
Eugeniusz Zieniuk, Agnieszka Boltuc, Krzysztof Szerszen                                                                                                            DOI 10.2478/ama-2014-0003                   
Shape Identification in Nonlinear Boundary Problems Solved by PIES Method                                                                                                              

16 

SHAPE IDENTIFICATION IN NONLINEAR BOUNDARY PROBLEMS SOLVED BY PIES METHOD 

Eugeniusz ZIENIUK*, Agnieszka BOŁTUĆ*, Krzysztof SZERSZEŃ* 

*Faculty of Mathematics and Informatics, University of Bialystok, ul. Sosnowa 64, 15-887 Bialystok, Poland 

ezieniuk@ii.uwb.edu.pl, aBołtuć@ii.uwb.edu.pl, kszerszen@ii.uwb.edu.pl 

Abstract: The paper presents the strategy for identifying the shape of defects in the domain defined in the boundary value problem  
modelled by the nonlinear differential equation. To solve the nonlinear problem in the iterative process the PIES method and its ad-
vantages were used: the efficient way of the boundary and the domain modelling and global integration. The identification was performed 
using the genetic algorithm, where in connection with the efficiency of PIES we identify the small number of data required to the defect’s 
definition. The strategy has been tested for different shapes of defects. 
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1. INTRODUCTION 

Identification of the shape of the boundary is classified as in-
verse problem, which next to direct issues are one of the two main 
groups of boundary value problems. Inverse boundary problems 
include problems related to the identification of body parameters, 
boundary conditions, shape or wide class of optimization prob-
lems (Tikhonov and Arsenin, 1977). These problems are de-
scribed as ill-conditioned and characterized by difficulty in obtain-
ing unequivocal solutions. There is the whole range of methods 
(Liu and Han, 2003) used to solve problems of this type, but the 
most popular are methods based on the minimization of the 
adopted objective function. In practice, this leads to iterative solv-
ing of the direct problem with the modified shape of the boundary. 
The problem, therefore, is to select a suitable method for numeri-
cal solving of the direct problem, and only then to assume 
a method for identification. 

The numerical solution of the direct problem can be obtained 
by popular FEM (Zienkiewicz, 1977) and BEM (Ameen, 2001; 
Cholewa et al., 2002; Ligget and Salmon, 1981). In the case 
of BEM to define the boundary geometry are used various shape 
functions i.a. polynomials (Ameen, 2001) or their modification 
as cubic splines (Durdola and Fenner, 1990; Ligget and Salmon, 
1981; Sen, 1995) or many others. These methods, regardless 
of applied shape functions, do not meet the requirement of the 
simplicity of defining and modifying the domain and the boundary, 
which is particularly important in the case of the problems 
of shape optimization or identification (Cerrolaza et al., 2000; Rus 
and Gallego, 2002). Thus, in FEM and BEM in each step of the 
iterative process, a re-discretization of the modified shape 
is required. Such conditioning of mentioned methods can cause 
a rapid increase in the number of design variables identified with 
nodes of the element mesh, regardless of shape functions applied 
for its definition.  

Considering identification problems solved by BEM, in the lit-
erature there are attempts to the approximation of the identified 
part of the boundary in a parametric way (by Bézier or B-spline 
curves (Cholewa et al., 2002; Nowak et al., 2002). Such approxi-
mation of the boundary makes it easy to modify, but solution 
of the problem using BEM still requires its division into boundary 

elements. In order to obtain solutions with high accuracy it is 
necessary to divide even short identified part of the boundary into 
quite a lot of boundary elements. 

Taking into account mentioned above problems, in the re-
search (Zieniuk and Bołtuć, 2006; Zieniuk, 2007) carried out by 
authors the different approach to direct boundary problems has 
been proposed. Parametric integral equations system (PIES) has 
been obtained on the basis of the classic boundary integral equa-
tion (BIE) by its analytical modification (Zieniuk, 2007). That modi-
fication is concerned with the elimination of discretization both the 
domain (as in BEM) and the boundary by including the boundary 
geometry (defined in a parametric way by curves) directly in PIES 
kernels. In the case of solving nonlinear problems considered 
in the paper we should also define the domain of interest in order 
to made the integration over it (Zieniuk and Bołtuć, 2010). In BEM 
(where discretization of the domain was eliminated for problems 
without domain integrals), this requires dividing the domain into 
subdomains called cells. In the PIES method the domain, as the 
boundary, is not discretized, only created globally using surface 
patches. Modelling both the boundary by curves and the domain 
by surface patches requires a small number of control points, 
regardless of the complexity of the shape which is described 
by that curve or surface. The modification of such defined domain 
is very simple and effective with respect to the number of data. 
Advantages of such modification seem to be particularly important 
in the case of inverse tasks possible to solve by the repeatedly 
solving direct problem with the modified shape. Even more sub-
stantial is the fact, that in nonlinear problems modification of the 
shape at each iteration concerns not only the boundary, but also 
the domain. In the case of element methods such modification 
involves the division of the boundary and the domain into ele-
ments at each step of the algorithm, regardless of shape functions 
applied to their definition. In the PIES method the shape of the 
boundary and the domain is directly included into the mathemati-
cal formalism, so the modification of that shape will automatically 
change the PIES formalism, and its numerical solution does not 
require dividing such defined boundary into boundary elements, 
as is done in classical BIE. This approach requires the minimum 
set of data needed for modelling and modifying the shape of the 
boundary and the domain seems to be especially effective 



acta mechanica et automatica, vol.8 no.1 (2014), DOI 10.2478/ama-2014-0003 

17 

for shape identification and optimization problems. 
The aim of this study is to apply the PIES method to identify 

the shape of defects in 2D boundary problems modelled by the 
nonlinear differential equation. The process of identification 
is performed iteratively, and at its each step the direct boundary 
value problem is solved by PIES. The complexity of the problem 
is that in the nonlinear boundary issues the direct problem is also 
solved in the iterative process. The identification process 
is steered by the genetic algorithm (Goldberg, 1989; Michalewicz, 
1996), and the proposed strategy has been tested on examples 
with various shapes and number of defects. 

2. PIES FOR NONLINEAR BOUNDARY PROBLEMS 

In the presented paper the following partial differential equa-
tion (Zhu et al., 1998) is solved: 

  ( )    ( )   ( ),                 (1) 

where:    
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The form of PIES for considered in the paper equation is fol-
lowing (Zieniuk and Bołtuć, 2010): 
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The first and second integrands appering in (2) are respective-

ly fundamental and singular solutions for Laplace’s equation (they 
are presented in an explicit form in Zieniuk (2007).  
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  from the domain integral from (2) takes the fol-

lowing form: 
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where  ̅    
( )(  )    ,  ̅    

( )(  )     whilst  ( ) are 

parametric curves which describe the boundary (in the paper 
Bézier curves of the first and third degree are used (Farin, 1990; 
Foley et al., 1994). 

In order to obtain values of  ( ) in the domain   we have to 
use the integral identity, which can be expressed as follows:  
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where:  function  ̂̿ 
  from the integral over the domain takes the 

following form: 
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where  ̂̅       ,  ̂̅       ,        .  
The domain   is modelled using surface patches known from 

computer graphics (Farin, 1990; Foley et al., 1994). In the paper 
Bézier surfaces of the first and third degree were used.    

3. MODELING AND NUMERICAL SOLUTION 

The solution of PIES (2) is reduced to finding unknown func-
tions   ( ) or   ( ) on each boundary segment of the consid-

ered problem. Unknown functions are approximated by expres-
sions presented with details in Zieniuk (2007).   

The equation (2) requires special treatment, because the inte-
gral over the domain contains a nonlinear and unknown at the 
same time function  ( ) . For that reason, the application of the 
iterative process is necessary. 

3.1. Iterative process  

The equation (2) written down in the form of the algebraic 
equations system (after application the collocation method) can be 
presented as follows: 

        (6) 

where:   [ ]   ,   [ ]         ,   is the 
number of collocation points on the segment) are square matrices 
of elements expressed by integrals over the boundary from (2),   

and   are vectors which contain the coefficients of approximation 

series (Zieniuk, 2007), whilst   is the vector of elements ex-
pressed by the integral over the domain from equation (2). 

After application of boundary conditions and some transfor-
mations, the equation (6) takes the following form: 

       (7) 

where: the vector   contains unknown coefficients of searched 

boundary approximating functions , whilst the vector   is known 
and depends on given boundary conditions. 

The only problem is that the right-hand side ( ) of the equa-
tion (7) is unknown. It depends on the current value of solution 
  ( ) at chosen points of the domain  . For that reason it is 
necessary to apply the iterative process and assume initial guess 
for searched solution   ( ).Taking into account the convergence 

of a method, most effective is to assume for the iteration     
real value of unknown function. It is also acceptable to choose 
constant or zero values. 

After calculation   ( ) on the basis of (7), the solution be-
comes approximated in following iteration steps until fulfilling 
given stop criterion. The iterative process should be recognized as 
finished, if the difference between two lastly obtained values at all 
considered points of the domain (or the boundary) is smaller than 
the convergence criterion  (|    ( )    ( )|   ). 

The proposed method of solving nonlinear boundary value 
problems has been tested taking into account the different shapes 
of domains, different boundary conditions and the degree of non-

linearity (       ) such as in Zieniuk and Bołtuć (2010). The 
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strategy has generated promising results: exact solutions in the 
rapidly converging iterative process. 

3.2. Modelling of the boundary and the domain 

A very important problem in identification problems is to effec-
tively define the shape. Efficiency refers to the simplicity of both 
the modelling and modification. The PIES method is characterized 
by the replacement of modelling by elements with a more global 
modelling using parametric curves. In the paper, for modelling 
of the boundary we use Bézier curves of the first and third degree 
(Farin, 1990; Foley et al., 1994). They are characterized by the 
following advantages, which are crucial in identification process: 
easy representation of any shape using a small number of curves, 
a small number of data defining the shape of the curve and the 
ease of modification. The way of the definition of the boundary 
geometry in PIES using Bézier curves is presented in detail, inter 
alia, in Zieniuk (2007) and schematically in Fig. 1a,b. 

a) 

 
b) 

 
● – corner points 
○ – control points 

Fig. 1. Modelling of the boundary by curves of: a) the first,  
            b) the first and third degree 

Another problem related to modelling in nonlinear issues is to 
define the domain. In element methods it leads to discretization by 
finite elements in FEM or so-called cells in BEM. In PIES the 
domain is described globally using surface patches. Depending on 
the shape of the domain we use rectangular or triangular surfaces 
(Farin, 1990; Foley et al., 1994). The study takes into account 
rectangular surfaces: bilinear (for polygons) and bicubic (for 
curved boundary domains) (Farin, 1990; Foley et al., 1994). Im-
portant in such cases is also that defined in the 3D space surfaces 
are reduced to flat by eliminating the third dimension. The exam-
ple of the modelling of the rectangular domain with one bilinear 
surface is presented in Fig. 1a. Details on the application of the 
various types of surface patches in the PIES method can be 
found, inter alia, in Bołtuć and Zieniuk (2011a, b). 

In cases where we are dealing with more complex shapes, 
where the domain can not be modelled by one surface is required 
to use many of them. Fig. 2 presents the domain formed by two 
bilinear and one bicubic surface patches. This should not be 
identified with discretization well-known from element methods, 
where it is used not because of accurate description of the shape 

(as in the PIES method), but because of the accurate approxima-
tion of results. 

 
● – corner points of bilinear surface patch 
○ – control points of bicubic surface patch 

Fig. 2. Modelling of the domain by surface patches 

In the case of the identification problem, at each step of the it-
erative process the direct boundary value problem is solved with 
the modified shape. When dealing with linear problems (or other 
that do not require integration over the domain) shape modifica-
tion concerns only the boundary. Considering the geometry from 
Fig. 2, it would be steering  by two control points that define the 
shape of the cubic Bézier curve mapping the part of the rectangle 
side. However, taking into account nonlinear problems (or other in 
which we deal with integrals over the domain), besides the 
boundary modified has to be also the shape of the surface patch, 
which define the modified domain. Thus, it is very important to 
apply modelling with reduced amount of data for modelling and 
modification. In the case of the PIES method and the geometry 
from Fig. 2, modification of the shape of the domain requires 
changing positions of only two control points which describe the 
surface corresponding to the domain   . The other two bilinear 
patches do not change their shapes. 

The integration over the domain in PIES is performed globally. 
In BEM integrals are calculated over subdomains called cells with 
the small number of weighting factors from the integration quadra-
ture. The domain in PIES is defined globally by the small number 
of surfaces. The number of them depends only on the complexity 
of the shape of the modelled domain. Integrals are then calculated 
over the domain defined by the surface with a large number 
of quadrature points and optionally are aggregated when definition 
of the domain requires few surface patches. More on global inte-
gration over the domain in PIES can be found, among others 
in Bołtuć and Zieniuk (2011a, b) and Zieniuk and Bołtuć (2010). 

4. GA ALGORITHM 

Solved in the paper task of the shape identification is reduced 
to repeatedly solve the direct problem with the modified shape. 
The adopted approach generates many alternative solutions 
to the problem, among which we should indicate searched one 
taking into account introduced evaluation criterions. Because 
of the necessity of searching the large solution space we choose 
the genetic algorithm (GA) (Goldberg, 1989; Michalewicz, 1996) 
to control the process of identification. The success of the identifi-
cation process is therefore dependent on the ability to seek ap-
propriate solutions by GA. All those characteristics which distin-
guish AG from classical algorithms are favourable in the consid-
ered problem: the flexibility to choose the form of solutions, the 
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parallel nature of the calculations or introducing an element 
of randomness and orientation of the searching process on the 
basis of the quality of actual solutions. Also relevant is the fact 
that GA are significantly resistant to existence of local minima in 
the search area. 

Adjusting GA to the considered problem we should define the 
form of the chromosome and the fitness function. The shape 
is modified by means of control points   (       ) which define 
curves and surfaces, thus solving the problem is reduced to find-

ing coordinates of   points (vector  ) that create the identified 
shape. Mentioned points are encoded in the GA chromosome 
as follows: 

          
 〈  (       )   (       )     (       )〉 

(8) 

Identification using PIES is reduced to finding such points de-

termining the shape (vector  ), that solutions   
  in   selected 

measurement points are as close as possible to known reference 

values   
 . Such stated problem is the optimization task, with 

minimization of the following fitness function: 

  ( )  √∑ (  
    

 )
  

    (9) 

We use algorithm bases on the classic Goldberg’s scheme 
(Goldberg, 1989) and is implemented based on the object-
oriented C++ library Galib (Wall, 1996). 

5. TESTING EXAMPLES 

In order to test the strategy for identifying the shape we con-
sider the boundary problem defined by the nonlinear differential 
equation (1) of the following form: 

   ( )    ( )   ( ),            (10) 

The equation (10) was analyzed for two different shapes of the 
domain. Firstly we check the convergence and accuracy of results 
comparing with analytical solution 

 ( )    
    

  (11) 

with the form of the function  ( ) 

 ( )   {  
    

 }    (12) 

The rest of parameters assumed for researches are:    , 

constant initial value of the solution       and the conver-

gence criterion         . The application of PIES to solving 
problems with nonlinearity have finished successfully (obtaining 
an accurate numerical solutions) and seems to be effective 
(an iterative process converges to a final solution in small number 
of steps). 

The main subject considered in the paper is the identification 
of the shape of the unknown part of the boundary. Identification 
problem is formulated as follows: from the known values at the 
measurement points deployed in the domain and/or on the 
boundary and on the assumption that part of the boundary 
is known and does not change the shape we have searched un-
known part. Due to the lack of empirical values at measurement 
points obtained from the experiment, a simulation was performed 
to yield these values on the basis of the solution of direct bounda-
ry problems with the assumed shape by PIES method. In view 
of the fact that measured data are always noisy we also made 

a simulation with some level of noise in the inputs. 
Adopted GA parameters are: population size - 50, the number 

of generations - 60, the mutation probability - 60%, the crossover 
probability - 3% and 5 independent runs. 

The first considered problem with posed boundary conditions 
is presented in Fig.3. The domain was modelled using three sur-
faces: one bicubic and two bilinear. There is one defect in the form 
of the indentation, which is identified by only two control points 
(○).  

 
 - measurement points, ○ – identified points 

Fig. 3. Considered domain, measurement points and boundary conditions 

Measurement points ( ) were considered taking into account 
three variants (illustratively shown in Fig.3):  
a. forty five measurement points placed uniformly only in the 

domain at the horizontal cross-section       , 
b. forty five measurement points placed only on the boundary,  
c. ninety measurement points placed on the boundary and in the 

domain (the arrangement of points is taken from a) and b)). 

Only    coordinates of two mentioned control points were 
identified in the search area corresponding to the height of the 

considered domain         . Average and the best results  

of identification for assumed coordinates (       ) are presented 
in Tab. 1. 

As was mentioned above we also made a simulation with 
some level of noise in the inputs. The noise was generated ran-
domly, and its maximum value was defined as 3% of the dis-
placement at the measurement point. Tab. 1 also contains the 
results for distorted values at measurement points taking into 
account mentioned above three variants. 

Values from Tab. 1 show the stability and high accuracy of the 
identification process even in examples with noise. It should be 
only noted that values of the fitness function in such cases in-
crease.  

Tab. 1. Identification results 

Variant avg fitness 
function 

avg identified 

value of    

best identified 

value of    

a) without noise 0.00458 
(0.09965, 

0.40051) 

(0.09996, 
0.40006) 

b) without noise 0.09894 
(0.10087, 

0.39895) 

(0.09964, 
0.40048) 

c) without noise 0.22518 
(0.103464, 

0.395161) 

(0.100153, 
0.399803) 

a) with noise 0.35488 
(0.100002, 

0.400526 

(0.101616, 

0.395862) 

b) with noise 1.97775 
(0.105792, 

0.394575) 

(0.0981826, 
0.411106) 

c) with noise 2.10746 
(0.094607, 

0.406622) 

(0.099501, 
0.401218) 
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Fig.4 presents values of coordinates    of identified points    

and    obtained at following steps of GA (the case without noise, 
measurement points placed only in the domain). Presented values 
correspond to the best solutions in GA generations. 

 
Fig. 4. Identified coordinates of two control points during iterative process 

The shape of the second considered domain with posed 
boundary conditions is presented in Fig. 5. As can be seen the 
domain is defined by four bilinear surface patches. There are two 
notches with symmetrical coordinate    with respect to    axis. 
Identification of the shapes of notches was performed using two 

corner points    and   , but only three coordinates were searched 
(because of the    symmetry). We have assumed nineteen 
measurement points placed uniformly at the horizontal cross-
section in the middle of the considered polygon and fifty four  
measurement points on the boundary. Adopted GA parameters 
are the same as in the previous example.  

 
 - measurement points, ○ – identified points 

Fig. 5. Considered domain and measurement points 

Assumed values of identified coordinates are following: 

   of    is 0.5625,   of    is 0.4375 and    is 0.8. Tab. 2 pre-
sents the best identified points and values of the fitness function 
obtained after five independent runs of GA for measurement 
points placed in the domain only. The results for the case 
of measurement points located on the boundary are presented 
in Tab. 3. Tab. 4 and 5 present results of simulations with 3% 
level of noise in the measured data. 

Tab. 2. Results of identification – measurement points in the domain 

number  
of run 

fitness 
function 

identified coordinates 

1
x of 

0
I  

1
x of 

1
I  

2
x  

1 0.00111 0.54577 0.44442 0.79973 

2 9.95E-06 0.56248 0.43749 0.80000 

3 0.00034 0.56484 0.43643 0.79992 

4 0.00128 0.54444 0.44560 0.79964 

5 0.00086 0.55069 0.44201 0.79980 

avg 0.00072 0.55364 0.44119 0.79982 

Tab. 3. Results of identification – measurement points on the boundary 

number  
of run 

fitness 
function 

identified coordinates 

1
x of 

0
I  

1
x of 

1
I  

2
x  

1 0.00178 0.56249 0.43757 0.80005 

2 0.00079 0.56250 0.43753 0.80002 

3 0.02283 0.56283 0.43801 0.80079 

4 0.04477 0.56227 0.44154 0.79990 

5 0.00925 0.56275 0.43778 0.80031 

avg 0.01588 0.56257 0.43849 0.80022 

Tab. 4. Results of identification with noise – measurement points  
             in the domain 

number  
of run 

fitness 
function 

identified coordinates 

1
x of 

0
I  

1
x of 

1
I  

2
x  

1 0.01374 0.52009 0.45675 0.79894 

2 0.01334 0.55750 0.44001 0.80038 

3 0.01256 0.60991 0.43188 0.80080 

4 0.01199 0.54149 0.45652 0.80041 

5 0.01342 0.60359 0.42998 0.80030 

avg 0.01301 0.56652 0.44303 0.80016 

Tab. 5. Results of identification with noise – measurement points  
             on the boundary 

number  
of run 

fitness 
function 

identified coordinates 

1
x of 

0
I  

1
x of 

1
I  

2
x  

1 0.42872 0.59057 0.43730 0.80689 

2 0.41734 0.55781 0.43232 0.80011 

3 0.83691 0.55888 0.44005 0.79872 

4 0.44172 0.561135 0.442069 0.79598 

5 0.43116 0.551293 0.441299 0.799103 

avg 0.511171 0.563939 0.438608 0.800161 

As can be noticed from above tables, identified coordinates 
are very similar to assumed for all runs of GA. We have also 
considered the convergence of GA, which is presented in the form 
of the fitness function for the best solution from each GA genera-
tion (the case with measurement points located on the boundary, 
without noise). The results for five independent runs of GA are 
given in Fig.6. 

As can be seen in Fig. 6, the values of the fitness function in 
all considered runs of GA converges to zero, but the similar level 
of function values was obtained only for four runs after 20th gen-
eration. 
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Fig. 6. Values of the fitness function during the iterative process  
           for five independent runs of GA 

It is also worth mentioning the convergence of the iterative 
process used to solve nonlinear boundary problems for each 
candidate solution of GA in each generation. The number of these 
iterations is 7-10. Therefore, the number of independent solutions 
of boundary problems for the specific data and shape with as-
sumed in the paper parameters of GA is approximately 21000-
30000 in one GA run. Such a large number of boundary problems 
to solve causes rising expectations for the method of its solution. 
Such a method should allows for the modelling of the shape 
with the minimum number of data, because it is modified each 
time. In addition, the system of equations solved in each case 
should be built with the least number of equations, in order 
to involve the least computer resources and minimize the compu-
tation time. These requirements are fulfilled by the proposed in the 
paper PIES method. 

6. CONCLUSIONS 

The paper presents the strategy for identifying the shape 
of the boundary defined in the nonlinear boundary problem. The 
concept has been applied and pre-verified on the example of the 
problem modelled by the nonlinear differential equation. The 
problem has been solved in the iterative process steering by GA 
and its complexity lies on the fact that to solve the nonlinear direct 
problem at each step of identification we have to also apply the 
iterative process. So we have to deal with the iterative process 
nested in the another iterative process. 

The strategy proposed in the paper bases on PIES, which 
is characterized by that the changing position of control points 
causes changing the shape directly in PIES. In addition, PIES 
automatically adapts to the modified boundary, and the solution 
does not require division of the posed and approximated boundary 
into elements. An additional benefit is that the domain is modelled 
by surface patches, and integration over the domain is performed 
without division it into small cells as in BEM. It is done automati-
cally for each modified by control points domain in the iterative 
process. Such opportunities do not have BEM at this stage of its 
development. 

The algorithm has been tested on two examples with different 
shapes and with different defects, which were identified. Tests 
were successful - searched shapes have been identified, and both 
iterative processes have given satisfactory results in a small 
number of steps. These satisfactory results encourage further 
research and verification approach by applying it to problems 
characterized by a different source of nonlinearity e.g. nonlinear 
elasticity problems. 
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