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Abstract: The paper presents the strategy for identifying the shape of defects in the domain defined in the boundary value problem
modelled by the nonlinear differential equation. To solve the nonlinear problem in the iterative process the PIES method and its ad-
vantages were used: the efficient way of the boundary and the domain modelling and global integration. The identification was performed
using the genetic algorithm, where in connection with the efficiency of PIES we identify the small number of data required to the defect's

definition. The strategy has been tested for different shapes of defects.
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1. INTRODUCTION

Identification of the shape of the boundary is classified as in-
verse problem, which next to direct issues are one of the two main
groups of boundary value problems. Inverse boundary problems
include problems related to the identification of body parameters,
boundary conditions, shape or wide class of optimization prob-
lems (Tikhonov and Arsenin, 1977). These problems are de-
scribed as ill-conditioned and characterized by difficulty in obtain-
ing unequivocal solutions. There is the whole range of methods
(Liu and Han, 2003) used to solve problems of this type, but the
most popular are methods based on the minimization of the
adopted objective function. In practice, this leads to iterative solv-
ing of the direct problem with the modified shape of the boundary.
The problem, therefore, is to select a suitable method for numeri-
cal solving of the direct problem, and only then to assume
a method for identification.

The numerical solution of the direct problem can be obtained
by popular FEM (Zienkiewicz, 1977) and BEM (Ameen, 2001;
Cholewa et al., 2002; Ligget and Salmon, 1981). In the case
of BEM to define the boundary geometry are used various shape
functions i.a. polynomials (Ameen, 2001) or their modification
as cubic splines (Durdola and Fenner, 1990; Ligget and Salmon,
1981; Sen, 1995) or many others. These methods, regardless
of applied shape functions, do not meet the requirement of the
simplicity of defining and modifying the domain and the boundary,
which is particularly important in the case of the problems
of shape optimization or identification (Cerrolaza et al., 2000; Rus
and Gallego, 2002). Thus, in FEM and BEM in each step of the
iterative process, a re-discretization of the modified shape
is required. Such conditioning of mentioned methods can cause
a rapid increase in the number of design variables identified with
nodes of the element mesh, regardless of shape functions applied
for its definition.

Considering identification problems solved by BEM, in the lit-
erature there are attempts to the approximation of the identified
part of the boundary in a parametric way (by Bézier or B-spline
curves (Cholewa et al., 2002; Nowak et al., 2002). Such approxi-
mation of the boundary makes it easy to modify, but solution
of the problem using BEM still requires its division into boundary
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elements. In order to obtain solutions with high accuracy it is
necessary to divide even short identified part of the boundary into
quite a lot of boundary elements.

Taking into account mentioned above problems, in the re-
search (Zieniuk and Bottu¢, 2006; Zieniuk, 2007) carried out by
authors the different approach to direct boundary problems has
been proposed. Parametric integral equations system (PIES) has
been obtained on the basis of the classic boundary integral equa-
tion (BIE) by its analytical modification (Zieniuk, 2007). That modi-
fication is concerned with the elimination of discretization both the
domain (as in BEM) and the boundary by including the boundary
geometry (defined in a parametric way by curves) directly in PIES
kernels. In the case of solving nonlinear problems considered
in the paper we should also define the domain of interest in order
to made the integration over it (Zieniuk and Bottu¢, 2010). In BEM
(where discretization of the domain was eliminated for problems
without domain integrals), this requires dividing the domain into
subdomains called cells. In the PIES method the domain, as the
boundary, is not discretized, only created globally using surface
patches. Modelling both the boundary by curves and the domain
by surface patches requires a small number of control points,
regardless of the complexity of the shape which is described
by that curve or surface. The modification of such defined domain
is very simple and effective with respect to the number of data.
Advantages of such modification seem to be particularly important
in the case of inverse tasks possible to solve by the repeatedly
solving direct problem with the modified shape. Even more sub-
stantial is the fact, that in nonlinear problems modification of the
shape at each iteration concerns not only the boundary, but also
the domain. In the case of element methods such modification
involves the division of the boundary and the domain into ele-
ments at each step of the algorithm, regardless of shape functions
applied to their definition. In the PIES method the shape of the
boundary and the domain is directly included into the mathemati-
cal formalism, so the modification of that shape will automatically
change the PIES formalism, and its numerical solution does not
require dividing such defined boundary into boundary elements,
as is done in classical BIE. This approach requires the minimum
set of data needed for modelling and modifying the shape of the
boundary and the domain seems to be especially effective
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for shape identification and optimization problems.

The aim of this study is to apply the PIES method to identify
the shape of defects in 2D boundary problems modelled by the
nonlinear differential equation. The process of identification
is performed iteratively, and at its each step the direct boundary
value problem is solved by PIES. The complexity of the problem
is that in the nonlinear boundary issues the direct problem is also
solved in the iterative process. The identification process
is steered by the genetic algorithm (Goldberg, 1989; Michalewicz,
1996), and the proposed strategy has been tested on examples
with various shapes and number of defects.

2. PIES FOR NONLINEAR BOUNDARY PROBLEMS

In the presented paper the following partial differential equa-
tion (Zhu et al., 1998) is solved:

Vulx) + eu(x)" =px), x e Qn>1 W)

a? % . , . .
where: V2= 1oz is Laplace’s operator, p(x) is a given
1 2

source function, € is a constant, and the domain Q is enclosed
byl'=T, UT, with boundary conditions uw=u on [, and
Z—Z Su=1uon I,

The form of PIES for considered in the paper equation is fol-
lowing (Zieniuk and Bottu¢, 2010):
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S,Sj—1 <51 <sj, 1 =1.2,..,n and n is the number of seg-
ments .

The first and second integrands appering in (2) are respective-
ly fundamental and singular solutions for Laplace’s equation (they
are presented in an explicit form in Zieniuk (2007).

Function U; from the domain integral from (2) takes the fol-
lowing form:

= 1 1
Ui(sp,y) = ;lnw 3)
where 77, = I (s1) — y1, 7, = TP (s,) — y, whilst T'(s) are
parametric curves which describe the boundary (in the paper
Bézier curves of the first and third degree are used (Farin, 1990;
Foley et al., 1994).

In order to obtain values of u(x) in the domain £ we have to
use the integral identity, which can be expressed as follows:

i f ’ {03 (%, 5)p;(s)
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where: function ﬁ{ from the integral over the domain takes the
following form:

* =t
Ui 3) =3I (5)
where 7y = y; — X1, 7, = ¥ — Xz, X1, X€Q.

The domain € is modelled using surface patches known from
computer graphics (Farin, 1990; Foley et al., 1994). In the paper
Bézier surfaces of the first and third degree were used.

3. MODELING AND NUMERICAL SOLUTION

The solution of PIES (2) is reduced to finding unknown func-
tions u;(s) or p;(s) on each boundary segment of the consid-
ered problem. Unknown functions are approximated by expres-
sions presented with details in Zieniuk (2007).

The equation (2) requires special treatment, because the inte-
gral over the domain contains a nonlinear and unknown at the
same time function u(x)™. For that reason, the application of the
iterative process is necessary.

3.1. lterative process

The equation (2) written down in the form of the algebraic
equations system (after application the collocation method) can be
presented as follows:

Hu=Gp+W (6)

where: H = [H]yxy, G =[Glyxy M =nxN,N is the
number of collocation points on the segment) are square matrices
of elements expressed by integrals over the boundary from (2), u
and p are vectors which contain the coefficients of approximation
series (Zieniuk, 2007), whilst W is the vector of elements ex-
pressed by the integral over the domain from equation (2).

After application of boundary conditions and some transfor-
mations, the equation (6) takes the following form:

AX=F+W )

where: the vector X contains unknown coefficients of searched
boundary approximating functions , whilst the vector F is known
and depends on given boundary conditions.

The only problem is that the right-hand side (W) of the equa-
tion (7) is unknown. It depends on the current value of solution
u; (x) at chosen points of the domain Q. For that reason it is
necessary to apply the iterative process and assume initial guess
for searched solution wu,(x).Taking into account the convergence
of a method, most effective is to assume for the iteration i = 0
real value of unknown function. It is also acceptable to choose
constant or zero values.

After calculation u, (x) on the basis of (7), the solution be-
comes approximated in following iteration steps until fulfilling
given stop criterion. The iterative process should be recognized as
finished, if the difference between two lastly obtained values at all
considered points of the domain (or the boundary) is smaller than
the convergence criterion § (|u;1 (x) — uy (x)| < 6).

The proposed method of solving nonlinear boundary value
problems has been tested taking into account the different shapes
of domains, different boundary conditions and the degree of non-
linearity (n = 1,2,3) such as in Zieniuk and Bottu¢ (2010). The
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strategy has generated promising results: exact solutions in the
rapidly converging iterative process.

3.2. Modelling of the boundary and the domain

A very important problem in identification problems is to effec-
tively define the shape. Efficiency refers to the simplicity of both
the modelling and modification. The PIES method is characterized
by the replacement of modelling by elements with a more global
modelling using parametric curves. In the paper, for modelling
of the boundary we use Bézier curves of the first and third degree
(Farin, 1990; Foley et al., 1994). They are characterized by the
following advantages, which are crucial in identification process:
easy representation of any shape using a small number of curves,
a small number of data defining the shape of the curve and the
ease of modification. The way of the definition of the boundary
geometry in PIES using Bézier curves is presented in detail, inter
alia, in Zieniuk (2007) and schematically in Fig. 1a,b.

a
) P, P,
Q
P P,
b) P P P P
Q
P P,

® — comner points
o — control points

Fig. 1. Modelling of the boundary by curves of: a) the first,
b) the first and third degree

Another problem related to modelling in nonlinear issues is to
define the domain. In element methods it leads to discretization by
finite elements in FEM or so-called cells in BEM. In PIES the
domain is described globally using surface patches. Depending on
the shape of the domain we use rectangular or triangular surfaces
(Farin, 1990; Foley et al., 1994). The study takes into account
rectangular surfaces: bilinear (for polygons) and bicubic (for
curved boundary domains) (Farin, 1990; Foley et al., 1994). Im-
portant in such cases is also that defined in the 3D space surfaces
are reduced to flat by eliminating the third dimension. The exam-
ple of the modelling of the rectangular domain with one bilinear
surface is presented in Fig. 1a. Details on the application of the
various types of surface patches in the PIES method can be
found, inter alia, in Bottu¢ and Zieniuk (2011a, b).

In cases where we are dealing with more complex shapes,
where the domain can not be modelled by one surface is required
to use many of them. Fig. 2 presents the domain formed by two
bilinear and one bicubic surface patches. This should not be
identified with discretization well-known from element methods,
where it is used not because of accurate description of the shape
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(as in the PIES method), but because of the accurate approxima-
tion of results.

P, P, P, P,
F >
o o
o
o o
Q‘ Q: o Q\
o (o] (] Q
P, P

Q=Q,+Q,+Q,
e — comer points of bilinear surface patch
o — control points of bicubic surface patch

Fig. 2. Modelling of the domain by surface patches

In the case of the identification problem, at each step of the it-
erative process the direct boundary value problem is solved with
the modified shape. When dealing with linear problems (or other
that do not require integration over the domain) shape modifica-
tion concerns only the boundary. Considering the geometry from
Fig. 2, it would be steering by two control points that define the
shape of the cubic Bézier curve mapping the part of the rectangle
side. However, taking into account nonlinear problems (or other in
which we deal with integrals over the domain), besides the
boundary modified has to be also the shape of the surface patch,
which define the modified domain. Thus, it is very important to
apply modelling with reduced amount of data for modelling and
modification. In the case of the PIES method and the geometry
from Fig. 2, modification of the shape of the domain requires
changing positions of only two control points which describe the
surface corresponding to the domain ,. The other two bilinear
patches do not change their shapes.

The integration over the domain in PIES is performed globally.
In BEM integrals are calculated over subdomains called cells with
the small number of weighting factors from the integration quadra-
ture. The domain in PIES is defined globally by the small number
of surfaces. The number of them depends only on the complexity
of the shape of the modelled domain. Integrals are then calculated
over the domain defined by the surface with a large number
of quadrature points and optionally are aggregated when definition
of the domain requires few surface patches. More on global inte-
gration over the domain in PIES can be found, among others
in Boltu¢ and Zieniuk (2011a, b) and Zieniuk and Bottu¢ (2010).

4. GA ALGORITHM

Solved in the paper task of the shape identification is reduced
to repeatedly solve the direct problem with the modified shape.
The adopted approach generates many alternative solutions
to the problem, among which we should indicate searched one
taking into account introduced evaluation criterions. Because
of the necessity of searching the large solution space we choose
the genetic algorithm (GA) (Goldberg, 1989; Michalewicz, 1996)
to control the process of identification. The success of the identifi-
cation process is therefore dependent on the ability to seek ap-
propriate solutions by GA. All those characteristics which distin-
guish AG from classical algorithms are favourable in the consid-
ered problem: the flexibility to choose the form of solutions, the
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parallel nature of the calculations or introducing an element
of randomness and orientation of the searching process on the
basis of the quality of actual solutions. Also relevant is the fact
that GA are significantly resistant to existence of local minima in
the search area.

Adjusting GA to the considered problem we should define the
form of the chromosome and the fitness function. The shape
is modified by means of control points I;(x4;, X5;) which define
curves and surfaces, thus solving the problem is reduced to find-
ing coordinates of n points (vector X) that create the identified
shape. Mentioned points are encoded in the GA chromosome
as follows:

chromosome
= (o (X10, X20), I1 (X11, X21) «es [n (X11s X20)) ()

Identification using PIES is reduced to finding such points de-
termining the shape (vector X), that solutions u}‘ in m selected
measurement points are as close as possible to known reference
values u;. Such stated problem is the optimization task, with
minimization of the following fitness function:

FO0 = J3m, (uf —w)’ 9)

We use algorithm bases on the classic Goldberg’'s scheme
(Goldberg, 1989) and is implemented based on the object-
oriented C++ library Galib (Wall, 1996).

5. TESTING EXAMPLES

In order to test the strategy for identifying the shape we con-
sider the boundary problem defined by the nonlinear differential
equation (1) of the following form:

VZu(x) + cu(x)? = p(x), x € Q (10)

The equation (10) was analyzed for two different shapes of the
domain. Firstly we check the convergence and accuracy of results
comparing with analytical solution

u(x) = x2 + x2 (11)
with the form of the function p(x)
p(x) = e{x? +x2}2 + 4 (12)

The rest of parameters assumed for researches are: € = 1,
constant initial value of the solution u, = 18 and the conver-
gence criterion § = 0.0001. The application of PIES to solving
problems with nonlinearity have finished successfully (obtaining
an accurate numerical solutions) and seems to be effective
(an iterative process converges to a final solution in small number
of steps).

The main subject considered in the paper is the identification
of the shape of the unknown part of the boundary. Identification
problem is formulated as follows: from the known values at the
measurement points deployed in the domain and/or on the
boundary and on the assumption that part of the boundary
is known and does not change the shape we have searched un-
known part. Due to the lack of empirical values at measurement
points obtained from the experiment, a simulation was performed
to yield these values on the basis of the solution of direct bounda-
ry problems with the assumed shape by PIES method. In view
of the fact that measured data are always noisy we also made
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a simulation with some level of noise in the inputs.

Adopted GA parameters are: population size - 50, the number
of generations - 60, the mutation probability - 60%, the crossover
probability - 3% and 5 independent runs.

The first considered problem with posed boundary conditions
is presented in Fig.3. The domain was modelled using three sur-
faces: one bicubic and two bilinear. There is one defect in the form
of the indentation, which is identified by only two control points

(©)-

x2

P,(0.7,0.5) u=0

P,(1,0.5)

u=10 o 1,(0.55,x,) u=10

0 1,(0.45,x,)

xxxxxxxxxxxxxxxxxxxth
1,

P,(0,0) u=10 X,
X- measurement points, o — identified points

Fig. 3. Considered domain, measurement points and boundary conditions

Measurement points (x) were considered taking into account
three variants (illustratively shown in Fig.3):

a. forty five measurement points placed uniformly only in the
domain at the horizontal cross-section x, = 0.1,

b. forty five measurement points placed only on the boundary,

c. ninety measurement points placed on the boundary and in the
domain (the arrangement of points is taken from a) and b)).
Only x, coordinates of two mentioned control points were

identified in the search area corresponding to the height of the

considered domain 0 < x, < 0.5. Average and the best results
of identification for assumed coordinates (0.1, 0.4) are presented

in Tab. 1.

As was mentioned above we also made a simulation with
some level of noise in the inputs. The noise was generated ran-
domly, and its maximum value was defined as 3% of the dis-
placement at the measurement point. Tab. 1 also contains the
results for distorted values at measurement points taking into
account mentioned above three variants.

Values from Tab. 1 show the stability and high accuracy of the
identification process even in examples with noise. It should be
only noted that values of the fitness function in such cases in-
crease.

Tab. 1. |dentification results

Variant avg fitness | avg identified | best identified
function valueof x, | valueof x,
a) without noise | 0.00458 g’fgggf) %’fgggg
b) without noise | 0.09894 (831329857) (gfggfg
¢) without noise | 0.22518 %)3190531“ gf) %’;;’3;533,
a) with noise 0.35488 (glggggé %);551:;5)
b) with noise 1.97775 (8318 557?52) (323?113%?
¢) with noise 2.10746 %)fgggg) %’fgf 2510 81)‘
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Fig.4 presents values of coordinates x, of identified points I,
and I; obtained at following steps of GA (the case without noise,
measurement points placed only in the domain). Presented values
correspond to the best solutions in GA generations.

E] E) 7] £ ED = 1

number of iteration

Fig. 4. Identified coordinates of two control points during iterative process

The shape of the second considered domain with posed
boundary conditions is presented in Fig. 5. As can be seen the
domain is defined by four bilinear surface patches. There are two
notches with symmetrical coordinate x, with respect to x; axis.
Identification of the shapes of notches was performed using two
corner points I, and I, but only three coordinates were searched
(because of the x, symmetry). We have assumed nineteen
measurement points placed uniformly at the horizontal cross-
section in the middle of the considered polygon and fifty four
measurement points on the boundary. Adopted GA parameters
are the same as in the previous example.

X,

P4(0.25,1) P,(0.75,1) P,(1,1)

P,(0,1)

3 L(x;,1-x,)
u=0
U=0 Fx x x x X X X X X X X X X X X X X X X]
3

lo(x1,%,)

Py(0,0)  p,(0.25,0) P,(0.75,0) P.(1,0)
X- measurement points, o — identified points

Fig. 5. Considered domain and measurement points

Assumed values of identified coordinates are following:
x; of I is 0.5625, x;of I; is 0.4375 and x, is 0.8. Tab. 2 pre-
sents the best identified points and values of the fitness function
obtained after five independent runs of GA for measurement
points placed in the domain only. The results for the case
of measurement points located on the boundary are presented
in Tab. 3. Tab. 4 and 5 present results of simulations with 3%
level of noise in the measured data.
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Tab. 2. Results of identification — measurement points in the domain

number fitness identified coordinates
of run function X, of 1, X, of I, X,
1 0.00111 0.54577 0.44442 0.79973
2 9.95E-06 0.56248 0.43749 0.80000
3 0.00034 0.56484 0.43643 0.79992
4 0.00128 0.54444 0.44560 0.79964
5 0.00086 0.55069 0.44201 0.79980
avg 0.00072 0.55364 0.44119 0.79982

Tab. 3. Results of identification — measurement points on the boundary

number fitness identified coordinates
of run function X, of I, X, of I, X,
1 0.00178 0.56249 0.43757 0.80005
2 0.00079 0.56250 0.43753 0.80002
3 0.02283 0.56283 0.43801 0.80079
4 0.04477 0.56227 0.44154 0.79990
5 0.00925 0.56275 0.43778 0.80031
avg 0.01588 0.56257 0.43849 0.80022

Tab. 4. Results of identification with noise — measurement points

in the domain
number fitness identified coordinates
ofrun | function X, of I, X, of I, X,
1 0.01374 0.52009 0.45675 0.798%
2 0.01334 0.55750 0.44001 0.80038
3 0.01256 0.60991 0.43188 0.80080
4 0.01199 0.54149 0.45652 0.80041
5 0.01342 0.60359 0.42998 0.80030
avg 0.01301 0.56652 0.44303 0.80016

Tab. 5. Results of identification with noise — measurement points
on the boundary

number fitness identified coordinates
of run function X, of 1, X, of I, X,
1 0.42872 0.59057 0.43730 0.80689
2 0.41734 0.55781 0.43232 0.80011
3 0.83691 0.55888 0.44005 0.79872
4 0.44172 0.561135 0.442069 0.79598
5 0.43116 0.551293 0.441299 0.799103
avg 0.511171 0.563939 0.438608 0.800161

As can be noticed from above tables, identified coordinates
are very similar to assumed for all runs of GA. We have also
considered the convergence of GA, which is presented in the form
of the fitness function for the best solution from each GA genera-
tion (the case with measurement points located on the boundary,
without noise). The results for five independent runs of GA are
given in Fig.6.

As can be seen in Fig. 6, the values of the fitness function in
all considered runs of GA converges to zero, but the similar level
of function values was obtained only for four runs after 20th gen-
eration.
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Fig. 6. Values of the fitness function during the iterative process
for five independent runs of GA

It is also worth mentioning the convergence of the iterative
process used to solve nonlinear boundary problems for each
candidate solution of GA in each generation. The number of these
iterations is 7-10. Therefore, the number of independent solutions
of boundary problems for the specific data and shape with as-
sumed in the paper parameters of GA is approximately 21000-
30000 in one GA run. Such a large number of boundary problems
to solve causes rising expectations for the method of its solution.
Such a method should allows for the modelling of the shape
with the minimum number of data, because it is modified each
time. In addition, the system of equations solved in each case
should be built with the least number of equations, in order
to involve the least computer resources and minimize the compu-
tation time. These requirements are fulfilled by the proposed in the
paper PIES method.

6. CONCLUSIONS

The paper presents the strategy for identifying the shape
of the boundary defined in the nonlinear boundary problem. The
concept has been applied and pre-verified on the example of the
problem modelled by the nonlinear differential equation. The
problem has been solved in the iterative process steering by GA
and its complexity lies on the fact that to solve the nonlinear direct
problem at each step of identification we have to also apply the
iterative process. So we have to deal with the iterative process
nested in the another iterative process.

The strategy proposed in the paper bases on PIES, which
is characterized by that the changing position of control points
causes changing the shape directly in PIES. In addition, PIES
automatically adapts to the modified boundary, and the solution
does not require division of the posed and approximated boundary
into elements. An additional benefit is that the domain is modelled
by surface patches, and integration over the domain is performed
without division it into small cells as in BEM. It is done automati-
cally for each modified by control points domain in the iterative
process. Such opportunities do not have BEM at this stage of its
development.

The algorithm has been tested on two examples with different
shapes and with different defects, which were identified. Tests
were successful - searched shapes have been identified, and both
iterative processes have given satisfactory results in a small
number of steps. These satisfactory results encourage further
research and verification approach by applying it to problems
characterized by a different source of nonlinearity e.g. nonlinear
elasticity problems.
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