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Abstract: This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal de-
formation is proved in two ways. First proof is based on application of the lljushin thermo-elastic potential to displacement type system
of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of sim-
ultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system
of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field
is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented.

Key words: Linear FGM Interface, Stress Free Deformation

1. INTRODUCTION

Functionally graded materials (FGMs) provide thermal insula-
tion and mechanical toughness at high temperature by varying
the composition of thermal conductivity coefficient, thermal ex-
pansion coefficient and Young's modulus from high temperature
side to low temperature side continuously and simultaneously by
removing the discontinuity of layered plate. These advantages
cause that FGMs are applicable in many fields such as high per-
formance engines for aerospace vehicles, turbine blades and
heat-resisting tools. A general overview of thermal stresses
in FGMs comprises work by Noda (1999).

Numerous analytical solutions of thermo-elastic plane
or three-dimensional problems of FGMs take advantage of specif-
ic power or exponential function approximation methods of multi-
layered composite plate, limiting simultaneously their generality
and suggesting question how to reduce the problem. One way to
attain this may be proving theorem on the stress free deformation
accompanying linear gradation of thermo-mechanical properties
of the material staying in constant temperature condition. Such
a proof can be done following two ways taking advantage of either
displacement or stress formulation of thermo-elastic equations.
In the first case lemma consists in generalization of theorem
on the plane stress state in an isotropic thermo-elastic thick plate,
originally proved by Sneddon and Lockett (1960). The authors
presented convinced proof for a problem of semi-infinite thermo-
elastic medium bounded by two parallel planes and loaded by an
arbitrary temperature field on one surface. The method of solution
employed was the double Fourier transform. The results con-
firmed solution of analogous problems, being inspiration to their
work, received earlier by Sternberg and McDowell (1957), based
on Green’s function, and by Muki (1957), who used method com-
bining the theory of Fourier series and the Hankel transforms

of integral order. Also there exists other more elegant way, based
on application of lljushin’s potential (lljushin et al., 1979), which
is demonstrated in the present work. Final step of the proof
of theorem relays on pointing out that unique solution of the plane
stress equations, that satisfy homogeneous boundary conditions,
guarantees stress free deformation if only temperature field
is constant and gradation of thermal expansion coefficient is linear
function.

In the other case, when stress formulation of thermo-elastic
equations is used, the proof of theorem is almost elementary and
turns out to be straightforward analogy to these which were done
by Fung (1965) and Nowacki (1970) for homogeneous material.

2. FGM’S - CONCEPT, FABRICATION, PROPERTIES
AND NUMERICAL MODELING

In many applications, especially in the space industry as well
as electronic industry, structures or part of structures are exposed
to high temperature, usually up to 2000K or even 3500K in some
parts of rocket engines, see Schulz et al. (2003), high temperature
gradients, and/or cyclic temperature changes. Conventional me-
tallic materials, such as carbon steels or stainless steels: ASTM
321, ASTM 310, nickel- or aluminium-based alloys cannot resist
such high temperatures, see Odqvist (1966). The first method to
improve the resistance of metallic structures against extreme
temperature conditions consists in covering the structure with a
ceramic layer since ceramics are known for their high thermal
resistance. For instance, in a metal-ceramic composite: Al-SiC the
thermal conductivities ratio is approximately equal: 1., /4. = 3.6,
the thermal expansion coefficients ratio: a,,/a. = 5, whereas
the elastic moduli ratio: E,,/E. = 0.16, see Potarescu and
Sugano (1993). Indices m and c refer to matrix and ceramic mate-
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rials respectively. Hence, at the metal-ceramic interface, severe
discontinuity of thermo-mechanical properties occurs, which re-
sults in high strain and stress mismatch at the interface. As a
consequence, delamination or failure of the coating is rapidly
observed. As a remedy to these disadvantages the concept of
Functionally Graded Materials - FGM, was developed in Japan in
the 1980s, see Yamanouchi et al. (1990), giving structural com-
ponents a spatial gradient in thermo-mechanical properties. The
spatial gradient is achieved by use of two-component composites.
The volume fraction of the composite constituents varies spatially
such that the effective thermo-mechanical properties change
smoothly from one material (ceramic) to the other (metal). In this
way, in the case of a Thermal Barrier Coating deposited on a
metallic substrate, the heat-resistant ceramic layer and the solid
metal are separated by functionally graded FG layer, the composi-
tion of which varies from pure ceramic to pure metal. The pro-
cessing technologies for TBCs and FGMs may lead to residual
stresses, which are built-in during cool-down from the elevated
fabrication temperature. These residual stresses may be signifi-
cant relative to thermo-mechanical stresses applied subsequently.
As regards FG layer processing, Plasma Spray Thermal Barrier
Coating leads to lamellar microstructures, whereas columnar-
lamellar microstructures are produced when using Electron Beam
Physical Vapour Deposition, see Lee et al. (1996), Schulz et al.
(2003).

A general review article on the application of the several ce-
ramic materials to TBCs is given by Lee et al. (1996). Selected
thermo-mechanical properties as elastic modulus E and both
thermal expansion a and conductivity A coefficients are summa-
rized in Table 1 for two alumina-based composites, see Chen and
Tong (2004), Cho and Shin (2004) for Ni-Al203 and Wang et al.
(2000) for Ti-Al20s.

Tab. 1. Comparison of properties of constituents of two alumina-based
composites Ni-Al203 (Hen and Tong, 2004; Cho and Shin, 2004)
and Ti-Al203 (Wang et al., 2000)

Composite E [GPa] A [WimK] a-107° [1/K]
Ni 199.5 90.7 13.3
Al203 393.0 30.7 8.8
Al 73 154 23
Al203 380 46 85

metallic substrate NiCoCrAlY

(2003)
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Fig. 1. Microstructure of chemically graded Electron Beam Physical
Vapour Deposition thermal barrier coating, after Schulz et al.
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When the classical FEM based on homogeneous elements
is used for FGMs, the material properties stay the same for all
integration points belonging to one finite element. This means that
material properties may vary in a piecewise continuous manner,
from one element to the other and a unique possibility to model
FGM structure is approximation by use of appropriately fine mesh.
On the other hand, a too coarse mesh may lead to unrealistic
stresses at the interface between the subsequent layers. To over-
come this difficulty a special graded element has been introduced
by Kim and Paulino (2002) to discretize FGM properties. The
material properties at Gauss quadrature points are interpolated
there from the nodal material properties by the use of isoparamet-
ric interpolation functions. Contrary to the classical FEM formula-
tion, the stiffness matrix of an element is expressed by the integral
in which constitutive matrix is a function of the coordinates. In the
original formulation the same shape functions are used for ap-
proximation of the displacement field and material inhomogeneity.
However, from the numerical point of view nothing stands in the
way of implementation of shape functions referring directly to the
individual character of inhomogeneity, for instance power func-
tions, see Akai et al. (2005) or exponential functions, see Bagri
etal. (2005).

3. THE GENERAL FORMULATION
OF FGM THERMO-ELASTIC PROBLEM

A thermo-elastic body under consideration (Fig.1) is bounded
by two parallel planes normal to axis x5, and its thermo-
mechanical properties such as thermal conductivity coefficient,
thermal expansion coefficient and Young's (Kirchhoff's) modulus
are optional functions of x;

A=Ax3) a=alx;) E=E@) G=G(x3). (1)

Since E(x3) and G (x3) are controlled by the same function
of x5 the Poisson ratio is considered as independent of x; and
satisfying classical relation

E
v=_——1 2)

This guarantees isotropy (two independent material constants)
on one hand and simultaneously prevents from some peculiar
effects occurring on the other hand, see Ganczarski and Barwacz
(2004).

The body is established a temperature field T + 6 (x;), where
T stands for the temperature of the solid corresponding to zero
stress and strain. Also it is assumed that there are no body forces
within the solid and that its surfaces are free from tractions.

The system of equations of uncoupled thermo-elasticity ex-
pressed in displacements takes the form

1 0o 1 0G (0u; ou 1+v 9(x8
Vzui+——+——(—’+—3)=2 ©6)
1-2v dx; G dx3 \0x3 dx; 1-2v 0x;
1 00 2 0G (0dug ve 1+v
Vi, + -2 4 200 (2 )= 3
3 + 1-2v dx3 + G 0x3 \0x3 1-2v 1-2v ( )

N

Ox3 E 0x3
10406 _

V26 =0,
+ A dx3 0x3

where u; denotes the displacement vector, and ©® = grad(u;)
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is the dilatation. The underlined terms in Eqgs (3) yield of FGM
application and they are additional in comparison with classical
formulation of homogeneous material. The relation between the
stress tensor o;; and the displacement vector v; is given by the
Duhamel-Neumann equation

ou; , Ou;j v(E) 3a6)
_G[a+a—%+2 o3 a9)6”]. 4
The variation of temperature 8 throughout the solid is deter-
mined by steady Fourier equation Eq. (33) in case of absence
of inner heat sources.
System of equations expressed in stresses (extension of Bel-
trami-Michell formulation) equivalent to (3) is as follows

v %t 1+v [_ — Vs ] 2B 9x3 ( ) [f;;c]; 1:1/ ;753]

B (3) [ 551

E 9% (ab) 2 _ o
1+v x 2 -V ( 9)] 0 i,j= 1’2’
2 L[__ 2 ] E_[0%@6) ]=
Vo33 + 1+ lox2 Y + — el e v (0!9) 0,
2 ()
2, 4 L 9% i(l)aakk_iﬁ_%]
\% Tu + 14+v 0x;xj  Ox3 \E 0x; 1+v 0x; axy
E 0%(ab) _ L _ ) .
1+v axixj =0 l,],k = 1'2,3 i :/:] + k,
29 4 19290 _
v 9+Aax3ax3_0’

where s = tr(o) = gy, + 0,5, + 033. It worth to notice that
equations (51-3) can be obtained either in classical way or directly
from equations (31-2) according to concept by Ignaczak (1959).

4. CONDITIONS OF EXISTENCE
OF STRESS FREE DEFORMATION

4.1.Proof based on displacement formulation

To solve Egs (3) the following potential, originally proposed by
[ljushin et al. [8], is introduced

29 29
w =g Uz =—5-+ flxs)

axi
f(x3) =Ax3 +Bx; +C (6)
—glv,, 199
a6 =2 1+v Axs 1+v 9x3’

where function of displacement potential ¢ is of harmonic type
Vi =0 (7)

and A, B, and C are constants.

Simple introducing of definitions (6) to Eqgs (3) shows that only
equations of mechanical state are satisfied as identity, contrary
to the case of homogeneous material, when also the equation
of thermal state is satisfied as identity
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= (v2 V2
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=0
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The stress components referring to the plane stress state with
respect to axis x5

ouy aug) %9 2%¢
;=6 (22 +22) =6 ;25 - =0,
13 Ox3 + 0xq 0x10x3 Ox30xq
[ R
=0

du, aug) %¢ 2%2¢
Ty3 = G( ) =G (=~ =0,
23 0x3 + 0x, Oxp0x3 Ox30x,
[ S A7
=0

~ 3a0)| (9)

ou
0-33 —_ 26 _3_
ox3

1 9%¢
1+v 9x2

—26{——+2Ax3+B—2—A +-=

v |y2 )
+ | Vg - 2 +2Ax3+B
o

1 0%¢ _ 1-v
_3( 1+vA 3 1+v%)]} =26,8,
are also identically equal to zero when B = 0 for any point x;.

This proves that Eqs (6) transform original mechanical problem
Eq. (3) into plane stress problem

VZp +2(1 —v)Ax; — (1 +v)ald = 0. (10)

The general solution (10) can be written in a form which
is more suitable to plate problem, namely in which the thermo-
elastic solid is bounded by two parallel planes x; = z and exhib-
its axial symmetry

%¢p  10¢
sz t75, T2(1=v)Az— (1 +v)ab = 0. (11)

Differentiation of Eq. (11) with respect to r and next substitu-
tion u = d¢/0dr according to Eqgs (61), lead to the classical
Euler-type differential equation describing thermo-mechanical
membrane state

2
0°u 16u_l_(1+)

orz  ror r2

0(a9) (12)

Unique solution of equatlon (12) that satisfies homogeneous
boundary conditions

u(0)=0, o.(R)=0 (13)
takes well known form

a-v) R 1+v) pr
=" [, abrdr +—— [ afpdp,
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E (R E (r
Jr=ﬁf0 a@rdr—r—zfo afpdp, (14)
0y = — [Fabrdr + = [  abpdp — Eab
(P_RZ 0 r2Jo p p (24 3

which in case of constant temperature 6 = const and linear
gradation of coefficient of thermal expansion a(z) = ay + a,z
leads to purely linear (stress-less) deformation

u(r,z) = abd(2)r, o, =0,=0, (15)

what closes the proof.
4.2.Proof based on stress formulation

The proof of theorem presented in point 4.1, in case of the
stress formulation Eq. (51.3), is straightforward analogy to those
done by Fung (1965) and Nowacki (1970) for homogenous mate-
rial. This turns out to be almost elementary when one assumes
that o;; = 0 in both Eq. (51:3) and appropriate boundary condi-
tions. Namely, system of equations is satisfied as identity if

92(ab)

2 — -
537 VZ(aB) =0 i=1,2,3,
92(ad) _ —
axixj - l'] - 1’2!37 (16)
29 4 104 96 _
V 6 + AaX3 aX3 0

For constant temperature 6 = const satisfying Fourier's law
(163) the unique solution of (161,2) corresponds again to the linear
gradation of coefficient of thermal expansion a(x3) = a, +
ax3.

5. EXAMPLE

It has been proved in points 4.1 and 4.2 that material of linear
gradation of thermal expansion coefficient, subjected to constant
temperature exclusively, is not stressed. This means that it exhib-
its unconstrained and purely thermal deformation. In case of axial
symmetry such deformation can be expressed by following equa-
tions

u
=—=aqaf, g,=—=ab, ¢

ow
& = 0= =—=qaf. (17)

0z

Let us assume that the structure is composed of homogene-
ous metallic substrate (Al) and ceramic layer (Al2O3), joined by
FGM interface as shown in Fig.3, and thermo-elastic properties
presented in Tab.1.

ceramic layer

interface layer hi

metallic substrate
R

r

Fig. 3. Metallic substrate and ceramic layer joined by FGM interface
of linear thermal expansion coefficient structure
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Hence linearly graded coefficient of thermal expansion exhib-
its polygonal function

am 0<z<gzg

Z—Zj
am — (am — ag) hil zi<z<zi+h (18)
a. zi+hi<z<H

a(z) =

and we easily arrive at following of solution Eqs (18) for u

u(r,z) = fora(z)edp =

a,0r 0<z<yz
amor — (am—ac)%ﬁr zi<z<z+h (19)
aor zi+hij<z<H
and for w respectively
w(r,z) = foz a(z)6dl =
(Ambz 0<z<zy
(z-2j)*
amez—(am—ac)TG ZiSZ<Zi+hi

. (20)
acg(zi + hi) - (am - ac) ;19

Zj +hi <z<H
+a.0(z—z + k)

The displacement field corresponding to stress free defor-
mation defined by Eqgs (19-20) is spanned over the mesh of 81x41
square elements and shown in Fig. 4. It is well visible that both
substrate and ceramic layers exhibit homogeneous deformation,
whereas deformation of interface links them satisfying simultane-
ously stress less state.

Az
i

I

>
Fig. 4. Unconstrained (stress less) and purely thermal deformation
Egs (19-20) of three layer structure: initial mesh - black colour,
deformed mesh — red colour (displacement magnified x100)

6. CONCLUSIONS

Homogeneous temperature field does not result stress
in thermo-elastic material of linear gradation, if only force type
boundary conditions are homogeneous and there are not body
forces. However, the case of stress less deformation has only
theoretical sense since neither manufacturing nor classical FEM
do not allow for modeling of continuously varying FGM. Namely,
from technological point of view the Al2Os outer layer deposed
on top of a NiCoCAIY bond coat, shown in Fig. 1 after Schulz et
al. (2003), exhibits hardly noticeable stress state resulting from
mismatch between metal and ceramic Young's modules and
coefficients of thermal expansion. On the other hand, if the classi-
cal FEM is used for solving FGM problems, the material properties
can only vary in a piecewise continuous manner since all integra-
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tion points within an element have a common property value.
To overcome this difficulty a special graded element concept,
based on additional interpolation for nodal material properties,
is necessary to apply.
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