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Abstract: In this work, a macroscopic material model for simulation two distinct dissipative phenomena taking place in FCC metals
and alloys at low temperatures: plasticity and phase transformation, is presented. Plastic yielding is the main phenomenon occurring when
the yield stress is reached, resulting in nonlinear response of the material during loading. The phase transformation process leads to crea-
tion of two-phase continuum, where the parent phase coexists with the inclusions of secondary phase. An identification of the model pa-
rameters, based on uniaxial tension test at very low temperature, is also proposed.
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1. INTRODUCTION

The present paper is focused on the constitutive description
and identification of the parameters of the model of austenitic
stainless steel 316L for cryogenic applications. Two coupled
dissipative phenomena, plastic flow and phase transformation,
are considered using a thermodynamically consistent framework.
The theory relies on the notion of local state, and involves one
state potential for the state laws, and a dissipation potential for the
description of the irreversible phenomena regarded in the model.
Parameters of the presented model can be easily identified
and the model can be implemented into commercial FEM pro-
grams like ABAQUS or ANSYS.

The model presented in this paper describes phase transfor-
mation that occurs in metastable stainless steels at very low
temperatures. Other phenomena, like discontinuous vyielding
and damage evolution, are not taken into account here (Egner
etal., 2014; Egner, 2013; Egner and Skoczen, 2010). The FCC
(face-centered cubic) to BCC (body-centered cubic) phase trans-
formation has an important meaning in constitutive modelling,
because of the influence of the martensitic fraction on hardening
process during the plastic deformation. The kinetic laws for state
variables are driven from normality rule applied to the plastic
potential, while the consistency multiplier is obtained from the
consistency condition applied to the yield function (Chaboche,
2008). The classical laws of kinematic and isotropic hardening
are postulated in the present work. However, the volume fraction
of martensite affects the parameters of both kinematic and iso-
tropic hardening.

The physically based transformation kinetics has been devel-
oped by Olson and Cohen (1975). The authors have postulated
a three parameter model capable of describing the experimentally
verified sigmoidal curve that represents the volume fraction
of martensite as a function of plastic strain (Fig. 1):

¢ =1—exp{—B[1 — exp(—ae”)] (1)
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where: a denotes the rate of shear-band formation, 8 represents
the probability that a shear-band intersection will become a mar-
tensite nucleation site, and A is a fixed exponent. The sigmoidal
curve is valid for a wide range of temperatures, including room
temperature. However, at very low temperatures the rate of phase
transformation for an LSFE (low stacking-fault energy) material
becomes less temperature dependent, and can be described by
a simplified, linearized model (Garion and Skoczen, 2002):

§ = apH ((p— )& — ) @)

In the above equation A is the model parameter, p denotes ac-
cumulated plastic strain, p; stands for the accumulated plastic

strain threshold that triggers the formation of martensite, while &,
is a limit of martensite content, above which the martensitic trans-
formation rate vanishes. Symbol H denotes the Heaviside step
function. Relation (2) introduces a simplified evolution law for the
martensite content, with respect to the linear part (region Il) of the
sigmoidal curve (Fig. 1).
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Fig. 1. Volume fraction of a" martensite versus accumulated plastic strain
(Garion and Skoczen, 2002)
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2. CONSTITUTIVE DESCRIPTION OF THE ELASTIC-PLASTIC
TWO PHASE MATERIAL

The author considers a material that is susceptible to two
coupled dissipative phenomena: plasticity and phase transfor-
mation, that are formalized on the macroscopic level by the use
of a proper set of state variables. The motions within the consid-
ered thermodynamic system obey the fundamental laws of contin-
uum mechanics (conservation of mass, conservation of linear
momentum, conservation of angular momentum) and two laws
of thermodynamics, written here in the local form:

— conservation of energy

pu—é€j o —r+q,; =0 (3)

— Clausius-Duhem inequality
T = —p(l/}+59)+éijaij—qi%2 0 (4)

where: 7 denotes the rate of dissipation per unit volume, p is the
mass density per unit volume; o;; are the components of the
stress tensor; u stands for the internal energy per unit mass;
€;j denote the components of the total strain tensor; r is the
distributed heat source per unit volume; q; is the outward heat
flux; s denotes the internal entropy production per unit mass, ¥
stands for Helmholtz’ free energy and 8 is the absolute tempera-
ture.

The RVE based constitutive model presented in the paper
is based on the following assumptions (Egner and Skoczen,
2010):

1. the martensitic platelets are randomly distributed and random-
ly oriented in the austenitic matrix;

2. rate independent plasticity is assumed, because the influence
of the strain rate is small for the considered range of tempera-
tures (2-77 K) (cf. Hecker et al., 1982);

3. infinitesimal strain theory is applied;

4. mixed isotropic/kinematic plastic hardening affected by the
presence of martensite fraction is included;

5. the two-phase material obeys the associated flow rule (volume
fraction of new phase not exceeding 0.5);

6. isothermal conditions are considered (no fluctuations of tem-
perature are taken into account).

Applying infinitesimal deformation theory to elastic — plastic -
two phase material the total strain €;; can be expressed as a sum

of the elastic part, €f; plastic, e and bain strain € = 1/3AvlI,

denotes the free deformatlon descrlblng the transformation in-
duced change of the volume, expressed in terms of the relative
volume change Av.

€ = €5 + efj + &€} (5)

The presented model is based on the framework of thermody-
namics of irreversible processes with internal state variables,
where Helmholtz free energy 1 is postulated as a state potential.
The state potential depends on the elastic part of the total strain,
and set of internal state variables N, (k = 1,2 ...), which define
the current state of the material:

lp = Ip(eiejl Nk) (6)

In the case of elastic-plastic material with phase transfor-
mation the current state of the material is described by the set
of state variables presented in Tab. 1 (cf. Egner, 2012).

acta mechanica et automatica, vol.8 no.3 (2014), DOI 10.2478/ama-2014-0024

Tab. 1. State variables and corresponding thermodynamic forces

phenomenom state variables conjugated forces
me.chanic?al observable state
variables: total variables oy
strain, Cauchy .. /
stress Y

internal variables

plastic flow €5 (orep) a;j or (—oy)
kinematic plastic p p
hardening @ij Xij
isotropic plastic » P
hardening r R
phase
transformation ¢ 4

The Helmholtz free energy of the material can be written
as a sum of elastic (E), inelastic (/) and chemical (CH) terms (Abu
Al-Rub and Voyiadjis, 2003; Egner, 2013):

Y = pFf + py! + py©H ™
pY* E G Eijri € (8)
pY! = —Cpau Ot RY [rp + —exp( bprp)] 9

Term pyH in Eq. (7) represents the chemically stored
energy:

pYt = (1 —n)pyYH + npygl (10)

where: n is a function of martensite content such that n(0) = 0
and n(1) = 1 and define general mixture rule. The terms pip S
and pySH are the chemical energies of the respective phases, cf.
Hallberg et al. (2010), Mahnken and Schneidt (2010). This
internally stored energy is different for the two phases and it will
affect the generation of heat during phase transformation, as well
as the transformation itself.

Using the Clausius-Duhem inequality for isothermal case, one
obtains:

mech _—

m = 0yj€;j —

pY =0 (11)

where: m™e<h is defined as mechanical dissipation.
The time derivative of Helmholtz free energy (Eq. 6)
as a function of internal state variables is given by:

1/):6""; -+ “’a + wr”+a¢€ (12)

Substituting the rate of the Helmholtz free energy into

Clausius-Duhem  inequality the following thermodynamic
constraint is obtained:
a
(O—l’]'_paj;) +Ul] U pa _palp P—
d .
p%f >0 (13)

Eq. 13 results in the following thermodynamic state laws
for the conjugate thermodynamic forces:

d

p 28~ Ejiaet = Evjia(€q — €fy — §€i (14)
w2

Xij = Poer =5C7aj; (13)
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evolution equations for thermodynamic conjugate forces (back
stress Xl.’} and drag stress RP) were derived, accounting
for additional terms related to phase transformation rate (full
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p— 9% _pprq_ —pPyP
R _parp_R‘”[l exp(—bPrP)] (16)
P oyl dn
Z=p—=p¥+d—f(p¢§fl—¢§1{) (17)

where: Xf;, RP and Z are the thermodynamic forces conjugated
to the state variables a?;, rPand &, respectively.
It is assumed here that all dissipative mechanisms

ij?
are governed by plasticity with a single dissipation potential F
(Lemaitre 1992):

F= Fp(o-ij' lj’Rp f) + FtT(Q $) (18)
Plastic potential F? is here equal to von Mises type yield surface:
FP = f? = J,(0y; — X[}) — 0, = RP (19)

and the phase transformation dissipation potential is assumed
here in a simple form:

= AQ — B =0 (20)

The quantity Q—au if —Z is conjugated to the

transformation rate ¢ and can be treated as a thermodynamic
force that drives the phase front through the material (cf. Hallberg

et al, 2007, 2010), A(6,0;;,€l;), in general, is a function

of temperature, stress state and strain rate, and B*" is the barrier
force for phase transformation (cf. Mahnken and Schneidt, 2010;
Fisher et al., 2000). For rate independent plasticity, isothermal
process and small stress variations function A may be treated
as a constant value.

Normality rule involves only one plastic multiplier, determined
from the consistency condition. The equations involving
the dissipation potentials take the form:

. 0fP (011X j.RP)

Ap aO'l] d0jj (21)
. sy OFP .
il = _Ap%ij =é (22)
== e = (23)

¢ =2 = apH (0 - pe) (6 - ©) 24)

The consistency multiplier AP is obtained from the consistency
condition:
ofP

fr= ;(

The evolution equations for thermodynamic conjugated forces
are obtained by taking time derivatives of quantities defined
by equations (14) — (16). In particular, the force rates appearing
in consistency condition (25) are given by the following formulae:

14 14
ofP pp 4 017

oRP T E=0 (25)

i=XE) + o

= El]kl(ekl fe (26)
X;j. =icrel+ 2 "’;:pr 27)
RP = bP(R?, — RP)#P + | aR°° RP + (R?, —

RP)rP "”’p] ¢ (28)

It has to be mentioned here, that in comparison to previous
works (Egner and Ry$ 2013, Egner et al 2012) the extended
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coupling, cf Egner 2013).

3. IDENTIFICATION OF PARAMETERS
OF THE CONSTITUTIVE MODEL

Identification of the material constants associated with any
proposed material model is one of the most challenging issues for
researchers, in order to obtain better representation of their mate-
rial models. If limited test data are available, parameters can be
based on the stress-strain data obtained from the uniaxial tension
or compression experiments. In the present work a uniaxial ten-
sion test for 316L stainless steel at temperature 4.2K is used to
determine functions CP (&), bP (&) and RE (&) occurring in the
kinetic laws (Eq. (27) - (28)). The simplest, linear form of these
functions is here assumed, namely:

CP(§) = (1 + hed), (29)
RE(&) = R, o(1 + hgd) (30)
bP (&) = by (1 + hy$) (31)

Eventually the following parameters have to be determined
in the present model: C?, h., RY, 0, hg, b, hy. The value of the
parameter A (24) is taken from the paper by Garion et al.
(2006). The function which describes the experimental results of
martensite content was found in the following form (Garion et al,
2006), (Fig. 2):

& =4.3714p — 0.3873, for p > 143 (32)
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Fig. 2. Martensite content as a function of plastic strain

As was mentioned before, determining of all parameters oc-
curring in kinetic equations is based on the experimental stress-
strain curve obtained for 316L stainless steel at 4.2K. The test
was performed with use of the cryostat filled up with liquid helium
and equipped with tensometers, extensometers and a load cell
aligned with the sample. It was concerned that the kinematically
controlled tensile test is the most suitable. Moreover, the meas-
urement of the volume fraction of martensite was based on ferro-
magnetic properties of the BCC martensitic phase whereas the
FCC austenitic matrix is paramagnetic. It has to be mentioned
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here that the experiments carried out in liquid helium are expen-
sive and laborious and this is the reason why the identification
of the parameters is based only on uniaxial tension test.
The stress strain curve was divided into three regions: elastic,
plastic and plastic with phase transformation. Every point on the
curve within plastic region can be described in the following way
(Fig. 3. range II, see also Abu Al-Rub 2004, Lemaitre 1992):

o =0, + XP(e?) + RP(p) (33)

where: o, is the yield stress and equations for kinematic,
XP(eP) , and isotropic, R? (p), hardening in the case of uniaxial
state of stress are exspressed as:

X =cleP; RP = by (RE, , —RP)p (34)

Now the standard least-square minimization method was used
to find the parameters Cg, RY, ;, by and fit the model to the data
points.

1200 R
experiment " A
1000 ~
X
- 800 __." range II (plastic) range III (plastic with
% s phase transformation)
. 600
2
2 oy + XP(eP) oyt XP(P, £) 4
” 400} +RP(p) RP(p, €)
200 ' range I (elastic)
0 5"/ Y Y
0.0 0.05 0.10 0.15 0.20

total strain

Fig. 3. Stress-strain curve for 316L stainless steel at 4.2K
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Fig. 4. Evolution of the plastic hardening forces

Every point within inelastic region can be described as follows
(Fig. 3. Range Il and I1I):

o =0, +XP(&,€P) + RP(§,p) (35)
where:
XP(§,€P) = CJ (1 + h&)e? (36)

RP(¢,p) = by (1 + hpé)(RE, o (1 + hgé) — RP)p (37)
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where: p is equal to €? in the case of uniaxial tension and
parameters: Cl, R%, ,, b} are already known. Again, the standard
least-square minimization method was used to find the rest of the
unknown parameters. All values of the identified parameters are
listed in Tab. 2. The curves plotted in Fig. 4 represent the
synergetic effects of the combined isotropic and kinematic
hardening associated with plasticity found for the present model.

numerical simulation
(with Olson-Cohen model)

1200

1000

800

numerical simulation

(with Garion-Skoczef model)
600

stress [MPa|

[ experiment
400

200

0.00 0.05 0.10 0.15 0.20
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Fig. 5. Stress-strain curve for 316L stainless steel

Accounting for two dissipative phenomena: plasticity
and phase transformation in the present constitutive model allows
to obtain a satisfactory reproduction of the experimental stress-
strain curve for 316L stainless steel subjected to uniaxial tension
at cryogenic temperatures (see Fig. 5). A small difference be-
tween numerical and experimental results is caused by damage
which is not included in the present model. Using Garion-Skoczen
linear kinetic law of phase transformation also exacerbates the
numerical results. However, the model presented here is easy to
identify experimentally because the number of material parame-
ters is reasonably small. It should be pointed out that the experi-
ments carried out in liquid helium or liquid nitrogen are laborious,
expensive and usually require complex cryogenic installations to
maintain stable conditions (constant or variable temperature).
Therefore, any justified simplification leading to reduction of the
number of parameters to be determined is of great importance.

Tab. 2 Material data for 316L stainless steel at the temperature of 4.2K

Young modulus [GPa] 176.818
Poisson ratio 0.3
Proportionality limit [MPa] 470
C} [MPa] 480.537
R%, o [MPa] 432.159
by 129.687
h¢ 0.5
hg 1.2
hy, 12
Av 0.02
123 0.0886
$L 0.9
A 43714
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5. CONCLUSIONS

The constitutive model presented in the paper includes two
dissipative phenomena: plastic yielding and plastic strain induced
phase transformation. A consistent thermodynamic framework
was used in order to describe dissipative phenomena. Two
kinetic laws of phase transformation were used: Olson-Cohen and
Garion-Skoczeri model. As shown in Fig. 5 and Fig. 2, the use of
simplified Garion-Skoczen linear phase transformation law allows
for a very good approximation of the second stage of Olson-
Cohen sigmoidal curve (see Fig. 1) and a stress-strain curve.
A great advantage of the presented model is a relatively small
amount of parameters that can be determined in the simple way.
A standard uniaxial tension test and least squares method were
used to identify the model parameters. Validation of the model is
based on the available experimental data and very rare
experiments carried out at extremely low temperatures. Such tests
are extremely laborious, complex, costly and time consuming and
are not common even in the centers, where the low temperature
research belongs to the standard activities (like CERN). For this
reason, given the scarce experimental background, the model has
been validated on one single test only. As the results, however,
seem to be very encouraging, the author believes that the model
performs correctly and can be further applied to a larger class of
problems of low temperature material behaviour. As soon as
some more experimental data is available, the validation of the
model will certainly be confirmed.
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