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Abstract: This paper deals with the diagnosis of discrete-time singularly perturbed systems presenting two time scales property. Parity
space method is considered to generate the fault detection residual. The focus is in two directions. First, we discuss the residual ill-
conditioning caused by the singular perturbation parameter. Then, the use of the slow subsystem is considered to make the fault diagnosis
easier. It is shown that the designed diagnostic algorithm based on reduced order model is close to the one synthesized using the full order
system. The developed approach aims at reducing the computational load and the ill-conditioning for stiff residual generation problem. Two
examples of application are used to demonstrate the efficiency of the proposed method.
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1. INTRODUCTION

Singular perturbation systems involving in their realistic repre-
sentation several small parameters like unmodelled parasitic,
capacitances, time and inertia constants, found their applicability
in chemical reactors, power system dynamics, control of large
scale systems and similar settings (Khalil, 1987; Kokotovic et al.,
1986; Tellili et al., 2007). The presence of high dimensionality
and ill-conditioning in such systems, gives rise to difficulties
in their fault diagnosis and control. These problems are consider-
ably simplified if a decomposition of fast and slow dynamics can
be achieved.

Singularly perturbed discrete-time systems are described
through three models. The slow and the fast sampling rate models
which are obtained through discretization of the singularly per-
turbed continuous-time system and the pure one which is discrete
in nature (Litkouhi and Khalil, 1985; Naidu et al., 1987).

The vulnerability of those time-scale systems, like other auto-
mated complex systems, to malfunctions in control actuators,
measurement sensors and process equipment requires the design
of diagnosis methods to detect and isolate faults. Several ap-
proaches have been developed to design diagnosis systems
using model-based methods like observer based methods (Frank,
1990; Patton and Chen, 1997), parameter estimation (Clark et al.,
1975; Isermann, 1993; Pana and Stoian, 2008) and the parity
relation approach which is one of the most commonly used tech-
niques in fault detection and isolation (Chow and Willsky, 1984;
Gertler, 1997; Patton and Chen, 1991). Many authors were inter-
ested in the fault diagnosis of singularly perturbed systems. Tellili
et al. (2004) considered the fast subsystem as a modeling error
and generated residuals by using robust parity space in order
to detect and isolate faults in singularly perturbed systems. Gong
and Khorasani (2005) used the observers relating to the slow and
fast reduced subsystems to generate fault diagnosis algorithm

in order to detect and isolate actuator faults in continuous singu-
larly perturbed systems. Also Oloomi et al. (2004) employed
Chang transformation to separate dynamics of continuous singu-
larly perturbed systems and the original observer based fault
diagnosis filter will be approximated by the slow and fast filters.
Mease (2005) discusses the use of Lyapunov exponents
and vectors to diagnose of the non-linear singularly perturbed
systems in flight dynamics.

In this paper, the problem of fault diagnosis of discrete singu-
larly perturbed systems is studied by designing residuals based
on reduced slow subsystem. Using parity space approach,
the residual for the original system will be generated and then
reduced in order to be decoupled from singular perturbation pa-
rameter.

2. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider the following discrete-time singularly perturbed sys-
tem (Litkouhi and Khalil, 1985; Naidu et al., 1987; Kafri and Abed,
1996):

G D = e[+ [ e

0
k
v =16 el [0

where: x,(k) € R™, x,(k) € R™2, are state vectors, y(k) €
RP is the output, and u(k) € R™ is the control input. The singu-
lar perturbation parameter ¢ satisfies 0 < &€ < 1. All matrices are
assumed to have appropriate dimensions.

The above description is obtained by setting i and j to zero
in the following model:
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(et e i
{ LBﬁBZ] u(k) (2)

_ 1—j X1 (k)]
lY(k) [Cl € CZ] [XZ (k)
which represents a pure singularly perturbed discrete system
issued from the difference equations introducing a small positive
parameter ¢ in the state vector (Naidu et al., 1987). Correspond-
ing slow and fast subsystems can be obtained from the original
system by singular perturbation approach or by block diagonaliza-
tion (Litkouhi and Khalil, 1985; Naidu et al., 1987). The two ap-
proaches give identical results.

To derive the slow subsystem, it is assumed that the fast vari-
ables have reached their established regime by setting ¢ = 0.
Then, we get the slow subsystem of dimension n, as:

x(k+1) = Ay x(k) + Byuy(k)

y,(k) = Cy x,(k) ()

x; (ko) = X10

The fast subsystem of dimension n,, obtained by considering

that the slow variables are constant during the fast transients,
is given by:

x(k + 1) = A, x,(k) + B,u, (k)

y,(k) = €, x,(k) + D, u, (k) @)

X, (ko) = %30 — A2_21A21X10

where: A, = & (Ay, — Ay AT{A,), B, = B, — Ay AfBy,
C, = £(C, — C,A7}A,), D, = —C,A7 By, u; and u,. verify
u = u; + u,. and represent respectively the fast and slow com-
ponents of the input u.

Denote:
_[Au € A12] _ B1] _
A(E) - A21 £A22 :B - B2 ,C(E) - [Cl & CZ]

X, (k)
and x(k) = [ ! ]
=l
Then system (1) can be rewritten, in presence of additive fault
f(k), as follows:

(k) = A(e) x(k) + Bu(k) + E; (k) ;
y(k) = C(e) x(k) + Es £(K) ®)

where E, and E, are known as fault entry matrices of appropri-
ate dimensions.

The problem under consideration is to design a fault diagnosis
algorithm through the construction of an appropriate residual
based on parity space method.

—t—

3. RESIDUAL GENERATION
BASED ON THE ORIGINAL SYSTEM

The parity equations are obtained by calculating the outputs

of the singularly perturbed systems (5) over an horizon s € N*,
that leads to the following relationship (Chow and Willsky, 1984):
Y(k,s) = H(s, &) x(k — s) — G(s,¢€) U(k,s) + 6

E(s, €) F(k,s) (6)
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where: F(k,s) = [fT(k —s) fT(k—s+1) ... fT(k)]",
Y(k,s)=[y"(k—s) yT(k=s+1) ... y'()I,
Ulk,s) = [uT(k—s) u"(k—s+1) ... "I,

G(s, &) =
0 0 0
C(e) B 0 0 - 0
|C(£) A(e)B C(e)B 0 - 0I
lc(e) A-1(e) B C(e) A2(e)B - C(e)B O
C(e)
H(s, &) = :C(g) A®) and
C(e) A’(e)
E(s, &) =
E, 0 0 1
C(S) Eq E, 0 0 |
IC(s) A(e) Eq C(e) E; E, 0 |
lc(e) A-1(e) B, C(e) A2(e) By -~ C(e)E, E,l

The choice of the horizon s must provide a maximum degree
of freedom in designing fault isolation scheme and have to im-
prove its performance (Chow and Willsky, 1984; Li and Shah,
2002). In deterministic case, it is sufficient to set s = n where n
is the state dimension, to ensure efficient fault detection algorithm
(Maquin and Ragot, 2000).

A parity relation based residual generator can be designed as:

R(k, &) = Q(e) (Y(k,s) —G(s,€) U(k,s)) (7
The dynamics of residual generator (5) are governed by:
R(k, &) = Q(e) E(s, €) F(k,¢) (8)

where: R(k, s) is the residual signal, Q.(k, s) is the parity vector
which satisfies:

Q(e) H(s,&) =0 and Q(¢) E(s,e) # 0 9)

Under the assumption that the system parameters, in absence
of fault, do not change, the residual R(k, s) verifies the following
properties:

— R(k,s) = 0infault free case;
— R(k,s) # 0in presence of fault.

The so generated residual must be independent of the singu-
lar perturbation parameter & to avoid the ill-conditioning and nu-
merical difficulties. To alleviate this ill-conditioning and to reduce
the amount of computation, reduction of the residual will be con-
sidered.

4. RESIDUAL REDUCTION

The reduction of the full order residual (5) is done by setting
the singular perturbation parameter to zero. Eliminating & from
the matrices G(s, €), H(s, €) and E(s, €), we get:

G(s,0) =

0 0 0
[[clB1 0] 0 0 - o]
[[C;A;;B, 0] [C4B,; 0] 0o - 0l,
[C;Af7"B; 0] [C,A37%B; 0] [C,B; 0] OJ
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[C; 0]
H(s,0) = [C1A1 OJf g

[C1A1; 0]
E(s,0) =
E, 0
[C:Eq 0] E, 0

[C1A1,E; 0] [CiE,; 0] Ez

O O O

[C.E; 0] E,

The above calculated residual matrices are ¢ independent,

they correspond to the matrices determined using the slow sub-
system (3): H(k, 0) = Hy(k), G(k,0) = G4(k) and E(k,0) =
E; (k). Consequently, we get the reduced residual R(k, 0) which
matches the slow subsystem based residual R (k): R(k,0) =
R (k). It follows that additive faults diagnosis in discrete-time
singularly perturbed system can be achieved using residual gen-
erated based on slow subsystem. That leads to the following
proposition:
Proposition: Consider the discrete-time singularly perturbed
system described by equation (1), the slow subsystem related to
the original system is represented by equation (3). Under the
assumption that the additive faults attack the system in steady
state, additive fault detection and isolation of the original system
can be ensured by residual generated based on slow subsystem
and using parity space approach. It can be expressed as follows:

[C;A{T"E; 0] [C,AS7%E; O]

R;(k) = Qy (Ys(k) — Gy(s) Us(K)) (10)

where all matrices are calculated based on the slow subsystem.

Consequently, the residual is independent of the singular per-
turbation parameter ¢ and generated using the slow subsystem
model which order is less than the one of the original singularly
perturbed system. By analogy with the commutativity of decompo-
sition and discretization (Kenneth and David, 1992), we have
shown that residual generation followed by reduction and system
reduction followed by residual generation are commutative opera-
tions. This is shown in the following scheme:

Discrete singularly perturbed
system (original system)

Reduction Parity space
method
Y h 4

Reduced slow Residual generation
subsystem R(k.£)

Parity space Reduction

Y Y

Residual generation Reduced residual
— &8 —*R(k.0)

Fig. 1. Commutativity of residual generation and reduction
5. EXAMPLES OF APPLICATION

The following two examples illustrate the effectiveness
of the derived diagnosis approach.

5.1. Example 1

The first example is based on a real laboratory two tanks sys-
tem. We consider the following linear time-invariant discrete-time

acta mechanica et automatica, vol.8 no.4 (2014)

singularly perturbed system modeling the two tanks system with
single input and single output:

([Xl(k+1) _[0.9991 0.0014 e] [fq(k)]Jr
%,(k+ 1)~ 10.0705 7.7766 £l [%,(k)
38051 1100 (i

b =1 ol

The discrete slow subsystem is obtained as:

%,(k + 1) = 0.9991 %,(k) + 49.7359 u, (k)

yi(k) = %,(k) (12)
%,(0) =0

The residual Ry(k) is generated based on the slow subsys-
tem and using the parity space method. It is governed by:

Ry(k) = —-5.437x107*y(k — 1) +
5.441 + 10~ y(k) + 0.0271 u(k) (13)

Amplitude

0 100 200 300 400 500
Temps en sec

Fig. 2. Evolution of the residual R (k) in fault free case

-a.11

AR |
=
b1

£
Temps en see

Fig. 3. Residual R (k) after fault occurring

The Fig. 2 represents the residual time evolution in the fault
free case. It shows that the residual do not presents remarkable
deviations. But they take values different from zero, which can be
explained by modelling and reduction errors.

The generation of an abrupt sensor fault at time instant 250
seconds leads to the time evolution of the residual R, (k) illus-
trated by Fig. 3. It shows a deviation at time 250 sec, which indi-
cates the presence of fault. This result demonstrates that the
residual generated based on the slow subsystem is sensitive to
sensor additive fault affecting the original singularly perturbed
system. This result makes the fault diagnosis of high order sys-
tems easier.
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The real application is based on a real laboratory application.
It is composed of three identical water tanks (see Fig. 4). A de-
tailed model of this application has been presented in (Abdelkrim
and Tellili, 2009). Only two tanks are considered.

Fig. 4. Three tanks hydraulic system

The external input flow is considered as control input and The
water levels are represented by the states x;(t) and x,(t).
Using the parity space method, the residual trajectory in the fault
free case is shown in Fig. 5.

R(K)

0.05

Amplitude

-0.05

k

500 1000 1500 2000 2500
discreet time (k)

-0.1
0
Fig. 5. Real time residual in fault free case

The residual shown in Fig. 5 takes values different from zero
in spite of the absence of faults. This is due to several factors as
the modelling errors and the disturbances affecting the real sys-
tem. A threshold will be fixed over the fluctuations to avoid false
alarms. A sensor fault is generated at time instance k = 2500
(which corresponds to t = 250 sec). The resulting residual
behaviour is shown in Fig. 6.

0.1
R(K)

0.05

Amplitude
o
i

-0.05 = L

-0.1
0 500 1000 1500 2000 2500
discreet time (k)

Fig. 6. Real time residual in presence of fault

It is clear on Figs. 5 and 6 that the presence of the fault
attime k = 2500 induces a residual deviation which exceeds
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the fixed threshold. These results show that the residual generat-
ed on the basis of the discrete-time model, is able to detect
the faults affecting the real system.

5.2. Example 2

In this second example, a discrete-time singularly perturbed
system with two outputs and one input is considered. It is de-
scribed by equation (1) with:

ma=lor Soabme = ol m=[4]
(06 05, [0 003) 5 1)
, , o)

An = 0.05 —0.2 0.1 —0.1

G = [_01 ;] and C; = [_(1)'1 0?2]'

The first simulation depicts how close is the global system
output to the slow subsystem output for various values of the
singular perturbation parameter €.

Outputs
10,

Amplitude

+ First global output
--------- Second global output
2F e First slow output
Second slow output

0+

30 60 90
Time in sec

Fig. 7. Global system und slow subsystem outputs by ¢ = 0.1

Outputs
10,

Amplitude

+ First global output
--------- Second global output
] S First slow output
Second slow output

[

30 60 90
Time in sec

Fig. 8. Global system und slow subsystem outputs by £=0.001

It is clear in Figs. 7 and 8 that the approximation of the global
system with the slow subsystem is better if the singular perturba-
tion parameter € is smaller. This simulation result is obvious be-
cause the slow subsystem is obtained by letting & to zero.
The residual will be then generated using the slow subsystem
obtained by applying the singular perturbation method. Knowing
that for sufficient small singular perturbation parameter the slow
subsystem provides an approximation of the global system,
the residual is designed using the slow subsystem matrices
and makes use of the global system input and outputs leading to
the following residual vector:
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|[Rll(k) = 03589y, (k) — 0.1368 y, (k) + 0.9256 y; (k + 1) — 0.0337 y,(k + 1) + 0.026 y; (k + 2)
+0.0155 y, (k + 2) — 7.9704 u(k) — 0.3578 u(k + 1)

Ryp (k) = —0.0718y, (k) + 0.0274 y, (k) + 0.0155 y, (k + 1) + 0.0067 y,(k + 1) — 0.0052 y, (k + 2)

[ +y,(k +2) + 1.5941 u(k) — 7.9533 u(k + 1)

R(k) =

The theoretical signature fault matrix, which reflects the resid-
ual sensitivity against faults, will be used later to locate the fault
(fault isolation). It is given by:

yio ¥y, u
[1 -1 -1 Ry (15)
E —
-1 1 -1 R,

The above mentioned incidence matrix can be interpreted
as follow: a positive deviation of the first residual and a negative
deviation of the second residual indicates the presence of fault
inthe first sensor (y,) and so forth. In the fault free case,
the residuals must be close to zero. In fact, Fig. 9 shows the time
evolution of the slow subsystem based residuals in absence
of failures, there are no deviations.

Residual RI1 Residual RI2

Amplitude
o
Amplitude
o

0530 60 90 120 50 % 30 60 90 120 150
Time in sec Time in sec

Fig. 9. Residuals in fault free case by e = 0.001

Residual RI1 Residual RI2

0.5

Amplitude
Amplitude

1

05050 s0 120150 ° 30 60 90 120 150
Time in sec Time in sec

Fig. 10. Residuals in faulty case by € = 0.001

Three additive faults, modelled by a measurement bias, occur
in sensor (y;) fromt = 50sectot = 55 sec, in sensor (y,)
between t = 70sec and t = 75 sec and finally in actuator
(u) from t = 90sec sec to t = 95sec. Fig. 10 shows
the time evolution of the residuals after fault happening.
The values of both residuals at the considered time intervals
underline the abnormal behaviour of the global system which
indicates the residuals sensitivity towards the considered additive
faults.

Once the faults are detected in the plant, the next step
is to locate them through the instantaneous fault signatures which
reflect the residuals behaviour after fault occurrence and take

acta mechanica et automatica, vol.8 no.4 (2014)

]|
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J

in this case the following values: Sgq_ss = [11]  S70-75 =

[Il] and Sgp_gs = [:ﬂ The comparison between theoretical
and instantaneous fault signatures allows accurate fault isolation.

5.3. Interpretation and discussion

The above examples illustrate the developed method for the
fault diagnosis of discrete-time singularly perturbed system based
on the slow reduced subsystem. The designed algorithm is inde-
pendent of the singular perturbation parameter ¢ (equation 14).
The developed residuals show deviations further to the occur-
rence of additive sensor and actuator faults (Fig.10) which allows
their detection and isolation.

Residual RI1 Residual RI2

Amplitude
Amplitude
o
o1

30 60 90 120 150 0. 30 60 90 120 150

Time in sec Time in sec

Fig. 11. Residuals in faulty case by ¢ = 0.1

Residual RI1 Residual RI2
025 04
0.2]
@ 2 03
k-] 3
2 2
= 0.15 =
£ £
< <02
0.1
0.05 01
0 5 10 15 20 0 5 10 15 20
Time in sec Time in sec

Fig. 12. Residuals in fault free case by e = 0.1

Residual RI1 Residual RI2

Amplitude
Amplitude

-0.5

05
30 60 90 120 150 0 30 60 90 120 150
Time in sec Time in sec

Fig. 13. Residuals in presence of simultaneous sensors faults
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However, there are some constraints to respect. First, the sin- 9. Kenneth R. S., David G. T. (1992), On the commutativity of decom-

gular perturbation parameter must be enough small to guaranty
a gut approximation of the global system through the slow subsys-
tem (Figs. 7 and 8); otherwise the residuals cannot be close to
zero in absence of faults (risk of false alarm). In this case
the residuals remain still sensitive to faults (Fig. 11). The second
point concerns the residuals behaviour at the beginning (5 first
seconds), they take values different from zero in spite of fault
absence, which can lead to false alarms (Fig.12). So during the
five first seconds in the second example, it is assumed that
no faults happen. Finally the main disadvantage of the used parity
space approach is that only failures occurring in different time
intervals can be isolated. For example, if additive failures affect
simultaneously the first and the second sensor between
t = 50secandt = 55 sec, the residuals detect the presence
of fault during this period but the location of the faulty element
using the theoretical and the instantaneous fault signatures
is no longer possible (Fig.13).

6. CONCLUSION

In this paper we study model based fault diagnosis of discrete-
time singularly perturbed system. The residual is generated using
parity space method and depends on the singular perturbation
parameter. The ill-conditioning problem of the residual fault gen-
erator is solved by the residual synthesis using the slow subsys-
tem. In fact, the reduced order subsystem is independent
from singular perturbation parameter and provides an approxima-
tion of the original system. A two water tanks application example
has shown that the residual generated based on the slow subsys-
tem is able to detect sensor fault occurred in the original singularly
perturbed system. A second example is carried out to show
the ability of the method to deal with multiple faults.
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