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Abstract: The presented article discusses how to increase heat transfer through ribbed surfaces and it is oriented to the mathematical rep-
resentation of temperature fields and the total thermal flow. The complexity of solving for some types of ribs with variable cross-section re-
quires the application of numerical methods, which are applied consequently to the planar rib as well. In this case there was chosen the fi-
nite-difference method (FDM). During solution of the cylindrical ribs the FDM method is preferably used directly with regard to the complex-
ity of solving for infinite sums and improper integrals in Bessel functions. In conclusion is assessed the application suitability of the calcula-
tion procedure applied to curved ribs. This procedure is usually used to planar ribs. At the same time it is pointed out the possibility of us-
ing this method for calculation of the total thermal flow through cylindrical ribs, which have got the squared form.
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1. INTRODUCTION

Cooling of energy equipments, transport vehicles, as well as
electronic components requires intensification of heat transfer
from a cooled surface. (Increasing the cooling medium speed OR
Increase of cooling medium speed) Increase of the cooling medi-
um speed often does not produce the expected cooling effect.
Therefore, the cooling area is increased additionally by means of
the newly created ribs. In terms of design the ribs can be either
planar or cylindrical. Determination of the total thermal flow for
each type of extended surfaces is possible only in the simplified
cases usually because a solving of the complex non-linear differ-
ential equations of higher order is a task difficult enough. Analysis
of the differential equation for a planar rib with a constant rib
cross-section, ignoring radiation, enables to obtain the thermal
flows and temperature fields using analytical method for various
boundary conditions (Maga and Hartansky, 2005).

If there is taken into consideration radiation and dependence
of the relevant values on the temperature and on the rib length, it
is therefore necessary to use the numerical mathematics. Evident-
ly, the simplest method of numerical solution for ribs seems to be
an application of the finite difference method (FDM) (Brestovi¢
and Jasminska, 2013; Pyszko et al., 2010; Purcz, 2001). Applica-
tion of this method is necessary also for some simple cases.
The typical situation is for cylindrical ribs, which temperature fields
can be determined by means of Bessel functions. These functions
represent solution of improper integrals and infinite sums. That
is why it is more suitable to use FDM, which allows to see the
changes regard changes of all values in relation to a temperature
and a rib length.

Introduction of certain simplified assumption enables to elimi-
nate necessity of solution for two and three dimensional heat
conduction. Typical situation is in the case of curved ribbed sur-
faces or squared ribs. In this situation it is possible to retransform

a given task to one-dimensional solution with regard to possible
calculation failure. An advantage is a quick solution process
(Mlynér and Masaryk, 2012; Ferstl and Masaryk, 2011; Purcz,
2001).

This article offers a complex view of the area of rib design
with various types and demonstrates the new solution possibilities
for heat transfer using a numerical simulation software.

2. ANALYTICAL SOLUTION OF HEAT TRANSFER THROUGH
EXTENDED SURFACES

Calculation methodology of thermal flows as well as tempera-
ture fields is based on a solution for various types of differential
equations obtained from analysis of elementary changes concern-
ing investigated values.

Fig. 1. Thermal flows on the simple rib element

Analytical solution of heat conduction equations is possible
only in limited situations, whereas it is applied predominately
for stationary one-dimensional heat conduction or for heat con-
duction with internal sources. More complex geometry volume
bodies therefore use software tools based on numerical calcula-
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tions that are far beyond the capabilities of analytical solutions

(Stone et al., 2014; Kapjor et al., 2010; Brestovi¢ et al., 2012).

A principle of this method consists in a fact that the solution is not

required for the whole investigated area, but only for finite number

of strategically chosen points (parts of task).

It is necessary to take into consideration several assumptions
for definition of temperature fields as well as for thermal flow along
the rib length:

1. The heat conduction in the x-axis direction is one-dimensional
and conduction perpendicular to the x-axis is neglected. Iso-
thermal surfaces are perpendicular to the x-axis and their cur-
vature is neglected.

2. The coefficient of heat transfer and the coefficient of thermal
conductivity are constant along the whole rib surface.

3. The heat conduction is stationary and the temperature field
is constant during time.

According to the thermal flows in the simple rib element, with
regard to the law of energy conservation, it is evident that the sum
of conductive thermal flow on the output of element and convec-
tion from external surface equals to the input of thermal flow to the
element:

Py = Pyyqx +dPy (W) (1)

Fourier law describes a thermal flow due to conduction
by relation (Rohsenow et al., 1998; Incropera et al., 2007;
Rajzinger, 2012):

Po=—A-A- (W) ¢l

where A is a cross-section area in distance x (m?), 1 -
coefficient of thermal conductivity (W-m™'-K™1). The
conductive thermal flow in distance x + dx can be given as follows:

Py
Prrax =B + de (W) (3)

Newton law of heat transfer by convection through the
elementary surface dA,, which is written in differential form,
describes the thermal flow transferred into the surrounding during
cooling:

where a is heat transfer coefficient (W-m™2-K™1), d4, -
elementary surface of rib participated in heat convection (m?),
T — thermodynamic temperature of the rib element with thickness
dx (K), T, — ambient thermodynamic temperature (K).

Joining the relations from (1) to (4) we obtain the relation
for energy balance of the thermal flows in the form:

o243
Px:Px+Txdx+adAk(T_T0) (W) (5)

After modification of this equation and using derivation rela-
tions we obtain the general differential equation, which describes
the rib temperature fields as follows:

d?t 1. dA dr o dAg

wriw w e T7h)=0 ©)

After calculation of temperature behaviour in dependence
on the rib length it is possible to obtain the conductive thermal
flow in any distance x according to the relation (2).

Solving of differential equation is possible to perform if there
are known geometric, physical and boundary conditions of explic-
itness (Oravec et al., 2010; Vranay, 2012). The simplest situation
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for analytic solution of equation is a planar rib with a constant
cross-section area.

2.1. Equation of Energy for Extended Surfaces
Considering Radiation

In case that the rib surface emissivity has not got a zero level
(there is considered a grey body), it is necessary to determine
the total thermal flow transferred through the rib considering
its radiation as well. In the next chapter there is supposed a con-
stant value of emissivity on the whole surface of a sole rib, where-
as the ambient effective emissivity equals 1.

Fig. 2. Description of thermal flows on the simple rib element
considering radiation

The equation of the thermal flow, the relation (1), is supple-
mented with the thermal flow caused by radiation into ambient;

Px=Px+dx+de+dPs (W) (7)

Elementary radiated thermal flow dP; transferred from the rib
surface into ambient is determined according to the Stefan-
Boltzmann Law:

dP, =¢-0-dA - (T*-T,*) (W) (8)

where ¢ is the Stefan-Boltzmann constant (W - m™2 - K™%), & —
the rib surface emissivity (-), and dA,, represents the elementary
surface participating on the convention and radiation (m?).

Using addition of the relations (7) and (8) and by means
of mathematical modification we obtain the final non-linear differ-
ential equation of the second order, which describes a one-
dimensional field of temperature in the rib, considering the radia-
tion.

da dr d’T o dAy g0 dAg
dx  dx dxz_A.dx.(T T") X dr
(T4 - T04) =0 (9)

In case of a planar rib with the constant cross-section the
equation (9) can be simplified as follows:

d?T a p £0p 4 4
dxz_}\'A‘(T_TO)_ \ (T _To)_o (10)
where p is the perimeter of the rib at a distance x from the base
of rib (m).

In view of the problematic solution of these types of differential
equations is more convenient to use iterative-numerical calcula-
tion using the energy balance of the rib element. To simplify the
calculation in the next section is described a calculation procedure
using FDM without considering the radiation.
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3. APPLICATION OF FDM FOR CALCULATION
OF THERMAL POWER OUTPUT
AND FIELD OF TEMPERATURE FOR PLANAR RIBS

Determination of the temperature field along the rib height,
considering radiation according to the equation (10), is complicat-
ed due to a solution of the non-linear differential equation of the
second order. At the solution of equation, using the FDM, a set
of differential equations is created with the polynomial of the 4th
degree. Therefore, it is more suitable to solve the field of tempera-
ture using an iterative method with the basic equations describing
the conduction and convection. A calculation of the rib tempera-
tures with neglected radiation is realized through equation (6),
whereas the first and the second derivations are overwritten
by using the Taylor series in the following form (herewith the
derivations of the higher order are neglected):

dU Uiy, = U;

dx B Ax (11)
d2U _ Ui—l - 2 * Ui + Ui+1

dx? (Ax)? (12)

where U is a general variable derivative along the x axis, U; —is
a variable in the i-th node, U;, - is a variable in the (i + 1) th
node, U;_,— is a variable in the (i — 1)th node, Ax — is a
length of the rib partition (m).

In general, it is possible to take into consideration a change
of all the relevant quantities along the rib length. If the rib is divid-
ed into n equal elements, it is thus necessary to calculate the n +
1 temperatures that are mutually dependent in the nodal points.
With respect to the relations (11) and (12) we obtain a linear
equation from the relation (6) in the form:

i1 =2 Ti4+Tiyn 1 Apa— A Tipq — T,
(AX)Z Ai Ax Ax (13)

A A ~T) =0

Using a separation of the searched temperatures, the relation
(13) is modified into the form:
l 1 [2 +Al+1_AL Zl Di (Ax) ] T + [1 +Al+1 A]

(A )?
Tiy === T, (14)

After introducing of a substitution for the coefficients, which
are situated in front of the temperatures in the nodal points of the
discretised rib, the new form of the relation is:

Tiit+a;-Ti+ b Ty = ¢ (15)

where a;, b; and c; are constants created by means of the next
substitution according to:

i+1—4i AP 2
[2+ Bl y SO (ax)?| (16)
by = 14 A=A (17)
Al.
o = SO, (18)

Equation (15) describes the dependence among the tempera-
ture T; in the i- th node and the temperatures T;_; and T;,,
in the neighbouring points. The rib is divided into five elements
of the same length according to Fig.3; thereby six nodal tempera-
tures are defined. In order to calculate these temperatures itis
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necessary to assembly the same number of linear equations. Rib
is divided into five elements only for purposes of calculation ex-
emplification. Increase the number of partitions would naturally
lead to increase in the accuracy of the calculation.

Fig. 3. lllustration of the dipartite rib for FDM

The equation (15) is valid for the nodal points from i = 1
to 4, which means the creation of an equation system with 4 ones.
The other relations are given by the boundary conditions:

1. The temperature of the rib foot is known T, = T,, = c,.

2. We consider convection at the rib end, whereas the thermal
flow, caused by conduction at the rib end, equals to thermal
flow due to convection from the rib end surface into ambient.

Ts—Ty

—A- Ax

= (Ts=T,) (W-m~2) (19)

Modifying the relation (19) together with following substitution
of constants we obtain a relation between the temperature T,
and T in the form:

2T —(24a) Ty=—a-T,

d‘T4+e‘T5:C5

(W-m™2) (20)
(W-m™2) (21)

where d and e are the substitution of constants of equation (20).
The system of 6 linear equations can be described in a matrix
form:

lal - IT| = |c| (22)
10 0 0 0 0 T, ¢
1 a b, 0 0 0 T, c1
0 1 a, bz 0 0 T2 _ C2
0 0 1 as b3 0 T3 - C3 (23)
00 0 1 a, by| | T €4
0 0 0 0 d e Ts Cs

A solution of the equation system roots can be found for ex-
ample by means of an inverse matrix method:

IT] = lal™ - Ic| (24)

A calculation example is realised on the planar rib with
the length 50 mm, the thickness 2 mm, the width 100 mm
and the thermal conductivity A = 55W-m™1 - K1,

The coefficient of heat transfer of the rib surface
is a = 45W -m™2-K 1 the temperature of surrounding
liquidis T, = 20 °C and the rib partitionis Ax = 0.01 m.

The solution result of temperature field is a matrix in the form:

50.00
43.65
| 39.28 0
Tl = 3028 co @
35.13

35.01
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In Fig. 4 there is illustrated a comparison of resulting tempera-
ture in the nodal points of rib determined by FDM and an analytic
solution.

The temperature behaviours along the rib length have got
an equal character; however, the low level of rib discretisation by
means of large distances Ax causes a relevant failure of the
calculation using FDM in comparison to an analytic solution.

60

50 %
40
30 4

207

10 A

t (°C)

0

0 10 20 30 40 50
L (mm)

Fig. 4. Behaviour of temperatures along the rib length determined
by analytic technique (analytical solution of the equation (6)
for planar rib) and by FDM

Calculation deviation considering the actual situation of the rib
is 5.84 %, whereas if one-dimensional network on the rib surface
is more compacted, the calculation deviation decreases.

3.1. Application of FDM for Calculation of Cylindrical Ribs

It is more suitable to apply numerical methods for a solution
of temperature fields as well as for a solution of the total thermal
flow removed through the rib with regard to a complicity and slow-
ness of the analytical solution. Software support for a solution
of the cooling power output can be created by a proper implemen-
tation of the mathematical methods. Such application is useful
predominately in the case of coolers (Carnogurska et al., 2013,
Kapalo, 2005).

The analytical solution is too complicated for a design of quick
and easy calculation software. Therefore, it was chosen a calcula-
tion method, which is based on FDM application. In this case the
cylindrical rib is divided along the height into the N coaxial cylin-
drical elements. This solution was applied assuming that isother-
mal surfaces have got a cylindrical shape, although in the case
of a real cooler the temperature field is deformed due to gradual
air heating along the rib height as well as due to an unequal distri-
bution for the velocity field of cooling air (Fig. 5).

The Fourier law in the differential form describes a conductive
heat transfer through a rib and it can be transferred into a differ-
ence form according to the equation (27) for a very small change
of the radius.

At the numerical method there is used a substitution of the dif-
ferential equation of the first order by a difference equation (with
an application of Taylor series neglecting the second and higher
derivations) (Michalec et al., 2010, Nagy et al., 2012, Urban et al.,
2012). A requirement for solution by means of FDM is to keep the
same division of the radius r during task discretisation, i.e.:
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dt Ty =T,
e (K m™) (26)
Then:
. Ti41-Ti
Plil=-2-m-r;-8-A- 2= (W) (27)

Ti+1~Ti

where: r is the internal radius of the i-th element (m), r;,; is the
external radius of the i-th element (m), T; is the temperature
of the i-th element (K), and T;,, is the temperature of the (i +
1)-th element (K).

Temperature
Contour 1

' 59.3
1 57.9
56.6
55.2
53.8
52.4 |
51.0 \
M 497 |
483 |
46.9 \
455

44.1
4238
414
40.0

[C]

0 001
— —
0.005 0015

Fig. 5. Temperature field on the rib during flowing of the cooling liquid
in y-axis direction

The Newton law describes a heat transfer from a rib surface
into the air:

Peli] = o (T; = Tp) - -y — 1) (W) (28)

where T, is the cooling air temperature (K).

The relation (29) describes the conductive thermal flow
entering the next [i + 1]-th element, whereas the calculation has
to fulfil the basic boundary conditions:

Pli+1] = P[i] = 2- P [i] (W) (29)

The 1st boundary condition: 7[0] =7, = t[0] = ¢t,. The
2nd boundary condition: P, [N] =2 -a-m -1, -8 (Ty — Tair)
(convection at the rib end), where TN is a temperature of the
boundary N-th element (K), T,;, — temperature of the surround-
ing fluid medium (K).

It is necessary to estimate the thermal flow as accurately as
possible for the first iteration at the rib foot in order to accelerate
the iterative calculation.

This requirement can be obtained by a calculation of the pla-
nar rib with the constant cross-section, whereas a rib cross-
section and a rib circumference is considered at the middle radius
of the cylindrical rib;

1 P[0] =\/a'}\'pavg'Aavg'(To_Tvz)'

(30)
tanh [ = iavg Sy — Tl)] W)

A avg
where: p,y, is the perimeter of the planar rib corresponding to the
mean radius of the cylindrical rib (m), A, is a cross-sectional
area on the mean radius of the rib (m?).
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Pli+1]

Plil
—
P, li]

i-th element of a cylindrical rib

Fig. 6. Thermal flows in the element of a cylindrical rib

The calculation is performed iteratively; at the end of each
individual iteration it is necessary to change an initial conductive
thermal flow at the rib foot P, [0] so that the boundary condition
No. 2 will be reached. For this purpose there was suggested
an iterative condition. During application of this condition it was
investigated that its calculation is still converging to the required
real value:

jP[N]
10

j+1 P[0] = ; P[0] —

W) (31)

where: ; P[0] - is the thermal conductive flow at the rib input
for the j-th iteration (W), ;,, P[0] - is the thermal conductive
flow at the rib input for the (j + 1)-th iteration, and; P[N] - is
the thermal flow at the external rib radius for j-th iteration (W).

Temperature
Contour 1

49.69
49.07
48.45
47.83
47.21
46.59
4597
45.35
W 44.73
4411

02 (m)

0 001
— —
0.008 0015

Fig. 7. Temperature field on a cylindrical rib of the natural gas cooler
CH_R (ANSYS CFX)

The results of calculation obtained by means of the above-
mentioned method were compared using the simulation tool
ANSYS CFX (Fig. 8) for the same boundary conditions:

1. The rib foot temperature: 50 °C.
2. The coefficient of heat transfer on the rib: 45 W - m™2 - K~1

(at ambient air temperature 20 °C).

acta mechanica et automatica, vol.9 no.2 (2015)
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Fig. 8. A comparison of the temperature behaviours along the rib height
obtained with various numerical tools

The deviations of the temperature behaviours along the rib
height are up to the maximum value 0.015 % (Fig. 8). These
temperature behaviours can be obtained either by the numerical
calculation, which is performed by the newly developed software
NGC (Natural Gas Cooler) or by the commerce software ANSYS
CFX.

4. APPLICATION OF ANALYTICAL SOLUTION CONCERNING
PLANAR RIBS FOR CURVED RIBS

The analytical and numerical calculation of the planar
and cylindrical ribs was realised providing one-dimensional sta-
tionary heat conducting. In practical applications there is heat
conducted through extended surfaces with a constant cross-
section, whereas the centre of gravity for a surface, which conduc-
tive thermal flow is passing through, often creates a general
curve. Therefore, it is not possible to consider the planar ribs.
However, there is an advantageous possibility to apply mathemat-
ical functionalities deduced for the planar ribs. A typical example
of a curved body is a handle of a fire stove specified for dendro-
mass combustion, (Fig. 9). Although this handle does not fulfil
a rib function, the thermal flow, which is passing through it, can be
solved by means of assumptions valid for the planar ribs.

z | 130 |
o =K
N WY
(L a
| b
| +=100°C
|
@15 y

Fig. 9. The geometrical and thermal boundary conditions of the handle

A suitability of the assumption for calculation of the curved ribs
with the constant cross-section was verified by a comparison. This
comparison was realized between the analytical calculation of the
rib end temperature considering the total thermal flow and the
second calculation, which was fulfilled using finite volume method
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(FVM) in ANSYS CFX.

The rib foot temperature is 100°C, the ambient air tempera-
ture is 25°C and the end of the handle is adiabatically insulated.

A gravity point axis of the cross-section surface is situated
horizontally. The heat transfer coefficient « = 8.844 W-m™2 -
K~ is determined by means of the criterion equations that are
valid for heat transfer during free convection and by the known
geometrical and physical characteristics of the handle and ambi-
ent air.

The HTC (Heat Transfer Coefficient) software was developed
in order to quicken a calculation of the heat transfer coefficient.
There is considered the rib thermal conductivity value of 60.5 W -
m~1- K™t and the surface emissivity value & ~ 0 (this assump-
tion is correct for a chromium-plated surface).

After the solution and modification of the equation (6) we ob-
tain a calculating relation of the handle end temperature in the
form:

T, =T, + (T, (°C) (32)

1
~To) conemy
where m is the substitution of constants resulting from the analyt-
ical solution of the differential equation for the extended area
%-% (m~1), L - length of the rib (m).

The analytical calculation, performed according to the relation
(32), determines the temperature value T, = 71.026 °C. After
a solution of the equation (6) with applying the Fourier’s law, there
is the value level of thermal flow, which is removed through the
handle, . = 3.953 W. As well using ANSYS CFX a calculation
was performed in order to compare the obtained results.

The calculated rib end temperature was T,_ansys =
71.148°C and the total thermal flow was P,_ ysys =
3.956 W. The percentage deviation between the analytical calcu-
lation and FVM is A = 0.17% for the temperature values and
the percentage deviation for the thermal flow is Ap = 0.076 %.
It is evident, with regard to the above-mentioned deviations, that
the applied assumptions are correct for an analytical calculation
of the planar ribs. In Fig. 10 there are illustrated the isothermal
surfaces of the handle cross-section calculated in ANSYS CFX.

Temperature
Conlour 2

\\\\\\\\\HHHIHD_”

]
9
]
|

~
3
)
=

i

Fig. 10. Thermal field in the plane passing through a middle of handgrip
handle

The calculation demonstrates a fact that the isothermal sur-
faces are not curved in the location of the bar deflection. This fact
is favourable for an assumption of an analytical calculation of heat
transfer because an increase of convective thermal flow on the
external radius is compensated by a reduction of the thermal flow
on the internal surface of the handle curvature.

An evaluation of a curvature impact on accuracy of the analyt-
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ical calculation for a thermal flow passing through a planar rib was
realised also for another type of geometry by means of the simula-
tion tool ANSYS CFX. Another geometry consisted from one
thread of a helix with such curvature radius, which equals to the
pitch R = h = 50 mm. After a planar rollout of the helix a right
triangle is created with the side value 2 - r - R and the pitch h.

The hypotenuse of this triangle represents a length L of a spa-
tial curve, which passes through the middle of a helix profile.

L=JZ n R)Z+h? (m) (33)

The equivalent thermal flow of the planar rib, which is made
from aluminium, will be solved according to the equation (6) for
this geometry with the length L and for the adiabatic rib end. The
value of rib heat conductivity is considered 1 = 237 W -m™! -
K~ and the heat transfer coefficient value is « = 50 W -
m~2 - K1 at the ambient temperature 20°C. The defined rib foot
boundary condition of the first type is t,, = 50 °C.

The cross-sectional area of a profile is a cyclic one with the
diameter d. A change of this diameter causes a change of the
ratio R/d as well. The calculation was performed for the ratio
values R/d = 20 (Fig. 11), R/d = 10 (Fig. 12), R/d = 5
(Fig. 13), R/d = 3 (Fig. 14), R/d = 1.5 (Fig. 15) and
R/d = 1 (Fig. 16).

Temperature
Contour 1

0 on2
— —
001 [

Fig. 11. Surface temperature field of curved bar
with the ratio R/d = 20
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P 53
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20.95
]

0 002
— —
001 003

Fig. 12. Surface temperature field of curved bar
with the ratio R/d = 10
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Fig. 13. Surface temperature field of curved bar with the ratio R/d = 5
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Fig. 15. Surface temperature field of curved bar
withtheratio R/d = 1.5
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Fig. 16. Surface temperature field of curved bar with the ratio R/d = 1
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Tab.1 presents a comparison of the total thermal flow values
P, obtained by means of the analytical calculation and the values
P._ snsys, Which are resulting from the calculation using the
software ANSYS CFX. In this table there are also recorded the
calculating deviations corresponding to the both methods.

Tab. 1. Comparison between the analytical calculation
and the calculation using FVYM

R/d P, P._ansys Calculating Deviation
= w) w) (%)
20 0.641 0.634 1.147
10 1.813 1.790 1.269
5 5.100 5.057 0.847
3 10.801 10.707 0.865
1.5 28.776 28.797 -0.070
1 49.523 50.025 -1.012

A deviation of the both calculation methods does not over-
reach the value of 1.269 %. So it can be concluded that the
above-mentioned method, which substitutes a curved rib calcula-
tion by a calculation of planar rib, is a suitable procedure.
An inaccuracy of the calculation can be also caused due to the
object discretisation by means of FVM.

5. CALCULATION OF POWER OUTPUT FOR FLAT
SQUARED RIBS

A heat conduction of flat squared ribs is a two-dimensional
process and, as a result, the isothermal surfaces are “deformed”
predominately on the external rib side. (Fig.18). Comparison
of the temperature fields, for a cylindrical rib and a squared rib,
demonstrates a fact that the temperature field is similar in such
area where the temperature difference between a surface and
surrounding is maximal (on an internal diameter).

The squared rib temperature field is deforming with an in-
creasing distance of a rib element from the central axis. In these
areas the surface temperature is lower. An influence of thermal
isotherm deformations (curvature) on the total thermal flow, which
is determined by an analytical solution of cylindrical ribs, is ne-
glecting in the case of a procedure applied for the squared ribs.

This consideration is verified by a numerical calculation
of squared ribs using ANSYS CFX and by a calculation of cylindri-
cal ribs using the own software (FDM). The numerical calculation
of cylindrical ribs was also performed in ANSYS CFX in order
to compare the temperature fields.

A substitution of squared ribs by cylindrical ribs is possible on-
ly on a condition that the frontal surface is the same.

As well as the internal diameter d is identical in both cases.
The relation between the square side length and an external
diameter of cylindrical rib is given:

a=vmn-2  (m) (34)

2

where a is a square side length (m), d is an internal diameter
of rib (m), and D is an external diameter of the cylindrical rib
(m).

Various ratio values of diameters D/d were investigated
in order to evaluate a suitability of the above-mentioned assump-
tions. The ratios D/d are corresponding with an adequate ratio
value a/d according to the relation (34). A simulation calculation
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There is the corresponding ratio a/d = 1.772 for the
squared rib (Fig. 18). The next figures from the Fig. 19 to the Fig.
22 illustrate the temperature contours for the ratios D/d = 4
andD/d = 6.

The value of rib heat conductivity is considered A = 237
W-m™1-Kland the heat transfer coefficient value is
a = 35 W-m™2- K™ at the ambient temperature 20 °C. The
defined rib foot boundary condition of the first type is t, =
50 °C. In the Tab. 2 there is presented comparison of the total
thermal flow removed through a cooling cylindrical rib and
asquared rib. The cylindrical rib was calculated using the own
developed software, which applies the finite difference method
FDM.

Tab. 2. The comparison of an analytical calculation
with a ANSYS CFX calculation

D/d Squared rib Cylindrical rib | Calculating deviation
=) P, (W) P, (W) (%)

2 1.922 1.926 -0.179

4 7.345 7.373 -0.388

6 10.972 11.017 -0.411

An application suitability of an analytical calculation for ther-
mal flow, which is removed through a cylindrical rib, for a calcula-
tion of a flat squared rib was verified on the basis of relatively
small calculating deviations of power output values in comparison
to the simulations performed in ANSYS CFX.

A gradual rising of deviation absolute values in a calculation
process is caused due to a substitution of a cylindrical rib by
a squared rib. Both ribs have got the same frontal surface area.
This fact causes a rising of distance between the rib axis and the
square edge in comparison to the width of a cylindrical rib. How-
ever, the rising distance also causes a decrease of surface tem-
perature and in this way the total thermal flow is reduced, which
is transferred by convection into environment.

6. CONCLUSIONS

This article is focused on the methodology, which is specified
for a design of planar and cylindrical ribs using analytical and
anumerical method. Application of an analytical calculation
is possible predominately in the case of simpler geometrical
shapes and also for simpler accepted boundary conditions.

Numerical methods are suitable especially for more compli-
cated geometrical shapes and for a creation of a functional de-
pendence among the relevant values and temperatures. In such
situations there are applied more difficult differential equations
that are used for a solution of heat transfer through ribs.

The mostly used method for a solution of the above-
mentioned problems is the method of finite differences. This
method is a base for the newly developed software tools specified
for a calculation of the ribbed surfaces.

In this article there were also described procedures that ena-
ble to re-transform the multi-dimensional tasks of the heat transfer
through ribs into the one-dimensional tasks.

The main objective for investigation of a transformation possi-
bility of the multi-dimensional tasks into the one-dimensional task
is to find simpler tools. Those tools would provide results that are
comparable with the results obtained by using various commercial
tools, which may not be available for every user.
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