailed information about the package DIFSUB
are contained in the monograph (Krupowicz, 1986).

As a result of solving the initial problem (33)—(36), the values
0, (1) of Kirchhoff's function (11) were found in the nodes of the
grid (19) at a specific point of dimensionless time . In order to
make the transition from Kirchhoff;s function to respective values
T, ; (t) of dimensionless temperature, we must define the functions
K (T) and ¢/ (T7), I = 1,2 in the formulas (1). We assume they
have the polynomial form:

K[ (1Y) = Znko @n(T)" ¢ (T7) = Tyly bun ()"

=12 (37)
with known coefficients a; ,, and b;,, (Yune, Bryant 1989). Then,
with regard to equations (11) and (37), the relationship between the

dimensionless temperature and the Kirchhoff's function will be also
polynomial (Och, 2014):

T55(T) = Tnlo cunl@;(DI% T2 0,/ =01,...,1
=12 (38)
We also note that at the constant thermal properties of the materials

(K[ (T*)=c/ (T™) = 1) from the formula (11) it follows the linear
relationship between temperature and the Kirchhoff function:

TGO =T +0;(G0) g <o =12 (39)
5. NUMERICAL ANALYSIS

Calculations have been performed for the same materials of the
friction pair (aluminium AL MMC - metal-cermic FMC-845) and
at the same input parameters as in article (Och, 2014), in which
analytical-numerical solution of boundary-values problem (2)—(7)

acta mechanica et automatica, vol.9 no.1 (2015)

was found by method of successive approximations. Thermophys-
ical properties of materials at initial temperature T, = 20°C are
given in Tab. 1, and the values of the coefficients (a; ,, by n, €1 )
in the formulas (37)-(39) —in Tab. 2, in the above-mentioned paper.
Dimensionless thickness of the layers were the same and equal
6, =6, = 8, =5, the numbers of compartments breakdown
of each layer were the same, too: n; = n, = n,. Thus, the initial
problem (33)—(36) with a number of equations n = 2n, + 2 was
solved by the procedure DIFSUB.

T*,
0.6

"FMC-845

0.28

4 6 8 1012 14 16 18 20 22 2426 n 3
Fig. 2. Dependence of dimensionless temperature T;, 1 = 1,2
on the contact surface { = 0 on parameter n, at t = 2

The convergence of the calculation process of dimensionless
temperature on the friction surface depending on the parameter
n inversely related to the dimensionless length of the step grid
Al = AT, = 84/ny, is shown in Fig. 2. For a given relative ac-
curacy of the calculations EPS = 107¢, the temperatures of both
materials are almost unchanged at n = 20. The thermal conduc-
tivity of metal-ceramic FMC-845 is less than the conductivity of the
aluminum matrix composite AL MMC (Och, 2014). As the result, the
temperature of the friction surface of the metal-ceramics is higher
than the temperature on the surface of the composite.

0.65-
T* N
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0251 /
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0.15+
0.1

0 0.4 0.8 1.2 1.6 T 2

Fig. 3. Evolutions of dimensionless temperature T;",1 = 1,2 on the
contact surface { = 0, obtained by using the method of lines
(solid lines), and by using the method of successive
approximations (Och, 2014, dashed lines).
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Evolutions of dimensionless temperature on the contact surface
during sliding at a constant speed for the considered friction pair,
are presented in Fig. 3. In this figure solid lines shows the results
of calculations obtained by method of lines, using the procedure
DIFFSUB, while the dashed lines presents the results of calcula-
tions obtained by successive approximations and presented in the
article (Och, 2014). We may see that the dimensionless tempera-
ture curves calculated for aluminum matrix composite AL MMC by
using both methods are practically the same. For metal-ceramic
FMC-845 from about half of the heating time the slight difference
between the respective curves is noticeable.

Isotherm of friction elements AL MMC and FMC-845 in the co-
ordinate system {t are presented in Fig. 4. With the beginning
of sliding temperature in any cross-section relative to the ¢ in-
creases. Maximum temperatures are reached at the surfaces of the
friction elements at { = 0 and the temperature of both bodies de-
creases with increasing distance from this surface. High thermal
conductivity of AL MMC and substantially smaller of FMC-845
causes that the effective depth of heat penetration of aluminium
composite is two times greater than the metal-ceramic.

When using iterative methods to solve nonlinear thermal prob-
lems of friction at the initial "zero" step, we must have a solution
(preferably the analytical one) to the corresponding linear problems
(Yevtushenko et al., 2015). The methodology proposed in this pa-
per proves to be effective when it is difficult or even impossible to
obtain such analytical solutions of linear problems. For example
there is a change of the specific power of friction in time in the form
q(t) = qoq"(t), when q*(t) = 1 + sin(wt),t = 0, where
for w = 0 we obtain the problem considered above. Change with
time of friction elements temperature at constant (w = 0) and os-
cillating (w = 50) (Kuciej, 2011) specific power of friction is pre-
sented in Fig. 5.

4.62 T

Gl

Fig. 4. Spatial and temporal distribution of dimensionless temperature
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Fig. 5. Evolution of dimensionless temperature T}", 1 = 1,2 on the
contact surface { = 0 atw = 0 (solid lines) and w = 50
(dashed lines)

When using iterative methods to solve nonlinear thermal prob-
lems of friction at the initial "zero" step, we must have a solution
(preferably the analytical one) to the corresponding linear problems
(Yevtushenko et al., 2015). The methodology proposed in this pa-
per proves to be effective when it is difficult or even impossible to
obtain such analytical solutions of linear problems. For example
there is a change of the specific power of friction in time in the form
q(t) = q0q" (1), whenq*(r) =1+ sin(wt), T = 0, where
for w = 0 we obtain the problem considered above. Change with
time of friction elements temperature at constant (w = 0) and os-
cillating (w = 50) (Kuciej, 2011) specific power of friction is pre-
sented in Fig. 5.

6. CONCLUSIONS

The solution to one-dimensional nonlinear heat conduction
problem of friction for two thermosensitive was obtained by method
of lines.

The calculations were conducted for the friction pair (aluminium
AL MMC - metal-cermic FMC-845), whose materials are arbitrary
nonlinear. Comparison of the results obtained by the method of
lines with the results calculated by the method of successive ap-
proximations (Och, 2014) was carried out.

Application of the numerical method presented in the article,
preceded by the preparation of an appropriate analytical problem
(partial linearization), gives perspective to obtain new analytical-nu-
merical solutions to nonlinear heat conduction problems of friction,
which cannot be solved by using analytical methods.

Nomenclature: a - characteristic dimension; b; — Biot number; ¢ — spe-
cific heat; ¢, — specific heat at an initial temperature; f —friction coefficient;
h — coefficient of thermal conductivity of contact; K — coefficient of thermal
conductivity; K, — coefficient of thermal conductivity at an initial tempera-
ture; k — coefficient of thermal diffusivity; po — pressure; g, — specific
power of friction; T — temperature; T, — initial temperature; T* - dimen-
sionless temperature; t — time; V - sliding speed; z - spatial coordinate;
O - Kirchhoff's function; p — specific density; T — Fourier number; ¢ — di-
mensionless spatial coordinate.
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