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Abstract: This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action
of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the
theory of complex variable functions. The numerical implementation of the developed algorithmis based on the method of mechanical
quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations

of plates.
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1. INTRODUCTION

Many structural elements, which are used in modern engi-
neering, can be modelled as plates during the structural analysis.
Frequently these elements operate under the dynamic loads.
Thus, estimation of their strength is based on the calculation
of dynamic stress state near defects, which can be present in the
plate. This greatly complicates the stress state due to the reflec-
tion of elastic waves from the defects' boundary inside the plate.

In contrast with static loading, the strength of structural ele-
ments depends on the frequency of the applied dynamic load.

Methods for analysis of the stress state of structural elements
with one or more holes under dynamic loadings were developed
inthe works: Brebbia et al. (1984), Guz et al. (1978), Savin
(1968), Timoshenko (1967), Pao and Mow (1971), Mow
and Mente (1963), etc.

The problem of diffraction of elastic waves in an infinite plate
with a circular hole or a system circular holes was solved by Guz
et al. (1978), Pao et al. (1971) and Mow et al. (1963). In the works
by Kubenko (1967) and Guz et al. (1978) the problem of the con-
centration of dynamic stress near holes of non-canonical form
is studied by the method, which is based on the method of series
and the boundary shape perturbation technique.

In the works Mushelishvili (1966) and Panasyuk et al. (1984)
an algorithm for studying of the stress state of plates of different
shape under the static loadings is developed. This algorithm
is based on the boundary integral equation method and the theory
of a complex variable.

The main advantage of this approach is its universality and
high accuracy in the case of multiply connected plates of difficult
shape or infinite plates with holes, which are under the action of
concentrated forces.

Systems of integral equations for determination of the dynam-
ic stress state of plates are derived in the works: Kupradze (1963),
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Sherman (1962), Sladek et al. (2000). Numerical analysis of the
stress state is held by the boundary element method in the works
Benerjee (1994) and Brebbia et al. (1984). The Somigliana type
integral formula is used. Thus, integral equations for relative
displacements are directly obtained. Stress at the boundary
is determined by the numerical differentiation. At high frequencies,
numerical differentiation can lead to significant errors, thus, the
technique which utilize stress integral formulae for dynamic prob-
lems is of high importance.

2. SOLUTION OF THE PROBLEM
2.1.Statement of the problem

Consider an infinite plate with incision that is under the influ-
ence of concentrated oscillating forces Q,e®*, Q,e®T, where
w is the frequency of the applied loading, and t is time (Fig. 1).
The problem consists in determination of the dynamic stresses
at the boundary incision in the plate.
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Fig. 1. Model of the plate

The center of gravity of the plate is placed at the origin
of a Cartesian coordinate system Ox;x,. Symbol D denotes the
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domain occupied by the plate, and L is the boundary of the do-
main D.

2.2.Integral equation of the problem

For the plane stress state the potential solution for image mo-
tion is selected as (Bonnet, 1995):
w = [, pUjds + [, QUjdD, (1)

where p,, p, are unknown complex potential function.

The representation of the image U;; should be choosing with
the regard to Zommerfeld conditions, since the plate is infinite.
It has the form (Brebbia et al., 1984):

Ujj = 7= (v = 2°7my),

ZIZC

where

ot (n @ -2 @)
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. E
speeds of expansion and shear waves: cf = A’ ¢ =

m E is the Young's modulus, p is the density of the material;

v is the Poisson ratio; H2(r) = Ji(r) — Yi(r) are Hankel func-
tions of the second kind; J, (r), Y, (r) are Bessel functions of
the first and second kinds (i, j = 1, 2). The integration over the
domain and along the boundary is performed within variable
x?, x3. Here the time factor ‘7 is omitted at the displacements
and the stresses terms.

Determination of the stresses at an arbitrary point of the plate
with normal 7 are performed by the formula (Savin, 1968):

2(op —ity) = Re ( a (uy — iuz)) +
+e2iaf%(; o i), @

where « is the angle between the normal to the boundary of the
plate and the axis O0xq; i = 3<(i — 1i)> 2=

0z 2 0X1 00X 0z
1 0 . 0
(2 +12))
2 0X1 0X3

Since the functions U;; along with the displacement v; are
complex, the determination of the stress is performed for the real
and imaginary parts of images (1):

u (pl ij _plU )dS +f (Ql ij _QiIU;}I)dD’
uj = [ (plU*R +leUL-*]-I)ds +J, (QiIUi*jR + QlRUl-*jI)dD,

where the values with the superscript R are real parts
of corresponding functions FF = Re(F,), and the values with
the superscript I are the imaginary parts of corresponding
functions Fl = Im(F,), k = 1,2.

Substituting the representation for displacement in the formula
(2), we obtain formulas for determining stresses at the boundary
of the plate:
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2(on —itf) = J, (ffq" = flqdt + [, (ffq"
Jp (FRQR = fiQNdD + [, (fQ% - f,@Q"aD

2(op — i) = [, (Ffa' + fla®de + [, (Ffa' + figh)de
+fD (flRQI + flIQR)dD + fL (fZRQI +fZIGR)dDI

where fif = fif (x1, x5, %70, X9, fii = fii (1, %, X7, X39),

k = 1, 2 are functions of the real argument, which contain Bessel

functions of second and first kind respectively and are obtained

similarly to those in Mikulich and Maksymovych (2011);
R ides I iplds . .

q" =——,q =—_—are unknown functions to be determined,

t=x)+ ix?.

Integration of functions £, k = 1,2 for small values of the
argument leads to singularity. To establish their characteristics we
use the asymptotic expressions for the Bessel functions of the
second kind for small values of the argument (Elbert and Laforgia,
1986). Then the formula for determining of the stresses can be
written as:

2005 — i) = 52, (B2 -1) L) gfae

2

YR iR
27 7L 2 z-t dz 2 z-t

J, (GRq® = flqhdt + [, (GFq® - fighdt +
Jp FRQF = f{QNdD + [, (ff Q% — £,Q")dD;

2(0h — idhy) = =20 ((d—z_ii—1)z t) ldt

- f2q)dt

2 dz z—t
1+v 1 dz3—-v
—oal (Cmr )t
J, (GFq"+flq®at + [ (GFg" + figM)dt +
Ip Q"+ f{QR)dD + [, (FfQ" + f/Q%)dD;

where fl, GR = GR(x1, x5, x, x2), k = 1,2 are bounded
and continuous functions of real argument everywhere in D.

Let us perform the limiting transition when (xq,x;) = L
in the last formula according to Plemelj-Sokhotski formulas (Savin,
1968). Consequently, integral equations for determination of the
unknown functions g and g’ for given loading at the boundary

are obtain:
—R iﬂ dz z-t R
9 +2ni 2 YL ((dzz -t 1)2 t) dt
_r _ v 1 dz3-v 1 \Zpgr
i G R LA ®)

J, (GRq® — flghdt + [, (GFqR — £ig)dt = 2S*;

;1 1+v dzz-t .\ 1) ;
T+ 2m 2 YL <(dzz t 1)2 t)q de
1 1+V 1 dz 3 v 1 —]

f ( 2 Z-t i az 2 z— t) dt + (4)
IL (GRq" +flqMdt + [, (GFg' + figR)dE = 25",
where the first and second integrals are evaluated for their Cau-
chy principal value; S, S' are known function:

= [, (F{Q" = fFQ™dD + [, (ffQ" — £ Q™)dD,
= fD (ffQ" + f{Q®)dD +fD Q' +f2Q )dD.

Stresses at the boundary of the incisions of the plate are de-
termined in the absence of the contact of the incision's boundary.
This is verified by the formulas:
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1+v

— J, (Ffq® = Flq"dt +
J, FFg® = Fghat + [, (FfQ® — F{Q"dD +
J, (FfQR — F;Q")aD, (5)

ul —iuf =

1+v

w — g = —— [, (Ffq' + F{qM)dt +

f, (FRg' + FighydE + [ (FRQ' + F{Q®)dD +
J, (FFQ" + F;Q®)ab, (6)

where FF = FR(xy, x5, x0, x9), Fl = Fl(xy, x5, x, x2),
k = 1, 2 are functions of the real argument, which contain Bessel
functions of second and first kind respectively and are obtained
similar to those by Mikulich (2012).

2.3.Numeric solution of the algortim

To study the stress state of the infinite plate with one incision
denote its boundary contour as £2. The incision in the plates
is modeled as an elliptic hole with axis ratio of 10. Its equation in
parametric form is as follows: x; = @(8), x, =Y (6), 0 <
6 < 2m. Parameter 8 is chooses with respect to the condition
that traversing the path boundary region remains at the left. To
reduce the number of nodal points the numerical integration
is performed using Sidi sigmoidal non-linear transformation (Sidi,
2006):

0=G6@¢)=¢— Si“;”f),o <Ei<2m
Then, at the boundary it holds that t = @(0) +i-y¥(6) =
9(0).

Solution of integral equations (3) - (4) is performed using the
method of mechanical quadratures. For integrals with Cauchy-
type kernels quadrature formulas of the form (Kolm and Rokhlin,
2001; Eshkuvatov et al., 2009) are used:

q 1 vK g
fQ t-z, dt - h Zn:l In th—2zy ’

ta=906,), 9n=9n), 6,=n-h, z,=2(8,),
~ h — 2
0,=0,+-, v=1K, qn=q(ty), h="".

And for other of the integrals the quadrature formulas of the
form (Mikulich, 2012) are applied:

f_Q q-f(t z,)dt = hZZ:lqn “fin9'n
where f,, = f(t,, z,).

Replacing the integrals with the specified quadrature formulas,
the system of linear algebraic equations for determination of the

nodal values of unknown boundary functions q® and q' is ob-
tained:

K K
TE+h D FEndEG A0 ) FRaTiGn =0 ) flindhd',
=1 n=1

n=
—h Z§=1 lemqag’n = 2551

K K K
Tt h ) flndhd' B fEndhd'n +h ) fladlg',
n=1 n=1 n=1

+h ¥ner finmdnd'n = 2S5,
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where i = g%(2,), qn = q"(t»), 4\ =q'(z,), are real and
imaginary parts of the unknown functions at the boundary, %, =
fiR(tn' z,), fl{'n = fil(tn' z,), 1 =1,2, S} = S%(z,),
S& = S!(z,) are known function.

Calculations were performed in the absence of contact
of boundary of incisions that was tested on the basis of Esq. (5)-

(6).

After determination of the unknown functions, stress state
of the plate is calculated by dependencies, which are obtained
in accordance with representation (1) by providing singular com-
ponents in the kernels of equations and consequently using Ple-
melj-Sokhotski formulas:

2(0p, — ite,) = 2(0f, — ithy,) + 2i(0h, — ithe,),

2(0f, — ity ) =qk +="qR + h 3K fRuaRg',
+HY N fFn@n g n —h Xy fllvnqllg’n -

h ¥ fn@nd'n +®F,

2(ch, —ithy,) = qL+ gL+ h Xk fRaahg,

+hy i, szan_I;Lg_’n +hYK_y ﬁlm%}fg’n +

hEh=1 fim@ng'n +P1,

where 5, =R (ty, z,), Bln = (th, 2); =12 ®f,
®! are the values of known functions in selected points of collo-

cation, which are obtained similar to Mikulich and Maksymovych
(2011).

2.4.Numeric calculation stresses in the plate

Based on the developed technique the distribution of maximal
stresses in the plate with an incision under the actions of oscillat-
ing forces Q,e'“*, Q,e'“" is studied. The forces are applied
at the points (0; +b).

The results of calculations of dynamic stresses are attributed
to the intensity of the stresses oscillating forces.

Fig. 2. Maximum dynamic stresses in the plate with a horizontal incision

Fig. 2 shows the results of numerical calculation of the de-
pendence of the maximum dynamic stresses on the dimension-

less frequency w} = % of the applied forces, where ¢, is the
2
speed of shear waves. The incision in the plate is modeled as an

elliptic hole with axis ratio of 10. Calculations were performed for
different values of the distance between the point of application of
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the oscillating forces and the center of the incision. The calcula-
tions were performed for 200 nodal points at the boundary of the
incision. The Poisson’s ratio was equal to 0.3. In Fig. 2 curve 1
corresponds to the case of b = a ; curve 2 corresponds to the
case of b = 1.5a and curve 3 corresponds to the case of b =
2a, where a is a major semi axis of the incision.

Fig. 2 shows that the maximum dynamic stresses have the
fluctuating nature. At high frequencies, a significant increase
in the stresses doesn’t occur due to the absence of contact at the
boundary of incision.

Analysis of the numerical results shows that the maximum
stresses at the boundary of the incision are increasing (for a range
of frequencies in (0.01, 0.9)), and then they decrease and become
lower comparing to those under static loads.

The maximum dynamic stresses exceed the corresponding
static ones in 1.82 times for the case, when the distance to the
points of application of forces is equal to the major semi-axis
of the incision. With the increase in distance to the point of appli-
cation of forces the maximum dynamic stresses exceed static
in 1.86 times for b = 1.5a andin 1.93 times for b = 2a.
Values of dynamic stresses at the boundary of incision at specific
values of the frequency for oscillating concentrated forces
Q,e'7, Q,e'*, which are applied at the points (0,a) and
(0, —a) and Poisson ratio of 0.3 are determined. The results are
shown in Fig. 3. Here 0 is the angle in radians.

14Oy I
12 \
10 w;=0,9
s A f
s =001 I
A /
, w, =2,44
0 1 2 3 4 5 5 7

Fig. 3. Distributions of stresses on the boundary of the horizontal incision

Fig. 4. Maximum dynamic stresses in the plate with a vertical incision

The figure shows that the maximum stresses are occurring
at the end of the major semi-axis. There is no significant change
in the distribution of stresses along the boundary of incision with
increasing in frequency.

The effect of orientation of incision on the distribution of max-
imum dynamic stresses is also studied. The values of the maxi-
mum stresses in the plate with a vertical incision for different
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values of dimensionless frequency w; = ? are calculated. The
2

results are shown in Fig. 4.

Calculations were performed for different values of the dis-
tance from the point of application of the oscillating forces to the
center of the incision. In numerical calculations 250 nodal points
meshed the boundary of the incision, and the Poisson ratio was
equal to 0.3. In Fig. 4 curve 1 corresponds to the case of b =
1.8a; curve 2 corresponds to the case of b = 2a curve 3 corre-
sponds to the case of b = 2.2a, where a is the major semi-axis
of the incision.

Fig. 2 shows that the maximum dynamic stresses have the
fluctuating nature.

The maximum stresses are observed at the frequency of 0.75,
and minimum stresses occur at frequency of 1.72. Increase in the
frequency of the applied oscillating force causes a significant
increase in stresses, which exceed the static ones.

The maximum dynamic stresses exceed the corresponding

static in 1.55 times for the case when the distance to the points of
application of forces is b = 1.8a. With increase in distance to the
point of application of forces the maximum dynamic stresses
exceed static in 1.65 times for b = 2a and in 1.75 times for b =
2.2a.
Values of dynamic stresses at the boundary of vertical incision at
specific values of the frequency for oscillating concentrated
forces Q,e'?%, Q,e'®*, which are applied at the points
(0,1.8a) and (0,—1.8a) and Poisson's ratio of 0.3 are
determined. The results are shown in Fig.5. Here 6 is the angle in
radians.

The figure shows that the maximum stress occurs at the end
of the major semi-axis. With increase in frequency the decrease
in the oscillating nature of the distribution of stresses along the
incision boundary is observed.

With increase in frequency of the applied load stress distribu-
tion along the boundary of the incision changes. Therefore,
to study the dynamic stress state it is not enough to determine the
value of stress just at a few points. This demonstrates the signifi-
cant accuracy of the proposed algorithm as opposed to the meth-
ods of series and boundary shape perturbation. Since these
methods define stresses only at specific points, but not along the
boundary.
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Fig. 5. Distributions of stresses on the boundary of the vertical incision

The dependence of the distribution of maximum dynamic
stress from the inclination angle of the incision is investigated.
Concentrated forces Q, e, Q,e'“" are applied at the points
(0,2a) and (0, —2a). The calculations were performed for 250
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nodal points at the boundary of the incision and the Poisson’s
ratio of 0.3. In fig. 6 curve 1 corresponds to the case of 0°, curve
2 — 30°, curve 3 — 45°, curve 4 — 60°, curve 5 — 90°, where
is an angle between the major axis of the incision and Ox;. axis.

Fig. 6. Maximum dynamic stresses in the plate with an incision

Fig. 6 shows that the maximal dynamic stresses have the fluc-
tuating nature regardless of the inclination of the incision. The
maximum dynamic stresses exceed the corresponding static for
the case when the frequency w of the applied load is in the
range (0.9; 1). For vertical incision maximum dynamic stresses
occur at a frequency wj = 3.45.

3. SUMMARY

The technique developed in this paper allows to study the
stresses at the boundary of incisions in plates under the action
of concentrated oscillating forces. Effects of orientation of inci-
sions on the stress distribution are studied. Effects of the distance
between the incisions on the stress distribution are investigated.

The advantage of the proposed algorithm is the ability of de-
termination of the dynamic stresses along the entire boundary,
and not at the only specific point. This makes it possible to inves-
tigate in details the dynamic stress state of defective plates.
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