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Abstract: The minimum energy control problem for the positive time-varying linear systems is formulated and solved. Sufficient conditions
for the existence of solution to the problem are established. A procedure for solving of the problem is proposed and illustrated by a numeri-

cal example.
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1. INTRODUCTION

A dynamical system is called positive if its trajectory starting
from any nonnegative initial state remains forever in the positive
orthant for all nonnegative inputs. An overview of state of the art
in positive system theory is given in the monographs (Farina and
Rinaldi,2000; Kaczorek, 2001b). Variety of models having positive
behavior can be found in engineering, economics, social sciences,
biology and medicine, etc.

The positive fractional linear systems have been investigated
in Kaczorek (2008a, 2011c,d, 2012). Stability of fractional linear
1D discrete-time and continuous-time systems has been investi-
gated in the papers (Bustowicz, 2008; Dzielinski and Sierociuk,
2008; Kaczorek, 2012) and of 2D fractional positive linear systems
in Kaczorek (2009). The notion of practical stability of positive
fractional discrete-time linear systems has been introduced
in Kaczorek (2008b). The minimum energy control problem
for standard linear systems has been formulated and solved by
Klamka (1976, 1977, 1983, 1991, 1993, 2010) and for 2D linear
systems with variable coefficients in Kaczorek and Klamka (1986).
The controllability and minimum energy control problem of frac-
tional discrete-time linear systems has been investigated by
Klamka (2010). The minimum energy control of fractional positive
continuous-time linear systems has been addressed in Kaczorek
(2014b) and for descriptor positive discrete-time linear systems
in Kaczorek (2014a).

In this paper the minimum energy control problem for positive
time-varying linear systems will be formulated and solved.

The paper is organized as follows. In section 2 the basic defi-
nitions and theorems of the positive time-varying linear systems
are recalled and the necessary and sufficient conditions for the
reachability of the positive systems are given. The minimum ener-
gy control problem of the positive time-varying linear systems is
formulated and solved in section 3. Sufficient conditions for the
existence of solution of the problem are established and a proce-
dure for computation of the optimal inputs and the minimum value
of the performance index are also presented. Concluding remarks
are given in section 4.

The following notation will be used: R - the set of real num-

bers, R™*™ — the set of n X m real matrices, RT*™ - the set
of n X m matrices with nonnegative entries and R? = R7*1,
M, - the set of n x nMetzler matrices (real matrices with
nonnegative off-diagonal entries), I,, — the n X n identity matrix,
AT —the transpose matrix A.

2. POSITIVE TIME-VARYING LINEAR SYSTEMS
AND THEIR REACHABILITY

Consider the time-varying linear system
x(t) = A(t)x(t) + B(t)u(t) (2.1)

where x(t) € R" and u(t) € R™ are the state and input
vectors and A(t) € R™™, B(t) € R™™ with continuous-time
entries.

The solution of equation (2.1) has the form

x(t) = (¢, to)xo

+ f O, DB(Ou(Ddr, x(ty) = x, (2.2)
0
where @ (t, t,,) is the fundamental matrix defined by
t
O(t,ty) = I+ fA(‘t)dr
© © (2.3a)
+ [ 4 [ acdnac+..
to to

|f A(tl)A(tz) = A(tz)A(tl) fOI' tl’ tz € [to, OO), then
(2.3a) takes the form (Gantmacher, 1959)

B(t,to) = exp (J A@)dr). (2.3b)

The fundamental matrix @(t, t,,) satisfies the matrix differen-
tial equation

d(t,t,) = A P(L, t,) (2.4)
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and the initial condition @ (t,, ty) = I,,.
Lemma 2.1. The fundamental matrix satisfies

d(t, t,) ERPM™fort =t (2.5)

if and only if the off-diagonal entries a;
of the matrix A(t) satisfy the condition

BiFES L =121

ffo a;;(Ddt = 0fori #j,i,j =1,2,...,n. (2.6)

Proof is given in Kaczorek (2001a).

Definition 2.1. The system (2.1) is called the (internally) positive
ifand only if x(t) € RY, t = ¢, for any initial conditions x. €
R and allinputs u(t) € R, t = t,.

Theorem 2.1. The time-varying linear system (2.1) is positive
if and only if the off-diagonal entries of the matrix A(t) satisfy the
condition (2.6) and B(t) € R*™ fort > t,.

Definition 2.2. The system (2.1) is called reachable in time
tr — t, if for any given final state x, € R’} there exists an input
u(t) € RY, for t € [t,, tf] that steers the state of the system
from zero initial state x(¢,) = x;, to the state x;, i.e. x(¢;) =
xf.

A real square matrix is called monomial if each its row and
each its column contains only one positive entry and the remain-
ing entries are zero.

Theorem 2.2. The positive system (2.1) is reachable in time
tr —to if and only if

R, = f;f ®(t;, DB(DBT (DD (t7, T)dT 2.7)

is a monomial matrix. The input vector which steers the state
of the system (2.1) from x(¢,) = x,, to Xt is given by

u(t) = BT (D" (tp, )R 'x; fort € [to, ty]. (2.8)

Proof. It is well-known (Kaczorek, 2001b) that the inverse matrix
R;* € RI*™ if and only if the matrix R is monomial. In this case
the input u(t) € R given by (2.8) steers the state of the system
from x(t,) = x,, to the state x;. Substituting (2.8) into (2.2) for
t =ty and x(t,) = x, we obtain

x(tp) = [ ®(t;, DBOBT (D7 (&, DRF xpd
’ 29
= [17 0t OB BT " (] By =y

Therefore, the positive system (2.1) is reachable in time
te — t, if and only if the matrix (2.7) is monomial. o

3. MINIMUM ENERGY CONTROL PROBLEM

Consider the positive system (2.1) reachable in time t; — t,.
If the system is reachable in time ¢ € [t,,t;], then usually there
exists many different inputs u(t) € R that steers the state of the
system from x(t,) = x,, =0 to x = x(t;) € R}. Among
these inputs we are looking for an input u(t) € R% that minimiz-
es the performance index

Iw) = ffof U (1) Qu(t)dr (3.1)
where Q € R'P™ is a symmetric positive defined matrix

and Q1 € R,
The minimum energy control problem for the positive time-
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varying linear systems (2.1) can be stated as follows: Given the
matrices A(t), B(t) and Q € R'*™ of the performance index
(3.1), xr € RE, ty, and t; > 0, find an input u(t) € R} for
t € [to, tr] that steers the state vector of the system from
x¢, = 0 tox, € RY and minimizes the performance index (3.1).
To solve the problem we define the matrix
tr
= f O(t;, T)B(T)Q BT (1) (t;, T)dr (3:2)

to

From (3.2) and Theorem 2.2 it follows that the matrix (3.2)
is monomial if and only if the fractional positive system (2.1)
is reachable in time [¢,, t]. In this case we may define the input

a(t) = Q7' BT(®)PT (tr, t)W 'xsfor t € [t ty]. (3.3)

Note that the input (3.3) satisfies the condition u(t) € R}
fort € [to, tf] if

Q™' € K™ and W1x, € R™. (3.4)

Theorem 3.1. Let the positive system (2.1) be reachable in time
[to, tr] and let u(t) € RE fort € [t,, tf] be an input that steers
the state of the positive system (2.1) from x, = 0 to x, € RY.
Then the input (3.3) also steers the state of the system from
x¢, = 010 x; € RE and minimizes the performance index (3.1),

e I(@) < I(w).

The minimal value of the performance index (3.1) is equal to
1(@) = xf W™ 'xp. (3.5)
Proof. If the conditions (3.4) are met then the input (3.3) is well
defined and @i(t) € RY for t € [t,, t;]. We shall show that the
input steers the state of the system from x, = 0 to x; € RY.
Substitution of (3.3) into (2.2) for ¢ = t; and x,, = 0 yields

x(ty) = [ oty DB (AT dr
= ftf)fCD(tf,T)B(T)Q—lBT(T)(DT(tf‘T)dTW—le (3.6)
= x;

since (3.2) holds. By assumption the inputs #(t) and i(t),
t € [to, ty] steers the state of the system from x, =0 to
x; € R} Hence

tr
Xp = f ®(tr, T)B(D)u(t)dr
fo . (3.7a)
= f ®(tr, )B(D)U(T)dT

or
[ @(t;, DB - a(0)]dr = 0. (3.7b)

By transposition of (3.7b) and postmultiplication by W~1x; we
obtain

fti)f[ﬁ(‘r) —(D]"BT ()P (tf, T)dTW "'x; = 0. (3.8)

Substitution of (3.3) into (3.8) yields
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[0 — 2T BT (@ (¢, ) dTW 1x;

3.9
= [[a(0) - a7 Qa(vdr = 0. (39)
Using (3.9) it is easy to verify that
J‘ttfﬁ(T)TQﬁ("f)d‘lf = fttfﬁ(T)TQﬁ(‘[)dr
0 : (3.10)

+ [T - @ Qla() - av)ldr.

From (3.10) it follows that I()) < I(1) since the second term
in the right-hand side of the inequality is nonnegative.

To find the minimal value of the performance index (3.1) we
substitute (3.3) into (3.1) and we obtain

1(@) = [,/ 2" (D)a(r)de (3.11)
=W [/ o (t;, DB(DQ BT (D)7 (t;, DHdT W x;
=xf W lx,

since (3.2) holds. o

From the above considerations we have the following proce-
dure for computation the optimal inputs that steers the state of the
system from x,, = 0 to x, € R and minimize the performance
index (3.1).
Procedure 3.1.
Step 1. Knowing the matrix A(t) compute & (¢t).
Step 2. Using (3.2) compute the matrix W .
Step 3. Using (3.3) compute the input i (t).
Step4. Using (3.5) compute the minimal value of the
performance index.
Example 3.1. Consider the positive system (2.1) for t, = 0 with
matrices

t
ao=[2 Y B(t)=[?ﬁ g] (3.12)
and the performance index (3.1) with
Q=[(2) g (3.13)

By Theorems 2.1 and 2.2 the system is positive and reachable
in time t; — t,. Therefore, there exists an input u(t) that steers

the state of the system from zero state to x; = [2 1] in time
tr —toforty =0,t, = 1.

Using the Procedure 3.1 we obtain the following:
Step 1. Using (2.3a) we obtain

d(1,7) = exp (f:A(T)d-[) =
exp(2(1—-1)) O
[0 exp(0.5(1 — TZ))]'

Step 2. Using (3.2), (3.13) and (3.14) we obtain

(3.14)

W = [ $(1,0)B)Q BT (DI (1, D)dt
_ [0.25e2(e2 -1 0 . (3.15)
0 0.25(e — 1)
Step 3. Using (3.3) and (3.15) we have
a(t) = Q'BT®)PT (1, )W x, =
z—\_/iexp(O.S(l —12))

4exp(—t)
e2-1

(3.16)
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Step 4. The minimal value of the performance index
() = xfTW‘le =[2 1]
[o.zseZ(e2 ~1) 0 - [2]
0 025(e—1] L
16 4
zez(e‘2 - 1)+e— 1

(3.17)

4. CONCLUDING REMARKS

Necessary and sufficient conditions for the reachability of the
positive time-varying linear systems have been established (Theo-
rem 2.2). The minimum energy control problem for the positive
time-varying linear systems has been formulated and solved.
Sufficient conditions for the existence of a solution to the problem
has been given (Theorem 3.1). A procedure for computation of
optimal input and the minimal value of performance index has
been proposed. The effectiveness of the procedure has been
demonstrated on the numerical example. The presented method
can be extended to positive discrete-time linear systems and to
fractional positive time-varying linear systems with bounded in-
puts.
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