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Abstract: The paper presents complex variable integral formulae and singular boundary integral equations for doubly periodic cracks in an-
isotropic elastic medium. It utilizes the numerical solution procedure, which accounts for the contact of crack faces and produce accurate
results for SIF evaluation. It is shown that the account of contact effects significantly influence the SIF of doubly periodic curvilinear cracks

both for isotropic and anisotropic materials.
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1. INTRODUCTION

The doubly periodic problems are widely considered in scien-
tific literature, since they are crucial for understanding of the effect
of cracks interaction on stress state of defective solids (see Sawruk,
1981). Wang (2004) presented extremely accurate and efficient
method for computing the interaction of a set or multiple sets of
general doubly periodic cracks in elastic medium. Xiao and Jiang
(2009) studied the orthotropic medium with doubly periodic cracks
of unequal size under antiplane shear. Chen et al. (2003) have
studied various multiple crack problems in elasticity. Xiao et al.
(2011) obtained the closed-form solution for stress and electric dis-
placement intensity factors and effective properties of piezoelectric
materials with a doubly periodic set of conducting rigid line inclu-
sions. Malits (2010) studied the doubly periodic arrays of rigid line
inclusions in an elastic solid. Pasternak (2012) presented the gen-
eral Somigliana integral identities and boundary integral equations
for doubly periodic cracks in anisotropic magnetoelectroelastic me-
dium.

However, equations of Pasternak (2012) contain both singular
and hypersingular integrals, therefore, this paper is focused on the
development of singular integral equation for doubly periodic cracks
in anisotropic medium. Also the contact of crack faces is accounted
for, thus, the paper presents new general approach that can be
used both in theoretical and applied analysis, in particular, in rock
mechanics.

2. OBTAINING OF SINGULAR INTEGRAL EQUATIONS
BASED ON THE LEKHNITSKII FORMALISM

Consider a doubly periodic problem of elasticity for an infinite
anisotropic plate, which representative volume element contains
asetof cracks L; (j = 1, ...,J. Assume that crack faces are sym-
metrically loaded with tractions (X1, Y7 ) and average stress (o),
(ay), {oyy) actin the medium.
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2.1. Governing equations for anisotropic plates

Consider an arbitrary curve T that lays in the 2D domain D oc-
cupied by the plate, and assume its positive path. One can intro-

duce the traction vector §F in the tangential element of the curve T,
which normal vector is placed at the right to the chosen positive
path of the curve. The projections (Xr, Y1 ) of the traction vector

§F and displacement (u,v ) derivatives by the arc coordinate
at the curve T' can be evaluated based on the Lekhnitskii complex
functions as (Bozhydarnyk, 1998; Grigolyuk & Filshtinskiy, 1994):

Yr = —2Re[®(z;)z] + ¥(z,)z3]

Xr = 2Re[s; ®(z;)z; + s, ¥ (2;,) 23]
u' = 2Re[p; ®(z,)z1 + p, ¥ (2,)23]
v' = 2Re[q; ®(21)z1 + q,¥(22) 23]

(1)

where: z; = x +s;y, u' = du/ds, v' =dv/ds, zj = dx/
ds + s;dy/ds, j = 1,2 ds is a differential of arc T'; s; are the
complex roots (with positive imaginary part) of Lekhitskii character-
istic equation (Bozhydarnyk, 1998; Grigolyuk & Filshtinskiy, 1994);
pj = a115j2 + a1z — A16Sj, 45 = A12Sj + Az /Sj — Az aNd
a;; are elastic compliances (Bozhydarnyk, 1998; Grigolyuk and Fil-
shtinskiy, 1994).

Assume that the functions u’, v', Xr, Y in Eq. (1) are known
at I'. Then according to Maksymovych (2009) one can obtain:

—v' +s;u' +p Xr + g V¢

16} =
(Zl) Alzlr (2)
—v' 4+ su’ + pXr + g Yr
lp(zz) = A Z’
242
where:

A = aq1(51 — 52)(51 — 51) (51 — 52),
A, = aq1(s2 — 51)(s2 — 51 (52 — $2).
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2.2. Conditions for the complex functions
at the boundary contours

Assume that the projections (Xt, Yr- ) of traction vector and the
moment M, about the origin of all forces applied to the contour L
are known. Then one can obtain the following conditions:

X, +q.Y,
J' ®(z,)dz, = b LA q:1;
Ly 1
X + q,Y;
W(z;)dz, =~ ®
2

Ly
Re U. ®(z,)dz, +f (D(Zz)dzz] =—-M,/2
Ly Ly

where L; are the curves in the coordinate systems (x;, y;), which
are the mappings of the curve L with the affine transformations

x=x+ Re(sj)y, yj = Im(sj)y.

2.3. Integral equations for displacement discontinuities
in an infinite cracked plate

The complex variable integral equations for cracked anisotropic
plates, in general, are written for the discontinuities of complex
functions at cracks, which do not have direct physical meaning.
At the same time, complex variable integral equations for isotropic
plates are written for the displacement discontinuities, which signif-
icantly simplify the study and solution of fracture mechanics prob-
lems. In particular, these equations allow considering the problems
for cracks with contacting faces. Therefore, this section develops
this approach for cracked anisotropic plates.

Assume that the tractions applied to the crack faces are sym-
metric with respect to a crack. Denoting the displacement disconti-
nuities [u], [v] with g4, g,, respectively, based on Eq. (2) one
obtains the formulae for discontinuities of complex potentials
at the crack:

_ —92+5191 _ —92+5291
[(b(zl)] - A1z{ ’ [lp(ZZ)] - Azlé
Then the following integral formulae can be obtained for an an-
isotropic plate containing a set of cracks (Bozhydarnyk, 1998;
Maksymovych, 2009):

Gl
®(z,) = f L ds + Py (z;)
v BT A @
G
Y(z,) =f P ds +¥(z,)
L 2 2

isq
2mA,

where G; = A, g1 + A,g5, G; = Big1 + Bygz and A; =
A, = ;', = L'S_ZY =t
2mA, 2mA, 2mA,
It should be mentioned that for internal cracks the following
crack tip displacement continuity conditions hold:

1 2

f Gi(s)ds=0 (i=12) ()
L

Now consider the doubly periodic lattice defined by the periods
w; and w,. The first period is assumed to be real-valued, and the
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second one is complex-valued. Then the periods in the mathemat-

. k ,
ical planes z, are denoted as a)i()(lz 1,2), moreover

wfk) = w, and wz(k)

and y, > 0.

According to Grigolyuk & Filshtinskiy (1994), Sawruk (1981),
the integral formulae (4) for the doubly periodic problems can be
replaced with:

= x, + SkY,, where x, + iy, = w,

®(z,) = f GI(S)E(ts — 20)ds + Ag
' (6)
W(z) = f G3()E(t, — 2,)ds + Bs

L

where é(z;,) = & (zk|a)§k), wgk)) is a Weierstrass zeta function

for the periods wik) and 2; and Ag, Bg are unknown constants
to be determined.

Using the conditions (5) and the property &(z, + w{®) =
&(zy) + Sflk) it is easy to show that the complex potentials (6) are
periodic (thus, the stresses and strains calculated based on these
potentials are periodic too). Here 6 = 2¢(w(/2). At the
same time, the potentials (6) (and the same as (4)) are dependent
on the displacement discontinuities g, + ig, at the curve L.
Therefore, (6) presents the solution of doubly periodic problem for
cracked domain.

For determination of the constants Ag and B one should first
determine the traction vector acting at the lines parallel to the main
periods (Grigolyuk & Filshtinskiy, 1994). The projections of the re-
sultant vector of tractions acting at the arbitrary curve AB can be
determined with the following equation:

Yap = —2Re[@(z;) + Y (22)] 45
Xap = 2Re[s;90(z1) + YW (22)] a5

First assume that AB is a line parallel to the Ox axis. Then
accounting for (6), one obtains that:

zl+a)gl)
0(2) a5 = f () dzy
Z1
(1)

zZ1twq
= f G1(s) (f &ty — Zl)d21> ds + Ag wl(l)
L

Z1

According to Sawruk (1981):

(1
[T (b — 20)dzy = 8P (t, — 2,) + const.,

Z1

therefore:
0@ =00 [ GIE)E - 2)ds +As ol
L
= 61(1)J. Gi(s)tds + Ag wil)
L
The same concerns the function ¥ (z,):

P(z)ap = 6@ f G1(s)tpds + By 0
L

Thus, the following relations are obtained for the bottom edge
of the representative volume element:
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Y, = —2Re(6V); + 6P, + Asw® + Bswlz))

Xl = 2R6(5161(1)]1 + Szé‘:{ )]2 + Asslw + Bssza) 2))

where J = [, Gr(s)tds.
Applying the same procedure for the right edge of the repre-
sentative volume element one obtains:

Y, = —2Re(6V); + 67, + Asw® + Bswzz))

(8)

X1 = 2Re(515§1)]1 + 5252( )]2 + Asslw + BssszZ))

The right hand sides of Egs. (7) and (8) are known and equal:
Y1 = —w(oy)
Xy = —w1(Tyy)
Y, = |w2|((rxy) > cosa — (ay)sina)

X, = Iwzl((ax) > cosa — (‘rxy)sinoc)

where o is an angle between the second period w, and the Oy
axis.

Egs. (7) and (8) are considered as a linear algebraic equations
system for determination of the unknown constants As and Bs.
First consider Eq. (7) and the first equation in (8):

—2Re((4s + B)w; + 61 +62)) =1,
2Re(w1(51AS + SzBs)U)l + 5161(1)]1 + 5251(2)]2) = Xl

—2Re(x, (A5 + Bs) + Y, (5145 + 5,B5))
—2Re(8), +6PL,) = Y,

These equations result in the condition:

2Rl — 50,
00 - 0]
= xwX1 + ya,Xl + (l)1Y2 =0

Accounting for 589w — 6%9w* = 27i one obtains that

The relation:

Sf Sf
2Re —=|=0 fi =0,1,2
<A1+A2> 0 forj =0,
shows that this condition is satisfied identically.

Thus, for determination of the unknown constants we have only
three equations (Eq. (7) and the second equation in (8)). The solu-
tion of this system is sought in the following form:

5 5@
AS __]1+CD +A Bs—__]2+lp +B

where @, and ¥, are complex potentials corresponding to the
stress state of uncracked plate under the load (o), {(gy), (Txy)
applied at infinity.

Then for determination of the constants A and B one obtains
the following system:

2Re(A+ B) =0, 2Re(s;A +5s,B) =0

41
2Re(A4s? + Bs3) = —

w1

Rei(si/; + s3/2)
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Solving the latter one can obtain the expressions for the un-
known constants up to the values which do not influence the stress
field:

A=———0

}’m(ﬂlA

f gitids, B = f gitzds

For convenience one can present the Weierstrass zeta function
in the form (Sulym, 2007):

m“’lA

()
§(2)=—2z+S(z; w;,wy)
w1

where:

S(z; wy,w;y) = {ctg— + Z ctg( + nn—)
+§}@@mﬁm_ﬂ
for N - oo,

These relations allow to rewrite (6) as

®(z,) = f [g1P1(t1 — 21) + g2 P2 (1 — z1]ds + D,
L

9)
Y(z,) = f [g1W1(tz — 25) + go W, (t, — 2,]ds + W,
L

where &, (z) = A, [5,(2) + L 2| ¥,(2) = B, [5,(2) + L 7]
P,(2) = A,5,(2), ¥2(2) = B,S,(2), Si(2) = S(z; wl,wgk))

_ 2mi

V= Yowi

The kernels of integral formulae (9) are written in the form
of sums of the kernels for singly periodic problems and contain ad-
ditional terms, which has a multiplier y. It should be mentioned,
that in the literature one can found the attempts to derive the anal-
ogous formulae with direct summation. However, now it is obvious
that these approaches are incorrect. The reader is referred to Pas-
ternak (2012), where for the first time the mathematically strict
and correct approach of direct summation for anisotropic magneto-
electroelastic material with doubly periodic sets of defect was pre-
sented.

3. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS
FOR PARTICULAR PROBLEMS

Integral formulae (9) have the same structure as those obtained
for other problems of elasticity for cracked anisotropic plates ob-
tained by Bozhydarnyk (1998) and Maksymovych (2009). There-
fore, numerical determination of the displacement discontinuities in-
corporated in these formulae can be determined within the algo-
rithm proposed by Maksymovych (2009). For evaluation of the ker-
nels of the integral equations it is convenient to use the following
relation:

S(z; wq, wy) = A, {ctg,z

/’{TL
+4sin(21,2) Z N o207 oz
n=1 (1 ﬂ' € ' )(1 /1 e ! )
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where 1, = wl A =exp (Zni %) and || < 1.
1 1

This series converges fast. In particular, for isotropic material
with a square lattice it is enough to leave only two terms in the sum.

3.1. Verification of the approach

For verification of the proposed approach consider a doubly pe-
riodic set of line cracks of length 21 inclined at 30° to the Ox axis.
The centers of the cracks form the equilateral triangular lattice.
The only nonzero average stress is (g, ) = p. The material of the
plate is highly anisotropic fiberglass CF1, whose properties are
given by Maksymovych (2009). Table 1 compares the normalized
stress intensity factors (SIF) Fy = K;yu/(pVrl) obtained
with the proposed approach and by the boundary element method
(BEM) developed by Pasternak (2012) with a crack face meshed
with only 20 elements. Good agreement of the results is observed,
which testifies the validity and efficiency of the developed ap-
proach.

Tab. 1. Verification of the approach

occurs near the right tip, excepting material CF190 and % = 2.5,

where the faces contact at the right of the crack center. Tab. 3
shows that for the contact of crack faces the SIF K;g for an aniso-
tropic material (in contrast with the isotropic one) differs from zero,
moreover, for the CF190 material SIF is significantly big. To testify
this phenomenon, consider the crack tip normal displacement dis-
continuities. According to Bozhydarnyk (1998) they equal:

r
Ne

where r is a distance to the tip; uy; = —Reli(s; — 5,)9291]
Uy, = Reli(s; — §,)d,g1],  dj = cosg + sjsing,  g; =
sing — s;jcosg, and ¢ is an angle between the tangent to the
crack at its tip and Ox axis.

It should be mentioned that for an orthotropic material, for which
s; = i, the following relations hold:

uy, = (B, + Bcos’p(k* + B,B.),
—(B, + B,)cos’pk(1 — BB,).

[u,] = 4a;; (U1 Ky + ug2Kyp) (10)

Ug

Tab. 2. Doubly periodic parabola cracks in the isotropic medium

2R F; | Deviation | Fy Fyi | Deviation
e w_l present | BEM % present | BEM % % r\f;ltA ac‘cofraltfilng‘foi?acl fgclfs F;\iccjuni;lr:g fclr :;ik f‘acZ:B
0.05 0.739 | 0.739 | 0.064 0.426 | 0426 | 0.032 contact contact
0.10 0714 | 0.714 0.029 0411 | 0411 0.070 25 [ 1.782 | 0.880 |-1.782| 0.880 | 1.684 | 0.434 0 |0.941
0.20 0687 | 0687 | 0.055 039% | 0394 | 0118 3.0 | 1.394 | 0.709 |-1.394 | 0.709 | 1.340 | 0412 | 0 |0.783
030 0733 | 0733 | 0068 0421 | 0421 | 0103 35| 1.249 | 0.638 |-1.250 | 0.638 | 1207 | 0.395| O |0.717
40 (1174 | 0.599 |-1.175] 0.599 | 1.137 | 0.384 0 0.681
040 0897 | 0.897 | 0034 0514 | 0514 ) 0.069 45 1129 | 0575 |-1.129 | 0.575 [ 1.095 | 0.376 | 0 | 0.659
050 | 1344 | 1.344) 0014 | 0768 | 0.768 | 0.004 50 | 1.098 | 0558 [-1.098 | 0558 | 1.066 | 0371 | 0 | 0.644
060 | 2355 | 2351 | 0191 | 1280 | 1.277 | 0.224 55 [ 1.077 | 0.547 |-1.077 | 0.547 | 1.046 | 0.366 | 0 | 0.633
0.70 2560 | 2549 | 0412 1281 | 1.276 | 0.368 6.0 | 1.061 | 0.538 |-1.061 | 0.538 | 1.032 | 0.363 | 0 | 0.626
0.80 2579 | 2565 | 0541 1196 | 1190 | 0502 6.5 | 1.048 | 0.532 |-1.049 | 0.532 | 1.021 | 0.360 | 0 | 0.620
0.90 2586 | 2568 0.691 1112 | 1105 0.658 7.0 | 1.039 | 0.527 |-1.039 | 0.527 | 1.012 | 0.358 0 0.615
0.95 2597 | 2.578 0.713 1.078 | 1.071 0.671
Tab. 3. Doubly periodic parabola cracks in the anisotropic medium
3.2. Doubly periodic curved cracks with contacting faces Wi | Fiu | Fya | Fig | Fup | Fia | Fua | Fis | Fus %

Consider a doubly periodic curved cracks, whose shape is de-

2
fined by the parabola equation y = k (’;—2 - 1) for—l<x <L
Here we account for the possible contact of crack faces using the

algorithm developed by Maksymovych (2009). The only nonzero
average stress is (o,,) = p. The normalized stress intensity factors

Fyp = Ky /(pvrl) for the left (A) and right (B) tip of the parabola
cracks with k = 1 in the isotropic material are presented in Tab. 2.

The calculations held show that the contact of crack faces oc-
curs near the right tip of the crack approximately at a one third of its
length. The table also shows significant influence of the account for
the crack faces contact on the calculated values of SIF. Following
table also shows the results of the problem with the same geome-
try, however, the material of the medium is anisotropic fiberglass
CF1 (CF190 corresponds to the same material with the principal
anisotropy axes rotated at a right angle).

For all considered particular problems the crack faces contact

l
CF1 CF190

2.5 (1.028 |-0.604| 0.162 | 0.393 | 1.633 |-0.495|-0.525 | 0.605 |-0.867
3.0 [0.880 |-0.394| 0.065 | 0.157 | 1.399 |-0.372|-0.560 | 0.521 |-1.075
3.5 0.826 |-0.326| 0.025 | 0.061 | 1.303 |-0.317|-0.533 | 0.495 |-1.075
4.0 10.799]-0.298| 0.003 | 0.007 | 1.253 |-0.283|-0.520| 0.484 |-1.075
4.5 ]0.784 |-0.286|-0.012|-0.028| 1.221 |-0.260|-0.514| 0.478 |-1.075
5.0 [0.775|-0.281|-0.021(-0.052 | 1.201 |-0.243|-0.510| 0.474 |-1.075
5.5 0.769 |-0.280{-0.028 |-0.069 | 1.187 |-0.230|-0.507 | 0.472 |-1.075
6.0 |0.766 |-0.282|-0.033 |-0.081| 1.177 |-0.219|-0.505 | 0.470 |-1.075
6.5 [0.764 |-0.284|-0.037 -0.089| 1.170 |-0.211|-0.503 | 0.468 |-1.075
7.0 [0.763 |-0.288|-0.039 |-0.095| 1.165 |-0.203|-0.501 | 0.466 |-1.075

From Eq. (10) it follows that under the crack faces contact
at the tip the following condition hold:
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