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Abstract: The minimum energy control problem for the 2D positive continuous-discrete linear systems is formulated and solved. Neces-
sary and sufficient conditions for the reachability at the point of the systems are given. Sufficient conditions for the existence of solution to
the problem are established. It is shown that if the system is reachable then there exists an optimal input that steers the state from zero
boundary conditions to given final state and minimizing the performance index for only one step (q = 1). A procedure for solving of the

problem is proposed and illustrated by a numerical example.
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1. INTRODUCTION

A dynamical system is called positive if its trajectory starting
from any nonnegative initial state remains forever in the positive
orthant for all nonnegative inputs. An overview of state of the art
in positive theory is given in the monographs Farina and Rinaldi
(2000) and Kaczorek (2001). Variety of models having positive
behavior can be found in engineering, economics, social sciences,
biology and medicine, etc.

The positive continuous-discrete 2D linear systems have been
introduced in Kaczorek (1998), positive hybrid linear systems
in Kaczorek (2007) and the positive fractional 2D hybrid systems
in Kaczorek (2008a). Different methods of solvability of 2D hybrid
linear systems have been discussed in Kaczorek et al. (2008)
and the solution to singular 2D hybrid linear systems has been
derived in Sajewski (2009). The realization problem for positive
2D hybrid systems has been addressed in Kaczorek (2008b).
Some problems of dynamics and control of 2D hybrid systems
have been considered in Dymkov et al. (2004) and Gatkowski
etal. (2003). The problems of stability and robust stability of 2D
continuous-discrete linear systems have been investigated
in Bistritz (2003), Bustowicz (2010a, b), Narendra (2010), Sajew-
ski (2009) and Xiao (2001, 2003). Recently the stability and robust
stability of general model and of Roesser type model of scalar
continuous-discrete linear systems have been analyzed
by Bustowicz (2010). New stability tests for positive standard
and fractional linear systems have been proposed in Kaczorek
(2011a). Stability of continuous-discrete 2D linear systems has
been considered in Kaczorek (2011b).

The minimum energy control problem for standard linear sys-
tems has been formulated and solved by Klamka (1976, 1983,
1991) and for 2D linear systems with variable coefficients in Ka-
czorek and Klamka (1986). The controllability and minimum ener-
gy control problem of fractional discrete-time linear systems has
been investigated by Klamka (2010). The minimum energy control
of fractional positive continuous-time linear systems has been
addressed in Kaczorek (2012, 2014) and for descriptor positive
discrete-time linear systems in Kaczorek (2013).

In this paper the minimum energy control problem for positive

2D continuous-discrete linear systems will be formulated
and solved.

The paper is organized as follows. In section 2 the basic defi-
nitions and theorems of the positive continuous-discrete linear
systems are recalled. Necessary and sufficient conditions for the
reachability of the positive systems are given in section 3.
The minimum energy control problem is formulated and solved
in section 4. A procedure for computation of the optimal inputs
and the minimum value of the performance index are proposed
and illustrated by numerical example in section 5. Concluding
remarks are given in section 6.

The following notation will be used: R - the set of real num-
bers, R™*™ - the set of n x m real matrices, RT*™ - the set
of n X m matrices with nonnegative entries and R = R*1,
M, - the set of n x n Metzler matrices (real matrices with
nonnegative off-diagonal entries), I,, — the n x n identity matrix.

2. PRELIMINERIES

Consider the general model of linear continuous-discrete sys-
tem described by the equation:
x(t i+ 1) =Apx(t, i) + Apx(t, ) + Ax(t,i+ 1)

+Byu(t, i) + Byu(t, i) + Byu(t,i + 1)

where: x(t,i) = axa(i'i), x(t, i) € R™, u(t,i) € R™ are the

state and input vectors and A, € R™", B, € RV,
k=0,1,2.
Boundary conditions for (1) are given by:

Xo; = x(0,1),i € Z,, @)
Xeo = x(t,0), X0 = X(¢,0),t € R,

The transition matrix of the model (1) is defined as follows:

i+j>0

i!j € Z+
(3)

I,fori=1=0
= { AoTioqjq + AT jo1 + AT 4 for

= Ti—1,j—1A0 + Ti,j—1A1 + Ti—1,jA2'
0,fori >0o0rj<0
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Theorem 1. The solution of the equation (1) with boundary condi-
tions (2) has the form (proof is given in Kaczorek (2012)):

t t
— Tii—1-1B1 FU(O, D+ Ty FX(O, D

£k
= Tii-1-141 Fx(O, D

oo

t (t _ .[)k—l
+ Z Tk,i—l—lBl J- WH(T, l)d'[
k=11=0 0 '
4
£ ToraBuut D) “
l;)O
t (t _ ‘L')k
- Z Ty iB, f ———u(r,0)dt
' 0 k!
k=0
t (t _ ‘l,')k tk
+ Ty A, f Tx(‘r, 0)dt + Ty ; Ex(O, 0)
0 ! !

5] t (t _ T)k_l
+ ; (Tk,i fo Wx(r, 0)d1> + Ty 1x(t, 0)

Definition 1. The general model (1) is called positive if x(t, i) €
RY, t€R,, i €Z, for any boundary conditions x,; € R},
Xeo € RY, %o ERT, t €Ryoand all inputs  u(t,i) € RY,
u(t,i) ERM™teR,,i € Z,.

Theorem 2. The general model (2.1) is positive if and only if:

A, €M, Ay, A) € R
AO + A1A2 E ierxn, Bo, Bl’ BZ E mﬁxm

Proof is given in in Kaczorek (2012).

3. REACHABILITY OF POSITIVE SYSTEMS

Definition 2. The model (1) is called reachable at the point
(t7, q) if for any given final state x; € R™ there exists an input
u(t,i), 0 <t <ty, 0 <i< q which steers the system form
zero boundary conditions to the state x;, i.e. (tr,q) = x;.

A square real matrix is called monomial if its every column
and its every row has only one positive entry and the remaining
entries are zero. The inverse of monomial matrix is also a mono-
mial matrix (Kaczorek, 2012).

Theorem 3. The model (1) with B; = B, = 0 is reachable at the
point (¢, 1) if and only if the matrix A, € M,, is diagonal and the
matrix B, € R*™ is monomial.

Proof. Sufficiency. If A, € M,, is diagonal then e“42* is also diag-
onal and if B, € R%*™ is monomial then B,BY is also monomi-
al. In this case the matrix:
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Ry = [," e*"ByBle”:"dr, t; >0 (6)
is also monomial and R7* € R
The input:
u(t) = u(t‘ 0) = Bg;eAg(tf_T)Rfl.X'f (7)

steers the state of the system (1) from zero boundary conditions
to x.. The solution of (1) for i = 0, t = t; has the form:

x(tp,1) = f;feAZ(tf_T)Bou(r)dr 8)
and substitution (7) onto (8) we obtain:
x(tp, 1) = fotfeAZ(tf—T)BOBgeAg(tf_T)dTRf_le =x (9)

The necessity can be proved in a similar way as in Kaczorek
(2012, 2013a).

4. MINIMUM ENERGY CONTROL PROBLEM
FOR POSITIVE SYSTEMS WITH BOUNDED INPUTS

4.1. Problem formulation

Consider the positive 2D continuous-discrete system (1)
with A, € M,, and B, € RT*™ monomial and B; = B, = 0.
If the system is reachable in time ¢ € [0, t;], then usually there
exists many different inputs u(t) € R} that steers the state
of the system from zero boundary conditions to x € R’t. Among
these inputs we are looking for an input u(t) € R’ that minimiz-
es the performance index:

I(w) = fotfuT(r)Qu(T)dr (10)
where: Q € R*" is a symmetric positive defined matrix and
Q1 e R,

The minimum energy control problem for the positive 2D con-
tinuous-discrete linear systems (1) can be stated as follows: Given
the matrices: diagonal A, € M,,, monomial B, € R*™, tr,
g =1and Q € RY*™ of the performance index (10), x; € R}
and t; > 0, find an input u(t) € K% for ¢ € [0,t/] that steers
the state vector of the system from zero boundary conditions to
x¢ € R and minimizes the performance index (10).

4.2. Problem solution

To solve the problem we define the matrix:
W =w(t,Q) = foffeAz(tf—T)BOQ—1BgeA§(tf—r)dT (11)

From (11) and Theorem 3 it follows that the matrix (11) is mo-
nomial if and only if the positive system (1) is reachable at the
point [¢7, 1]. In this case we may define the input:

a(t) = Q'Ble” W 1x fort € [0, ¢f] (12)

Note that the input (12) satisfies the condition 7i(t) € R%
for ¢ € [0, ¢/] if:

Q9 le R Mand W™t € R (13)
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Theorem 4. Let the positive system (1) be reachable at the point
[t;, 1] and let z(t) € K% for ¢ € [0, t;] be an input that steers
the state of the positive system (1) from zero boundary conditions
to x; € RY. Then the input (12) also steers the state of the sys-
tem from zero boundary conditions to x; € R} and minimizes

the performance index (10), i.e. I(@) < I(&). The minimal value
of the performance index (10) is equal to:

I(@) = xf W txp (14)
Proof. If the conditions (13) are met then the input (12) is well
defined and @(t) € R% for ¢ € [0,t;]. We shall show that the
input steers the state of the system from zero boundary conditions

to x, € R}, Substitution of (12) into (8) for ¢t = ¢, and zero
boundary conditions yields:

ty
x(tf, 1) =J; eAZ(tf'T)BOﬁ(T)dT

t . (15)
= fo e2(tr=7) B9 1 BT e 42 (tr77) dew ~lx; = x;

since (11) holds. By assumption the inputs #(t) and @(t),t €
[0, ¢7] steers the state of the system from zero boundary condi-
tions to x; € R%. Hence:

ty
Xs =f et~ B u(t)dr
0

t 16a
= f feAZ(tf'T) B,ii(r)dr (16)
0

or.
tr
f e42(-9) B [ (r) — 4(e)]de = 0 (16b)
0

By transposition of (16b) and postmultiplication by W~"x we
obtain:

tr
f [a(r) — 2(0)]" Bl e (tr—Ddew —1x, = 0 (17)
0
Substitution of (12) into (17) yields:

tf T
f [u(r) — 2(x)]"Bl ez (tf_T)d‘rW'le
0

- "l - a@Ire@dr = 0

Using (18) it is easy to verify that:

ftfﬁ(r)TQﬁ(T)dr = ftfﬁ(r)TQﬁ(T)dr
0 0 (19)
tf
n f [a() — @] Qla) — a()]de

From (19) it follows that I (@) < I(u) since the second term
in the right-hand side of the inequality is nonnegative.

To find the minimal value of the performance index (10)
we substitute (12) into (10) and we obtain:
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ty
1(@) =J- aT ()9 (7)dr
0

tr
=xfw f e42(tr=7) B 0=1BT A2 (tr=7) gy =1, (20)
0

_ L Tyr-1
—xfW Xf

since (11) holds.

We have the following two important conclusions:
Conclusion 1. If the matrix A, € M,, is diagonal and the matrix
B, € R*™ is monomial then there exists an input (7) that steers
the state of the positive system (1) from zero boundary conditions
to x; € R and minimize the performance index (10).
Conclusion 2. For g = 1 the optimal input (7) and the minimal
value of the performance index (14) are independent of the matri-
ces Ao and A; of the positive system (1).

The considerations can be easily extended to g > 1.

5. PROCEDURE AND EXAMPLE

From the considerations of section 4 we have the following
procedure for computation the optimal inputs that steers the state
of the system from zero boundary conditions to x; € R}
and minimize the performance index (10).

Procedure 1.

Step 1. Knowing A, € M,, compute e42¢,

Step 2. Knowing the matrices A,, By, Q for some t, and using
(11) compute the matrix W.

Step 3. Using (12) compute (7).

Step4. Using (10) compute the minimal value of the perfor-

mance index I (1).
Example 1. Consider the positive system (1) with matrices:

-1 0 0 1
AZ—[O _2], Bo=|, o (21)
and the performance index (10) with:

_[2 o
9=1[3 .| (22)

Compute the optimal input @i(t)for t € [0,1] and ¢ = 1
that steers the state of the system from zero boundary conditions
tox; =[1 1]" € R% (T denote the transpose) and minimize
the performance index.

By Theorem 3 the positive system (1) with (21) is reachable at
the point (¢ = 1,q = 1). Using the Procedure 1 we obtain the

following:
Step 1. In this case we have:
-+ 9
et =% e )

Step 2. Using (11), (21) and (23) we obtain:
t

W = f feAz(tf—T) BOQ—IBgeAg(tf—T)dT
0

L= ey 0 (24)

_ ftf [e—ZT 0 ] _ 4
—47 1
o~ 0 e 0 g1—e™
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Step 3. Using (12) and (22)-(24) we obtain:

2 = Q 1Bl ()W 1y,

-1
1(1 —e2 0
_1ro ez(f‘l)] 4 e) [1]
Y PG 1
2le 0 0 s(—e™) !
[ 4eZ(t—1) -l (25)
_|G-e™)
S| 2e |
=)

Step4. The minimal value of the performance index is equal to:
I(@) = xf W tx,
1
—(1—-e7? 0

- 14 1
0 %(1 —e™) [1] (26)
4 8

T-eD a-e®

6. CONCLUDING REMARKS

The minimum energy control problem for the 2D positive con-
tinuous-discrete linear systems has been formulated and solved.
Necessary and sufficient conditions for the reachability at the point
(tr,q = 1) of the systems have been established (Theorem 3).
Sufficient conditions for the existence of solution to the minimum
energy control problem of the positive 2D continuous-discrete
linear systems have been given (Theorem 4). The procedure
for computation of the optimal input and the minimal value of
performance index has been proposed and illustrated by numeri-
cal example. It has been shown that if the system is reachable
then there exists an optimal input that steers the state from zero
boundary conditions to given final state and minimizing the per-
formance index for only one step for ¢ = 1. The consideration
can be easily extended to ¢ > 1 and for (1) with nonzero matri-
ces By, k = 0,1,2. In the subsequent paper the considerations
will be extended to the descriptor positive 2D continuous-discrete
linear systems.
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