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Abstract: The paper presents complex variable integral formulae and singular boundary integral equations for doubly periodic cracks in an-
isotropic elastic medium. It utilizes the numerical solution procedure, which accounts for the contact of crack faces and produce accurate 
results for SIF evaluation. It is shown that the account of contact effects significantly influence the SIF of doubly periodic curvilinear cracks 
both for isotropic and anisotropic materials. 
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1. INTRODUCTION 

The doubly periodic problems are widely considered in scien-
tific literature, since they are crucial for understanding of the effect 
of cracks interaction on stress state of defective solids (see Sawruk, 
1981). Wang (2004) presented extremely accurate and efficient 
method for computing the interaction of a set or multiple sets of 
general doubly periodic cracks in elastic medium. Xiao and Jiang 
(2009) studied the orthotropic medium with doubly periodic cracks 
of unequal size under antiplane shear. Chen et al. (2003) have 
studied various multiple crack problems in elasticity. Xiao et al. 
(2011) obtained the closed-form solution for stress and electric dis-
placement intensity factors and effective properties of piezoelectric 
materials with a doubly periodic set of conducting rigid line inclu-
sions. Malits (2010) studied the doubly periodic arrays of rigid line 
inclusions in an elastic solid. Pasternak (2012) presented the gen-
eral Somigliana integral identities and boundary integral equations 
for doubly periodic cracks in anisotropic magnetoelectroelastic me-
dium. 

However, equations of Pasternak (2012) contain both singular 
and hypersingular integrals, therefore, this paper is focused on the 
development of singular integral equation for doubly periodic cracks 
in anisotropic medium. Also the contact of crack faces is accounted 
for, thus, the paper presents new general approach that can be 
used both in theoretical and applied analysis, in particular, in rock 
mechanics. 

2. OBTAINING OF SINGULAR INTEGRAL EQUATIONS 
BASED ON THE LEKHNITSKII FORMALISM 

Consider a doubly periodic problem of elasticity for an infinite 
anisotropic plate, which representative volume element contains 

a set of cracks 𝐿𝑗  (𝑗 = 1, … , 𝐽. Assume that crack faces are sym-

metrically loaded with tractions (𝑋𝑇 , 𝑌𝑇  ) and average stress 〈𝜎𝑥〉, 
〈𝜎𝑦〉, 〈𝜎𝑥𝑦〉 act in the medium. 

2.1. Governing equations for anisotropic plates  

Consider an arbitrary curve Γ that lays in the 2D domain 𝐷 oc-
cupied by the plate, and assume its positive path. One can intro-

duce the traction vector 𝑆Γ in the tangential element of the curve Γ, 
which normal vector is placed at the right to the chosen positive 
path of the curve. The projections (𝑋Γ, 𝑌Γ ) of the traction vector 

𝑆Γ and displacement (𝑢, 𝑣 ) derivatives by the arc coordinate 

at the curve Γ can be evaluated based on the Lekhnitskii complex 
functions as (Bozhydarnyk, 1998; Grigolyuk & Filshtinskiy, 1994): 

𝑌Γ = −2Re[Φ(𝑧1)𝑧1
′ + Ψ(𝑧2)𝑧2

′ ] 

𝑋Γ = 2Re[𝑠1Φ(𝑧1)𝑧1
′ + 𝑠2Ψ(𝑧2)𝑧2

′ ] 

𝑢′ = 2Re[𝑝1Φ(𝑧1)𝑧1
′ + 𝑝2Ψ(𝑧2)𝑧2

′ ] 

𝑣′ = 2Re[𝑞1Φ(𝑧1)𝑧1
′ + 𝑞2Ψ(𝑧2)𝑧2

′ ] 

(1) 

where: 𝑧𝑗 = 𝑥 + 𝑠𝑗𝑦, 𝑢′ = 𝑑𝑢/𝑑𝑠, 𝑣′ = 𝑑𝑣/𝑑𝑠, 𝑧𝑗
′ = 𝑑𝑥/

𝑑𝑠 + 𝑠𝑗𝑑𝑦/𝑑𝑠, 𝑗 = 1,2 𝑑𝑠 is a differential of arc Γ; 𝑠𝑗  are the 

complex roots (with positive imaginary part) of Lekhitskii character-
istic equation (Bozhydarnyk, 1998; Grigolyuk & Filshtinskiy, 1994); 

𝑝𝑗 = 𝛼11𝑠𝑗
2 + 𝛼12 − 𝛼16𝑠𝑗 , 𝑞𝑗 = 𝛼12𝑠𝑗 + 𝛼22/𝑠𝑗 − 𝛼26 and 

𝛼𝑖𝑗  are elastic compliances (Bozhydarnyk, 1998; Grigolyuk and Fil-

shtinskiy, 1994). 

Assume that the functions 𝑢′, 𝑣′, 𝑋Γ, 𝑌Γ in Eq. (1) are known 

at Γ. Then according to Maksymovych (2009) one can obtain: 

Φ(𝑧1) =
−𝑣′ + 𝑠1𝑢′ + 𝑝1𝑋Γ + 𝑞1𝑌Γ

Δ1𝑧1
′  

Ψ(𝑧2) =
−𝑣′ + 𝑠2𝑢′ + 𝑝2𝑋Γ + 𝑞2𝑌Γ

Δ2𝑧2
′  

(2) 

where:  
Δ1 = 𝛼11(𝑠1 − 𝑠2)(𝑠1 − 𝑠1̅)(𝑠1 − 𝑠2̅),  

Δ2 = 𝛼11(𝑠2 − 𝑠1)(𝑠2 − 𝑠1̅)(𝑠2 − 𝑠2̅). 
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2.2. Conditions for the complex functions  
at the boundary contours 

Assume that the projections (𝑋Γ, 𝑌Γ ) of traction vector and the 

moment 𝑀𝐿 about the origin of all forces applied to the contour 𝐿 
are known. Then one can obtain the following conditions: 

∫ Φ(𝑧1)𝑑𝑧1
𝐿1

= −
𝑝1𝑋𝐿 + 𝑞1𝑌𝐿

Δ1

 

∫ Ψ(𝑧2)𝑑𝑧2
𝐿2

= −
𝑝2𝑋𝐿 + 𝑞2𝑌𝐿

Δ2

 

Re [∫ Φ(𝑧1)𝑑𝑧1
𝐿1

+ ∫ Φ(𝑧2)𝑑𝑧2
𝐿2

] = −𝑀𝐿/2 

(3) 

where 𝐿𝑗  are the curves in the coordinate systems (𝑥𝑗 , 𝑦𝑗), which 

are the mappings of the curve 𝐿 with the affine transformations 

𝑥𝑗 = 𝑥 + Re(𝑠𝑗)𝑦, 𝑦𝑗 = Im(𝑠𝑗)𝑦. 

2.3. Integral equations for displacement discontinuities 
in an infinite cracked plate 

The complex variable integral equations for cracked anisotropic 
plates, in general, are written for the discontinuities of complex 
functions at cracks, which do not have direct physical meaning. 
At the same time, complex variable integral equations for isotropic 
plates are written for the displacement discontinuities, which signif-
icantly simplify the study and solution of fracture mechanics prob-
lems. In particular, these equations allow considering the problems 
for cracks with contacting faces. Therefore, this section develops 
this approach for cracked anisotropic plates. 

Assume that the tractions applied to the crack faces are sym-
metric with respect to a crack. Denoting the displacement disconti-
nuities [𝑢], [𝑣] with 𝑔1, 𝑔2, respectively, based on Eq. (2) one 
obtains the formulae for discontinuities of complex potentials 
at the crack: 

[Φ(𝑧1)] =
−𝑔2

′ +𝑠1𝑔1
′

Δ1𝑧1
′ , [Ψ(𝑧2)] =

−𝑔2
′ +𝑠2𝑔1

′

Δ2𝑧2
′   

Then the following integral formulae can be obtained for an an-
isotropic plate containing a set of cracks (Bozhydarnyk, 1998; 
Maksymovych, 2009): 

Φ(𝑧1) = ∫
𝐺1

′

𝑡1 − 𝑧1

𝑑𝑠 +
𝐿

Φ𝑠(𝑧1) 

Ψ(𝑧2) = ∫
𝐺2

′

𝑡2 − 𝑧2

𝑑𝑠 +
𝐿

Ψ(𝑧2) 

(4) 

where 𝐺1
′ = 𝐴1𝑔1

′ + 𝐴2𝑔2
′ , 𝐺2

′ = 𝐵1𝑔1
′ + 𝐵2𝑔2

′  and 𝐴1 =
𝑖𝑠1

2𝜋∆1
 

𝐴2 =
𝑖

2𝜋∆1
, 𝐵1 =

𝑖𝑠2

2𝜋∆2
, 𝐵2 =

𝑖

2𝜋∆2
 

It should be mentioned that for internal cracks the following 
crack tip displacement continuity conditions hold: 

∫ 𝐺1
′(𝑠)𝑑𝑠 = 0   (𝑖 = 1,2)

𝐿

 (5) 

Now consider the doubly periodic lattice defined by the periods 

𝜔1 and 𝜔2. The first period is assumed to be real-valued, and the 

second one is complex-valued. Then the periods in the mathemat-

ical planes 𝑧𝑘  are denoted as 𝜔𝑖
(𝑘)

 (𝑖 = 1,2), moreover  

𝜔1
(𝑘)

= 𝜔2 and 𝜔2
(𝑘)

= 𝑥𝜔 + 𝑠𝑘𝑦𝜔, where 𝑥𝜔 + 𝑖𝑦𝜔 = 𝜔2  

and  𝑦𝜔 > 0. 
According to Grigolyuk & Filshtinskiy (1994), Sawruk (1981), 

the integral formulae (4) for the doubly periodic problems can be 
replaced with: 

Φ(𝑧1) = ∫ 𝐺1
′(𝑠)𝜉(𝑡1 − 𝑧1)𝑑𝑠 + 𝐴𝑆

𝐿

 

Ψ(𝑧2) = ∫ 𝐺2
′ (𝑠)𝜉(𝑡2 − 𝑧2)𝑑𝑠 + 𝐵𝑆

𝐿

 

(6) 

where 𝜉(𝑧𝑘) = 𝜉(𝑧𝑘|𝜔1
(𝑘)

, 𝜔2
(𝑘)

)  is a Weierstrass zeta function 

for the periods 𝜔1
(𝑘)

 and 2; and 𝐴𝑆, 𝐵𝑆  are unknown constants 

to be determined. 

Using the conditions (5) and the property 𝜉(𝑧𝑘 + 𝜔n
(𝑘)

) =

𝜉(𝑧𝑘) + 𝛿n
(𝑘)

 it is easy to show that the complex potentials (6) are 
periodic (thus, the stresses and strains calculated based on these 

potentials are periodic too). Here 𝛿n
(𝑘)

= 2𝜉(𝜔n
(𝑘)

/2). At the 

same time, the potentials (6) (and the same as (4)) are dependent 
on the displacement discontinuities 𝑔1 + 𝑖𝑔2 at the curve 𝐿. 
Therefore, (6) presents the solution of doubly periodic problem for 
cracked domain. 

For determination of the constants 𝐴𝑆 and B one should first 
determine the traction vector acting at the lines parallel to the main 
periods (Grigolyuk & Filshtinskiy, 1994). The projections of the re-

sultant vector of tractions acting at the arbitrary curve 𝐴𝐵 can be 
determined with the following equation: 

𝑌𝐴𝐵 = −2Re[𝜑(𝑧1) + 𝜓(𝑧2)]𝐴𝐵  

𝑋𝐴𝐵 = 2Re[𝑠1𝜑(𝑧1) + 𝜓Ψ(𝑧2)]𝐴𝐵  
 

First assume that 𝐴𝐵 is a line parallel to the 𝑂𝑥 axis. Then 
accounting for (6), one obtains that: 

𝜑(𝑧1)𝐴𝐵 = ∫ Φ(𝑧1)𝑑𝑧1

𝑧1+𝜔1
(1)

𝑧1

 

       = ∫ 𝐺1
′(𝑠) (∫ 𝜉(𝑡1 − 𝑧1)𝑑𝑧1

𝑧1+𝜔1
(1)

𝑧1

) 𝑑𝑠 + 𝐴𝑆
𝐿

𝜔1
(1)

 

According to Sawruk (1981): 

∫ 𝜉(𝑡1 − 𝑧1)𝑑𝑧1
𝑧1+𝜔1

(1)

𝑧1
= 𝛿1

(1)(𝑡1 − 𝑧1) + 𝑐𝑜𝑛𝑠𝑡.,  

therefore: 

𝜑(𝑧1)𝐴𝐵 = 𝛿1
(1)

∫ 𝐺1
′(𝑠)(𝑡1 − 𝑧1)𝑑𝑠 + 𝐴𝑆

𝐿

𝜔1
(1)

= 𝛿1
(1)

∫ 𝐺1
′ (𝑠)𝑡1𝑑𝑠 + 𝐴𝑆

𝐿

𝜔1
(1)

 

 

The same concerns the function 𝜓(𝑧2): 

𝜓(𝑧2)𝐴𝐵 = 𝛿1
(2)

∫ 𝐺2
′ (𝑠)𝑡2𝑑𝑠 + 𝐵𝑆

𝐿

𝜔1
(2)

  

Thus, the following relations are obtained for the bottom edge 
of the representative volume element: 
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(9) 

𝑌1 = −2Re(𝛿1
(1)

𝐽1 + 𝛿1
(2)

𝐽2 + 𝐴𝑆𝜔1
(1)

+ 𝐵𝑆𝜔1
(2)

) 

𝑋1 = 2Re(𝑠1𝛿1
(1)

𝐽1 + 𝑠2𝛿1
(2)

𝐽2 + 𝐴𝑆𝑠1𝜔1
(1)

+ 𝐵𝑆𝑠2𝜔1
(2)

) 
(7) 

where 𝐽𝑘 = ∫ 𝐺𝑘
′ (𝑠)𝑡𝑘𝑑𝑠

𝐿
. 

Applying the same procedure for the right edge of the repre-
sentative volume element one obtains: 

𝑌1 = −2Re(𝛿2
(1)

𝐽1 + 𝛿2
(2)

𝐽2 + 𝐴𝑆𝜔2
(1)

+ 𝐵𝑆𝜔2
(2)

) 

𝑋1 = 2Re(𝑠1𝛿2
(1)

𝐽1 + 𝑠2𝛿2
(2)

𝐽2 + 𝐴𝑆𝑠1𝜔2
(1)

+ 𝐵𝑆𝑠2𝜔2
(2)

) 
(8) 

The right hand sides of Eqs. (7) and (8) are known and equal: 

𝑌1 = −𝜔1〈𝜎𝑦〉 

𝑋1 = −𝜔1〈𝜏𝑥𝑦〉 

𝑌2 = |𝜔2|(〈𝜏𝑥𝑦〉 > 𝑐𝑜𝑠𝛼 − 〈𝜎𝑦〉𝑠𝑖𝑛𝛼) 

𝑋2 = |𝜔2|(〈𝜎𝑥〉 > 𝑐𝑜𝑠𝛼 − 〈𝜏𝑥𝑦〉𝑠𝑖𝑛𝛼) 

 

where α is an angle between the second period 𝜔2 and the 𝑂𝑦 
axis. 

Eqs. (7) and (8) are considered as a linear algebraic equations 

system for determination of the unknown constants 𝐴𝑆 and 𝐵𝑆 . 
First consider Eq. (7) and the first equation in (8): 

−2Re((𝐴𝑆 + 𝐵𝑆)𝜔1 + 𝛿1
(1)

𝐽1 + 𝛿1
(2)

𝐽2) = 𝑌1 

2Re(𝜔1(𝑠1𝐴𝑆 + 𝑠2𝐵𝑆)𝜔1 + 𝑠1𝛿1
(1)

𝐽1 + 𝑠2𝛿1
(2)

𝐽2) = 𝑋1 

−2Re(𝑥𝜔(𝐴𝑆 + 𝐵𝑆) + 𝑦𝜔(𝑠1𝐴𝑆 + 𝑠2𝐵𝑆))

− 2Re(𝛿2
(1)

𝐽1 + 𝛿2
(2)

𝐽2) = 𝑌2 

 

These equations result in the condition: 

2Re[(𝛿1
(1)

𝜔2
(1)

− 𝛿2
(1)

𝜔1
(1)

)𝐽1

+ (𝛿1
(2)

𝜔2
(2)

− 𝛿2
(2)

𝜔1
(2)

)𝐽2]

= 𝑥𝜔𝑋1 + 𝑦𝜔𝑋1 + 𝜔1𝑌2 = 0 

 

Accounting for 𝛿1
(𝑘)

𝜔2
(𝑘)

− 𝛿2
(𝑘)

𝜔1
(𝑘)

= 2𝜋𝑖  one obtains that 

4𝜋Re𝑖(𝐽1 + 𝐽2) = 0. 
The relation: 

2Re (
𝑠1

𝑗

∆1

+
𝑠2

𝑗

∆2

) = 0   for 𝑗 = 0,1,2  

shows that this condition is satisfied identically. 
Thus, for determination of the unknown constants we have only 

three equations (Eq. (7) and the second equation in (8)). The solu-
tion of this system is sought in the following form: 

𝐴𝑆 = −
𝛿1

(1)

𝜔1
𝐽1 + Φ∞ + 𝐴,  𝐵𝑆 = −

𝛿1
(2)

𝜔1
𝐽2 + Ψ∞ + 𝐵  

where Φ∞ and Ψ∞ are complex potentials corresponding to the 
stress state of uncracked plate under the load 〈𝜎𝑥〉, 〈𝜎𝑦〉, 〈𝜏𝑥𝑦〉 

applied at infinity. 
Then for determination of the constants 𝐴 and 𝐵 one obtains 

the following system: 

2Re(𝐴 + 𝐵) = 0,  2Re(𝑠1𝐴 + 𝑠2𝐵) = 0   

2Re(𝐴𝑠1
2 + 𝐵𝑠2

2) = −
4𝜋

𝑦𝜔𝜔1

Re𝑖(𝑠1𝐽1 + 𝑠2𝐽2) 
 

Solving the latter one can obtain the expressions for the un-
known constants up to the values which do not influence the stress 
field: 

𝐴 = −
1

𝑦𝜔𝜔1∆1
∫ 𝑔1

′ 𝑡1𝑑𝑠
𝐿

,  𝐵 = −
1

𝑦𝜔𝜔1∆2
∫ 𝑔1

′ 𝑡2𝑑𝑠
𝐿

  

For convenience one can present the Weierstrass zeta function 
in the form (Sulym, 2007): 

𝜉(𝑧) =
𝛿1

𝜔1

𝑧 + 𝑆(𝑧; 𝜔1, 𝜔2)  

where: 

𝑆(𝑧; 𝜔1, 𝜔2) =
𝜋

𝜔1

{ctg
𝜋𝑧

𝜔1

+ ∑ ctg (
𝜋𝑧

𝜔1

+ 𝑛𝜋
𝜔2

𝜔1

)

𝑁

𝑛=1

+ ∑ ctg (
𝜋𝑧

𝜔1

− 𝑛𝜋
𝜔2

𝜔1

)

𝑁

𝑛=1

} 

 

for 𝑁 → ∞. 
These relations allow to rewrite (6) as: 

Φ(𝑧1) = ∫ [𝑔1
′ Φ1(𝑡1 − 𝑧1) + 𝑔2

′ Φ2(𝑡1 − 𝑧1]𝑑𝑠 + Φ∞
𝐿

 

Ψ(𝑧1) = ∫ [𝑔1
′ Ψ1(𝑡2 − 𝑧2) + 𝑔2

′ Ψ2(𝑡2 − 𝑧2]𝑑𝑠 + Ψ∞
𝐿

 

where Φ1(𝑧) = 𝐴1 [𝑆1(𝑧) +
𝛾

𝑠1
𝑧], Ψ1(𝑧) = 𝐵1 [𝑆𝑧(𝑧) +

𝛾

𝑠2
𝑧]  

Φ2(𝑧) = 𝐴1𝑆1(𝑧), Ψ2(𝑧) = 𝐵2𝑆2(𝑧), 𝑆𝑘(𝑧) = 𝑆(𝑧; 𝜔1, 𝜔2
(𝑘)

) 

𝛾 =
2𝜋𝑖

𝑦𝜔𝜔1
. 

The kernels of integral formulae (9) are written in the form 
of sums of the kernels for singly periodic problems and contain ad-
ditional terms, which has a multiplier 𝛾. It should be mentioned, 
that in the literature one can found the attempts to derive the anal-
ogous formulae with direct summation. However, now it is obvious 
that these approaches are incorrect. The reader is referred to Pas-
ternak (2012), where for the first time the mathematically strict 
and correct approach of direct summation for anisotropic magneto-
electroelastic material with doubly periodic sets of defect was pre-
sented. 

3. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS 
FOR PARTICULAR PROBLEMS 

Integral formulae (9) have the same structure as those obtained 
for other problems of elasticity for cracked anisotropic plates ob-
tained by Bozhydarnyk (1998) and Maksymovych (2009). There-
fore, numerical determination of the displacement discontinuities in-
corporated in these formulae can be determined within the algo-
rithm proposed by Maksymovych (2009). For evaluation of the ker-
nels of the integral equations it is convenient to use the following 
relation: 

𝑆(𝑧; 𝜔1, 𝜔2) = 𝜆1{ctg𝜆1𝑧 

+4sin(2𝜆1𝑧) ∑
𝜆𝑛

(1 − 𝜆𝑛𝑒2𝑖𝜆1𝑧)(1 − 𝜆𝑛𝑒−2𝑖𝜆1𝑧)

∞

𝑛=1

} 
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where 𝜆1 =
𝜋

𝜔1
, 𝜆 = exp (2𝜋𝑖

𝜔2

𝜔1
) and |𝜆| < 1. 

This series converges fast. In particular, for isotropic material 
with a square lattice it is enough to leave only two terms in the sum. 

3.1. Verification of the approach 

For verification of the proposed approach consider a doubly pe-

riodic set of line cracks of length 2𝑙 inclined at 30° to the 𝑂𝑥 axis. 
The centers of the cracks form the equilateral triangular lattice. 
The only nonzero average stress is 〈𝜎𝑦〉 = 𝑝. The material of the 

plate is highly anisotropic fiberglass CF1, whose properties are 
given by Maksymovych (2009). Table 1 compares the normalized 

stress intensity factors (SIF) 𝐹I,II = 𝐾I,II/(𝑝√𝜋𝑙) obtained 

with the proposed approach and by the boundary element method 
(BEM) developed by Pasternak (2012) with a crack face meshed 
with only 20 elements. Good agreement of the results is observed, 
which testifies the validity and efficiency of the developed ap-
proach. 

Tab. 1. Verification of the approach 

𝜆1 =
2𝑙

𝜔1
 

𝐹I 
present 

𝐹I  
BEM 

Deviation 
% 

𝐹II 
present 

𝐹II 
BEM 

Deviation 
% 

0.05 0.739 0.739 0.064 0.426 0.426 0.032 

0.10 0.714 0.714 0.029 0.411 0.411 0.070 

0.20 0.687 0.687 0.055 0.394 0.394 0.118 

0.30 0.733 0.733 0.068 0.421 0.421 0.103 

0.40 0.897 0.897 0.034 0.514 0.514 0.069 

0.50 1.344 1.344 0.014 0.768 0.768 0.004 

0.60 2.355 2.351 0.191 1.280 1.277 0.224 

0.70 2.560 2.549 0.412 1.281 1.276 0.368 

0.80 2.579 2.565 0.541 1.196 1.190 0.502 

0.90 2.586 2.568 0.691 1.112 1.105 0.658 

0.95 2.597 2.578 0.713 1.078 1.071 0.671 

3.2. Doubly periodic curved cracks with contacting faces 

Consider a doubly periodic curved cracks, whose shape is de-

fined by the parabola equation 𝑦 = 𝑘 (
𝑥2

𝑙2 − 1)  for −𝑙 ≤ 𝑥 ≤ 𝑙. 

Here we account for the possible contact of crack faces using the 
algorithm developed by Maksymovych (2009). The only nonzero 

average stress is 〈𝜎𝑦〉 = 𝑝. The normalized stress intensity factors 

𝐹I,II = 𝐾I,II/(𝑝√𝜋𝑙) for the left (A) and right (B) tip of the parabola 

cracks with 𝑘 = 1 in the isotropic material are presented in Tab. 2. 
The calculations held show that the contact of crack faces oc-

curs near the right tip of the crack approximately at a one third of its 
length. The table also shows significant influence of the account for 
the crack faces contact on the calculated values of SIF. Following 
table also shows the results of the problem with the same geome-
try, however, the material of the medium is anisotropic fiberglass 
CF1 (CF190 corresponds to the same material with the principal 
anisotropy axes rotated at a right angle). 

For all considered particular problems the crack faces contact 

occurs near the right tip, excepting material CF190 and 
𝜔1

𝑘
= 2.5, 

where the faces contact at the right of the crack center. Tab. 3 

shows that for the contact of crack faces the SIF 𝐾IB for an aniso-
tropic material (in contrast with the isotropic one) differs from zero, 
moreover, for the CF190 material SIF is significantly big. To testify 
this phenomenon, consider the crack tip normal displacement dis-
continuities. According to Bozhydarnyk (1998) they equal: 

[𝑢𝑛] = 4𝑎11

√𝑟

√2𝜋
(𝑢11𝐾I + 𝑢12𝐾II) (10) 

where 𝑟 is a distance to the tip; 𝑢11 = −Re[𝑖(𝑠1 − 𝑠̅2)𝑔2𝑔̅1] , 
 𝑢12 = Re[𝑖(𝑠1 − 𝑠̅2)𝑑2𝑔̅1], 𝑑𝑗 = cos𝜑 + 𝑠𝑗sin𝜑, 𝑔𝑗 =

sin𝜑 − 𝑠𝑗cos𝜑, and 𝜑 is an angle between the tangent to the 

crack at its tip and 𝑂𝑥 axis.  
It should be mentioned that for an orthotropic material, for which 

𝑠𝑗 = 𝑖𝛽𝑗 , the following relations hold: 

𝑢11 = (𝛽
1

+ 𝛽
2

)cos2𝜑(𝑘2 + 𝛽
1
𝛽

2
),  

𝑢12 = −(𝛽
1

+ 𝛽
2

)cos2𝜑𝑘(1 − 𝛽
1

𝛽
2

). 

Tab. 2. Doubly periodic parabola cracks in the isotropic medium 

𝜔1

𝑙
 

𝐹I𝐴 𝐹II𝐴 𝐹I𝐵 𝐹II𝐵 𝐹I𝐴 𝐹II𝐴 𝐹I𝐵 𝐹II𝐵 
Not accounting for crack faces 

contact 
Accounting for crack faces 

contact 

2.5 1.782 0.880 -1.782 0.880 1.684 0.434 0 0.941 

3.0 1.394 0.709 -1.394 0.709 1.340 0.412 0 0.783 

3.5 1.249 0.638 -1.250 0.638 1.207 0.395 0 0.717 

4.0 1.174 0.599 -1.175 0.599 1.137 0.384 0 0.681 

4.5 1.129 0.575 -1.129 0.575 1.095 0.376 0 0.659 

5.0 1.098 0.558 -1.098 0.558 1.066 0.371 0 0.644 

5.5 1.077 0.547 -1.077 0.547 1.046 0.366 0 0.633 

6.0 1.061 0.538 -1.061 0.538 1.032 0.363 0 0.626 

6.5 1.048 0.532 -1.049 0.532 1.021 0.360 0 0.620 

7.0 1.039 0.527 -1.039 0.527 1.012 0.358 0 0.615 

Tab. 3. Doubly periodic parabola cracks in the anisotropic medium 

𝜔1

𝑙
 

𝐹I𝐴 𝐹II𝐴 𝐹I𝐵 𝐹II𝐵 𝐹I𝐴 𝐹II𝐴 𝐹I𝐵 𝐹II𝐵 
𝐹I𝐵

𝐹II𝐵
 

CF1 CF190 

2.5 1.028 -0.604 0.162 0.393 1.633 -0.495 -0.525 0.605 -0.867 

3.0 0.880 -0.394 0.065 0.157 1.399 -0.372 -0.560 0.521 -1.075 

3.5 0.826 -0.326 0.025 0.061 1.303 -0.317 -0.533 0.495 -1.075 

4.0 0.799 -0.298 0.003 0.007 1.253 -0.283 -0.520 0.484 -1.075 

4.5 0.784 -0.286 -0.012 -0.028 1.221 -0.260 -0.514 0.478 -1.075 

5.0 0.775 -0.281 -0.021 -0.052 1.201 -0.243 -0.510 0.474 -1.075 

5.5 0.769 -0.280 -0.028 -0.069 1.187 -0.230 -0.507 0.472 -1.075 

6.0 0.766 -0.282 -0.033 -0.081 1.177 -0.219 -0.505 0.470 -1.075 

6.5 0.764 -0.284 -0.037 -0.089 1.170 -0.211 -0.503 0.468 -1.075 

7.0 0.763 -0.288 -0.039 -0.095 1.165 -0.203 -0.501 0.466 -1.075 

From Eq. (10) it follows that under the crack faces contact 
at the tip the following condition hold: 
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𝐾I

𝐾II

= −
𝑢12

𝑢11

 (11) 

For the CF190 material𝑘 = 2, and thus, 𝑢12/𝑢11 = 1.0751. 
One can see that the ration of SIFs presented in the last column 
of Tab. 3 is in good agreement with this estimation, thus, the crack 
faces contact condition (11) holds with high accuracy. 

4. CONCLUSION 

The paper derives compact and easy to use singular integral 
equations for doubly periodic cracks in an anisotropic medium. 
The study of the influence of anisotropy and contact of crack faces 
showed its significance in the calculated values of stress intensity 
factors. Also it is proved the mode I SIF can be nonzero for an ani-
sotropic material with crack, which faces are in contact. 
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