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Abstract: This work makes use of singular integral equations method to solve plane contact problem for a half-space containing cracks.
This method is based on complex variables. Relationships are presented which help find the contact pressure under the punch and the
value of stress intensity factors at the crack tips. A detailed solution is presented for the problem of a punch pressed to the surface
of a half-space weakened by a single straight crack. It includes both a situation where the punch has a flat and parabolic base. The influ-
ence of friction and the position of the crack on the distribution of the values of stress intensity factors K; i Ky; in the functions of crack

length and distance from the contact zone was analyzed in detail.
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1. INTRODUCTION

In the mechanical engineering or in the technology of abrasive
machining, we often meet the problem connected with friction
between cooperating elements. Many classic examples of such
problems can be found in various friction brakes, gear units,
in grinding processes, or in the problems concerning wheels
rolling and braking on rails. In the analysis of such cases it is
usually assumed that both elements have no defects, such as
edge or internal cracks. It is obvious that the appearance of such
defects leads to a redistribution and most of all strong concentra-
tion of stresses connected with the effect of a crack.

This work concentrates on the analysis of effects connected
with the “sliding” of a punch pressed against an elastic half-space
weakened by edge or internal cracks. The analysis makes use
of the singular integral equations method including Muskhelish-
vili's complex potentials (Muskhelishvili, 1962). It covers a plane
problem assuming that the punch is perfectly rigid and neglecting
the problems of heat generation. In many papers, such problems
are modeled by applying load in the form of an appropriate con-
tact pressure on the surface of a half-space in the place where the
punch is applied (Hills et al., 1993; Hills and Nowell, 1994). It can
be also found for example in the series of works by Goshima and
co-authors, which concentrate the problem of rolling (including
sliding) of an rigid cylindrical punch on a damaged elastic half-
space. This analysis included both fatigue and temperature ef-
fects. The analyzed defects included a single edge crack extend-
ing to the surface of the elastic half-space (Goshima and Keer,
1990), two edge cracks of varying orientation (Goshima and
Kamishima, 1996), a set of periodic cracks (Goshima and
Kamishima, 1994; Goshima, 2003). We can also find the solution
of a plane problem with a defect in the form of a single internal
crack (Goshima and Soda, 1997) and problems with a three-
dimensional edge crack (Goshima, 2003; Goshima et al., 1990).
Bryant et al. (1984) examined the interaction effects between
cylindrical indenter and single-cracked half-space but only for the
case when surface-braking crack was presented in contact zone.
Other paper by Bryant (Keer and Bryant, 1983) presents a fatigue

problem where cylindrical damaged indenter were considered
or problem where a half-space is weakened by two cracks: verti-
cal edge crack and horizontal subsurface crack (Keer et al.,
1982). Similar subjects are covered in works by Hasebe et al.,
(Hasebe, 1981; Hasebe et al., 1989; Okumura et al., 1990;
Hasebe and Qian, 1995, 1997, 1998; Qian and Hasebe, 1997),
where for example a punch is applied with one rounded and one
sharp end (Hasebe and Qian, 1998). The problem of contact
between the punch and a half-space weakened by cracks was
also analyzed by Panasyuk and co-authors (Panasyuk et al., 1995
2000; Datsyshyn et al., 2001), where trajectories are found for
edge cracks in the context of fatigue (Datsyshyn et al., 2001).
A detailed analysis has also been provided for the problem
of a flat-based punch on the surface of a half-space weakened
by a internal (subsurface) crack, where the faces of the crack are
in contact (Panasyuk et al., 1995). For last years a problem
of interaction between crack and punch has been applied to FGM
materials. It was analyzed parabolic or cylindrical stamp acting
on graded coatings (Guler and Erdogan, 2007) or the case when
the base of the punch was assumed to be flat (Dag and Erdogan,
2002).

2. FORMULATION OF THE PROBLEM

Let us assume that into the y = 0 surface of an elastic half-
space —oo0 < x < oo, y <0 with internal cracks a punch of any
shape (Fig. 1) is pressed with normal force P and slide under the
influence of tangential force pP, p - friction coefficient. Let us also
assume that under the influence of such loading the punch is in a
limit equilibrium condition. Size of the contact zone between
punch and surface of half-space is 2a. It should be noted that
moment affects the punch preventing it from turning.

The boundary conditions on the y = 0 plane can be noted as:
o, +po,=0, v="Ff(x)+C )

xel, ={x:—a<x<a}
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o,—io, =p,(x)=0, xgl, )

where oy, Gy, are the normal and tangent component of the
stress tensor, v is a component of the displacement vector in the
y direction, f(x) — a function describing the shape of the punch
base, and C - constant (vertical displacement of the punch).

4P
1
|

Fig. 1. Scheme of considered problem

The edgeses of the crack are assumed to be under a self-
balanced load in the following form:
N*@)+iT*®) =p@t), teL=JL (3)

k=1

where N and T are a normal and tangential component of the
surface stress vector on the faces of the crack, L, (k = 1,n) —
the contour of k-th crack, “+” and “—" denote left and right edges
of the L, contour respectively.

General complex stress potentials for a system of curved

cracks in a half-space affected by external load, are as follows
(Muskhelishvili, 1962; Savruk, 1981):

D, (2) =D, (2)+D(2),  Wi(2)=Wo(2)+¥(2), @)

@o(z):_;” J pi(—)zdt
(%)
%<z>=—%m[f‘:(i)—(i"ii”z}dt
1 1 1), t-f ——
@U:§1&;7¢ﬂuwwﬁﬂfunﬂ

{aif‘@if%ﬁwq

where p, denotes loading of the edge of the half-space and g’(t)
is an unknown function on the contours of the cracks.

The derivative of vertical displacement of the edge of the half-
space can be given as follows (Gallin, 1980):
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1m| k@ (x) = (x) 3" (x) - (¥)

where G is shear modulus, v - Poisson's ratio, x = 3 — 4V, g,
— respectively: the normal and tangential component of the load
on the surface of the half-space.
Satisfying the boundary conditions (1) with the Eq. (6) leads to
the following integral equation:

epo (X)+= I

where € = z—:
To Eq. (7) we have to add a punch equilibrium condition:

[o(t)ydt=-p (8)

L

which guarantees uniqueness solution of the Eq. (7)

In the case of a homogeneous half-space, with no cracks,
®(x) = W(x), and Egs. (7) and (8) are known (see Muskhelish-
vili, 1962).

Integral equations on the contours of the cracks can be written
in condensed form (Savruk, 1981):

@l(t)+@l(t)+a[t@l(t)+‘1/1(t)}:p(t), tel, ©)
where @x(t)i ¥(t) - direct values of complex potentials (4).

To Eq. (9) we also have to add displacement uniqueness
conditions while considering each internal crack:

fg'(t)dt:O, k=2,n (10)
L

Egs. (7) and (9) form a system of singular integral equations
of the first and second kind, which allows for the finding of normal
contact pressure o(x) and a derivative of the displacement jumps
vector g’(t) on the contours of cracks. Including conditions (8)
and (10) this system has a single solution for any right part in the
function class, which have integrable singularities at the ends
of the ranges of integration (Muskhelishvili, 1962).

It has to be noted that the system of integral Egs. (7)—(9) was
found under conditions (3). This means that there can be given
loads on crack faces or, in a particular case, no load. Such
boundary conditions can be realized only when the cracks are
within the tensile stress fields. However, as a result of pressing
the punch in, some or even all cracks can be found in the field
of compression stresses, which is produced in the half-space
under the punch. In that situation the faces of the cracks will be in
contact. If this is so along the whole length of the crack, than Eqs
(7)-(10) can be easily modifies, including the continuity of normal
displacement on the contours of the crack and friction according
to Amonton's law. In the general case we receive a mixed problem
on the faces of the crack, which significantly increases the
complexity of the solution. However, most works in this field,
including this one, analyze these questions without including
contact between crack faces.
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Complex potential (5) can be presented in the form:

@y (2)= 2 [ 1, (L2)o (1)

\Po(z):%.[hu(t,z)a(t)dt
[

i (11)

where
e e
fa(t2)= 2(tt‘__t_z)2 Gt _l+2:p (t _12)2
) 5(<t—1z>2_<t _12)2]* S
m(t’z)__%{%_(tt(i;z} (12)

t-z (t-z

T

Taking into account Egs. (11) and (12), the system of integral
Egs. (7) and (9) can be noted as:

gpa(x)+§£%+iIm‘[[Kl(t,x)g'(t)dt+ )
+L1(t,x)g-_(t)a]:;flf (x), xel,
—j[ (t)dt+L, () g (t)at ]+ (14)

+£jM(t,t‘)o(t)dt=p(t'), t'el

Kernels of the system of Eqgs. (13) and (14) are given by func-
tions f;;, gij and hy; (i,j = 1,2) described by relations (12),
can be represent as follows:
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K, (1.X) = [ kT (66) = T (63) XG5, (6X) i ()

K+1
Kiﬂ[/cf22 (t, %)= f,p (£, X) = X0y, (£, X) =y, (t,x)J
[t Urn tt)+h22(tt)J

[t Uy (L) +hyy (L1 )]

L ()=

Q_
—

K, (tt") = f (tt")+ f, (t,t)+

L, (t,t") = f, (t,t))+ f, (t,t")

[t 0 (68) + 1y, (4.1) ]
(15)

M (Lt) = £, (6 + F (61)

CL|Q|E~L|9| =

Note, that function K,(t, t") includes Cauchy's singular
kernel. This part will not be specially singled out, unless numerical
integration formulas will be used to carry out the numerical
calculations, which are correct for both singular and regular
integrals.

3. PARTICULAR CASE OF A SINGLE EDGE CRACK

Let us consider a case, where a half-space is weakened
by only one straight crack (Fig. 2) Let us introduce a parametric
notation of the contour of crack L and the zone of contact between
the punch and the surface of half-space L,:

t=as, x=ap, -1l<&n<l (txely)

t=aw(¢&), t'=aw(n), -1<&n<l, (tt'el) (16)
S MU S R R

o(¢)=b - (E+De?, bT=2 1=

where @ is angle of crack orientation defined according to Fig. 2.

Fig. 2. Scheme of a pressed punch ,sliding” on a surface
of a single-cracked half-space

Moving to non-dimensional variables and functions the system
of integral Egs. (13) and (14) and the condition of solvability (8)
has the following form:

gpa(n)+;£ é(f—)jg 1ImI[K o) (17)

+L(Em)a'(§)|de=F(n). |nl<1
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ET[KZ(QE’”)Q'@F Lz(f,ﬂ)de§+

T
R (18)

o [MEnp(@ac=pl), i<t
j'a(g)d§=A=§, (19)
where:
o(an)=o(n).  o'(a0(£)0'(©)=09'(¢)
p(a0(£))=p(n). 4G (x+1)" f '(an)=F (1)

aK, (ao(¢),a7) =Ky (&n)

aL, (ao(¢).an) =L, (&) (20)
aK, (aw(¢),a0(n)) = K, (&.1)
aL, (aw(¢),a0(n)) =L, (£.17)
aM (ag,an(n)) =M (£7)

A solution for the system of integral Egs. (17)-(18), which sat-
isfies condition (19) will be sought in the class of functions, which
have integrable singularities:

o(&)=w(&)a(¢)
w(g)=(1-¢)" (1+¢&),
9'(£)=(1-87) " u(¢)

where q(&) and u(¢&) are continuous functions in a closed

-l<ea,p<0 (21)

interval [—1,1], and parameters o and S are roots
a=-05+ 4 =-05-pu u = arctangp of charac-
teristic equations: cotza = - gp, cotnf = &p.

Let us remind that only for internal cracks condition (10) must
be satisfied. However for the case of the edge crack singularity
is produced only at the one crack tip (i.e. for & = + 1). At the
second tip (£ = -1), which extends to the surface, singularity
disappears and also condition (10) can not be satisfied. So the
solution of Egs. (17)-(18) will be sought in the same class
of functions (21) but condition (10) should be replaced by:

u(-1)=0 (22)

In the case of a homogeneous half-space, with no cracks,
there is g'(€) = 0 and a system of integral Egs. (17) and (18)
is reduced to a single Eq. (18) when condition (19) is satisfy.

4. NUMERICAL SOLUTION
OF SINGULAR INTEGRAL EQUATIONS SYSTEM

For a numerical solution of the system of Egs. (17)-(19) we
will use the quadrature method (or the mechanical quadrature
method) (Savruk, 1981; Savruk et al., 1999, Savruk and Tomczyk,
2010) using Gauss-Chebyshev nodes. As a result we receive the
following system of linear algebraic equations:
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Zamkq (& +Im2[b1mk (&) emeu(&) | = F (na),

ﬁ n m=1..n-1 23)
|:b2mku(§k)+02mku(§k ):|+deq(§k): p(ﬁm)’
k=1 k=1
m=1,..,n-1
zn:ankq(tk): A S (-2) 17e, u(&)=0 (24)
k=1 k=1 1+&,
& =cos 2k_17z, & =cos 2kj z
" (25)
m — m
n, =C0S—, 7, =C0S—
n n

The unknown values here are functions q (&) and u(&)
respectively in nodes &,_and Tfk. The coefficients of the unknowns
in the system of Eqs. (23) are given by the following formulas:

_ 1 oz 1 T ()
o = (0 1 {1 nmL 3 nmi]r:k}
Ro [(_1)11 +Tn (Um)]+xg(ﬂm)+x4(nm)-rn (nm)}

1+, 1+&  n,—& M — Sk

ay = 1-& {w(csk)—(—l)k X, (g o }

1-&, 1+&

K, (& 77n)

B Z%Kl(gk’ﬂm)x By 2%

1 /2 1/ -
Cim =ﬁ|—1<§kv77m>’ Conmk zﬁLz(fk’ﬂm)

==& [M (G W& ) -
nk RoM (=177,
e Y 15@77 )}

X, =X [ 2 _iix@)\/l—ff} 2

1 1
X =—| X t 7o — —
{() 2{ (x)cotza sinza sinﬁﬂ}

) m X# & X#E & # &,

G ) XwE ok
1-&7 (& - ’




]

G

DE GRUYTER
OPEN

where Tn(x) = cos(narccosx) is a first kind Chebyshev
polynomial of n degree.

Using Lagrange's interpolating polynomial for nodes &, we
can find the values of function g (&) at any point:

a(6) =23 a(a & 2 )

Particularly, at the ends of the interval [—1, 1] we receive:

q (il) =F (i;-) kzil:(_l)k ’ii zzt q (fk ) (28)

Similarly, we search for the values of function u(Ek) in nodes

&
”(g)z—li(—l)ku(rfk) 1-&7 T”()i), —1<E<1 (29)
=i éf—gk
__(il)n K 1i§k ~
u(+l)=7 . kZ:;‘( 1) 1J_rgku(§k) (30)

Stress intensity factors at the crack tip & = 1(KyYy) are found
with these formulas (Savruk, 1981):

K =K} =, /ﬁa|a; (DI;% (31)

It has to be noted that in the case of a flat-based punch
contact zone L, is known. However, if the punch base is rounded
at one or both ends, the dimensions of the contact zone are not
known. In these cases the stresses at both ends of the contact
zone are finite and for the purpose of finding the location of this
zone we have one or two additional conditions. Particularly, for the
parabolic punch, which also was the subject of our research, we
have additional conditions:

q(-1)=q(1)=0 (32)

thus we determine the half width of contact zone a and the
eccentricity e (distance of the center of these zone from the punch
axis).

5. ANALYSIS OF RESULTS

The theoretical relations presented in the previous paragraph
were used to create numerical algorithms which allow to deter-
mine the distribution of contact pressure and the values of stress
intensity factors at the crack tip. As it was already mentioned, two
different shapes of the base of the punch were considered - flat
and parabolic. It was analyzed in detail the influence of the shape
of the punch base on the distribution of dimensionless stress

intensity factors F; = K‘I:/a, Fy = K‘;‘/a. It was assumed in the

numerical calculations that the edges of the crack are free of load
(N =T = 0inEq. (3)).

Results of numerical analysis prove that existence of crack
(or set of cracks) has a significant influence on contact pressure
distribution (see Fujimoto et al, 1992, Tomczyk 2011; Savruk and
Tomczyk, 2010). It corresponds with both flat and parabolic punch
particularly for crack orientation angles from the range

acta mechanica et automatica, vol.8 no.2 (2014), DOI 10.2478/ama-2014-0020

(90°, 180°). For these angles crack tip can be found in material
under contact zone directly and produce a “rapidly” perturbation
of typical contact pressure distribution. Assuming regular contact
pressure distribution in the place where punch acting can produce
considerable errors in many contact problems. Only taking into
consideration a mutual interaction between crack (or set
of cracks) and punch gives a detailed information about character
of pressure distribution. This interaction can be neglected for the
case of homogenous half-space or when the crack is far away
from the punch. As it was mentioned for the case of flat punch
contact zone size a is known. For parabolic punch this size should
be obtained by using condition of pressure reducing to zero in the
ends of contact zone (see Eq. (32)).

In present analysis the dependence of stress intensity factors
values on distance between crack and punch, crack length and its
orientation and friction coefficient is discussed. It is also analysed
the effect of punch shape (parabolic or flat) on stress intensity
factors.

In the case of no friction or for small values of friction
coefficient crack located close to the punch can be present
in fields of compression stresses. Situation like this can take place
for both: when 0° < ¢ <90° (Fig. 3a), and when 90° < < 180°
(Fig. 3b).

06 T T T -0.1
1 2 3 4 5 b’ 1
Fig 3. The effect of distance between crack and punch on dimensionless
stress intensity factors Fiand Fu for different values of friction
coefficient (' = 1, v=10.3): a) p=45°,b) p=135°
(dashed lines — parabolic punch, continuous lines — flat punch)

T T T 1
4 5 b’

The effect of punch shape is distinctly seen for
@ € (90°, 180°) particular for close cracks when b* < 2.5 (Fig. 3b,
Fig. 4). For cracks defined by 0° < ¢<90° the effect of punch
shape can be neglected even for small values of distance
between crack and punch. When the suitable conditions exist the
crack can close when the flat punch is acting while for the case
of parabolic punch the same crack is opened. The effect like this
is more probable when the angle ¢is close to 180° and values
of b" are very small (Fig. 5).

A very interesting situation we can observe in the Fig. 6.
It presents the effect of translation of crack tip into material under

1M1
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contact zone directly produced by increasing in crack length. It is
clearly seen that crack starts to close for certain values of I'. This
effect appears for small values of friction coefficient earlier than
for higher values. Increasing in friction delays crack closure
process. Let us note that there is no any influence of punch shape
on stress intensity factors in Fig. 6.

a)
Fl
0.12
0.08 4
0.04
0
0 2 4 6 8 b
b)
/‘Il
0.1+
1 90°
>4
0.05 :
| \avmr'
A
0 A—5(0 p——
4y ——
0.05 3
e T e B —
0 2 4 6 8 b’ 0 2 4 6 8 b*

Fig. 4. The effect of distance between crack and punch on dimensionless
stress intensity factors Fi (a) and Fu (b) for various crack
orientations (=1, v=0.3, p=10.6)

(dashed lines — parabolic punch, continuous lines - flat punch)

0.2

0.1—+—1.051

-0.1

0.0,2'0‘4I0.6I08 P 020'0.2'0.4'06'0.8'!7
Fig. 5. Influence of friction on dimensionless stress intensity factors Fi

and Fy for flat (continuous lines) and parabolic (dashed lines) punch:
a) the effect of distance between crack and punch

(r'=0.1, v=0.3, p=120°),

b) the effect of crack orientation (/"= 0.1, "= 1.1, v=0.3)

12

p=0

0.3

0.3 L v 1 v — T . -
0 20 40 I 0 20 40 I

-0.2

punch| axis

punch axis

Fig. 6. The effect of crack length on dimensionless stress intensity factors
Fi(a) i Fu (b) for various values of friction coefficient
(b'=15,v=0.3, ¢=120°)

A1 100°

-0.1

Fig. 7. The effect of crack length on dimensionless stress intensity factors
Fi (a) i Fu (b) for various crack orientations (b" = 5, v=10.3, p=75)
(dashed lines — parabolic punch, continuous lines — flat punch)

| \< -0.04 -
0.08 5 \ 1 2

0.04

0 T — T 1
0 4 8 12 "
Fig. 8. The effect of crack length on dimensionless stress intensity factors
Fi and Fy for various values of distance between crack and punch
(p=0.75, v=0.3):a) @=120°0b) p=45°
(dashed lines — parabolic punch, continuous lines — flat punch)

T T T T )

It is very characteristic for 90° < ¢ < 180° that factors F and
Fi decrease to zero considerably slower (Fig.8a) than
for 0° < ¢<90° (Fig. 8b). The effect of crack closure can be
achieved much more earlier for higher values of ¢ (Fig. 7a). This
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effect appears more distinctly for 90° < ¢ < 180°. For the case
of 0°< @<90° it can be neglected particularly for small values
of pwhen itis not visible.

The effect of crack length is very strong in the region of short
cracks where I'<6 (Fig.8). The most dangerous situations
appear not for shortest cracks but for cracks where stress
intensity factors reaches maximal values. This characteristic
length depends on distance between crack and punch mainly and
increases as b’ increases. The effect of punch shape is as clearly
as crack is located closer to the punch and for 90° < ¢ < 180°
only.

6. CONCLUSIONS

This work presents a solution of the problem of a rigid punch
acting on a half-space weakened by a set of cracks. In the
analysis the method of singular integral equations has been used.
It has been analyzed in detail the case of a half-space weakened
by a single edge crack while the base of the punch is parabolic or
flat. Therefore it has been observed the influence of shape of the
base of the punch on the the values of Ki and K. This influence
can be neglected for the crack orientation angle ¢ < (0°, 90°)
as opposed to ¢ < (90°, 180°). For a numerical solution of the
system of integral equations the quadrature method has been
used, which allowed to reduce this system to a system of linear
algebraic equations.

Presented method gives possibility for simultaneously
calculating the contact pressure and the values of stress intensity
factors. This means that it is possible to take into account
the mutual interaction between crack and punch. While analyzing
the influence of the punch shape, it has to be noted that it has
a significant influence not only on the characteristics of contact
pressure distribution, but also on the values of stress intensity
factors. This influence is particularly notable for cracks close
to the contact zone and decreases as the crack “moves away’.
Soit shows that for far cracks it doesnt matter a character
of applied loading: parabolic, asymptotic or even in the form
of concentrate force. On the other hand for close cracks it should
be noted that even not accounting for friction the shape of the
punch is not without importance. Furthermore, it was made
a detailed analysis of the influence of the orientation and length
of the crack on the values of stress intensity factors Ki and K. For
vertically oriented cracks the shape of the punch has no influence
on the values of stress intensity factors even for close cracks.
Proposed method also allows for description of the changes in the
contact zone size and the eccentricity of its center when the
parabolic punch is applied.

The method presented here can be used for the analysis
of problems concerning a half-space weakened by a set of edge
or internal cracks. An attempt could also be made to use this
solution to analyze problems of single cracks or sets of cracks
under the surface of a half-space or internal curvelinear
macroinclusions or holes. Furthermore, the singular integral
equations method may be used in future to solve problems of
bilateral contact, with the assumption that both the half-space and
the punch are not rigid.
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