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Abstract: New classes of singular fractional continuous-time and discrete-time linear systems are introduced. Electrical circuits are exam-
ple of singular fractional continuous-time systems. Using the Caputo definition of the fractional derivative, the Weierstrass regular pencil
decomposition and Laplace transformation the solution to the state equation of singular fractional linear systems is derived. It is shown
that every electrical circuit is a singular fractional systems if it contains at least one mesh consisting of branches with only ideal supercon-
densators and voltage sources or at least one node with branches with supercoils. Using the Weierstrass regular pencil decomposition
the solution to the state equation of singular fractional discrete-time linear systems is derived. The considerations are illustrated by numeri-

cal examples.
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1. INTRODUCTION

Singular (descriptor) linear systems have been addressed
in many papers and books (Benvenuti and Farina, 2004; Dodog
and Stosic, 2009; Dail, 1989; Kaczorek, 1992, 2004, 2008, 2010,
2011; Podlubny, 1999). The eigenvalues and invariants assign-
ment by state and output feedbacks have been investigated
in Benvenuti and Farina (2004), Dodog and Stosic (2009), Dail,
(1989), Kaczorek (2004, 2008) and the realization problem
for singular positive continuous-time systems with delays in Ka-
czorek (2010). The computation of Kronecker's canonical form
of a singular pencil has been analyzed in Podlubny (1999).

Fractional positive continuous-time linear systems have been
addressed in Kaczorek (2010) and positive linear systems
with different fractional orders in Kaczorek (2007). An analysis
of fractional linear electrical circuits has been presented
in Gantmacher (1960) and some selected problems in theory
of fractional linear systems in the monograph Kaczorek (2007).

In this paper a new class of singular fractional linear systems
and electrical circuits will be introduced and their solution of state
equations will be derived.

The paper is organized as follows. In section 2 the Caputo
definition of the fractional derivative and the solution to the state
equation of the fractional linear system are recalled. The solution
of the state equation of singular fractional linear system is derived
using the Weierstrass pencil decomposition and the Laplace
transform in Section 3. Singular fractional linear electrical circuits
are introduced in Section 4. In section 5 the fractional singular
discrete-time linear systems are introduced and Weierstrass
regular pencil decomposition is recalled. The solution of the state
equation of singular fractional linear discrete-time system is de-
rived using the Weierstrass pencil decomposition in Section 6.
lllustrating numerical examples are given in Section 7. Concluding
remarks are given in Section 8.

To the best of the author’s knowledge singular fractional linear
systems and electrical circuits have not been considered yet.
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The following notation will be used in the paper.

The set of nxm real matrices will be denoted by R™™ and
R" =R The set of mxn real matrices with nonnegative
entries will be denoted by R™™ and R" = R The set of
nonnegative integers will be denoted by Z, and the nxn
identity matrix by 1.

2. FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS
The following Caputo definition of the fractional derivative will
be used (Kaczorek, 2007; Kucera and Zagalak, 1988):
t

d” 1 f(m

wa = I +1-n d
dt* r'h-a) 0 (t-10)”
n-l<a<neN={,2,..}

f(t)

(21

. . I n _a'f@m
where a € R is the order of fractional derivative, f™(t) = ———

dth
and ['(x) = [ e~*t*~dt is the gamma function.
Consider the continuous-time fractional linear system de-
scribed by the state equation:

a

jt—ax(t) = AX(t) + Bu(t), 0<ar <1 (22)

where x(t) € R™, u(t) € R™ are the state and input vectors
and A € R B € R™M™,
Theorem 2.1. The solution of equation (2.2) is given by:

t
X(t) = Dy (t)Xg + I D(t—17)Bu(r)dz, x(0)=% (23)
0

where:
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0 Ak ka
©o(®)= ;F(ka +1) (24)

@ pkp(keDa-

D(t) = _ 25
® kZ:;‘F[(k+1)a] 23)

Proof is given in Kaczorek (2010a, b).
Remark 2.1. From (2.4) and (2.5) for « = 1 we have:

Py ()= (1) = Zr‘(ﬁl) e

3. SINGULAR FRACTIONAL CONTINUOUS-TIME
LINEAR SYSTEMS

Consider singular fractional linear system described by the
state equations:

a

E;jt—ax(t) = AX(t) + Bu(t) (3.1a)

y(t) = Cx(t) + Du(t) (3.1b)

where x(t) € R™, u(t) € R™, y(t) € RP are the state, input
and output vectors and E, A € R™*", B € R™™, C € RP*™,
D € jRP*™,

The initial condition for (3.1a) is given by:

x(0) = X, (3.1c)
Itis assumed that the pencil of the pair (E, A) is regular, i.e.
det[Es— A] =0 (3.2)
for some z € C (the field of complex numbers). It is well-known

(Fahmy and O'reill, 1989; Kaczorek, 1992)) that if the pencil
is regular then there exists a pair of nonsingular matrices P, Q €

R such that:
0 A O
S— .
N} |: 0 I n; :| (3 3)

where: n; is equal to degree of the polynomial det[Es — A],
A, € R N e R"2X™2 js a nilpotent matrix with the index u
(ile. N# = 0and N*~1 = 0 and n, + n, = n).

Applying to the Eq. (3.1a) with zero initial conditions x, = 0
the Laplace transform (£) we obtain:

P[Es - AIQ = {Ié‘l

[Es® — AJX(s) = BU(s) (3.4)

where X(s) = L[x(D] = [, x(De~*'dtand U(s) = L[u(1)]. By
assumption (3.2) the pencil [Es® — A] is regular and we may
apply the decomposition (3.3) to Eq. (3.1a).

Premultiplying Eq. (3.1a) by the matrix P e R™"
and introducing the new state vector:

X (t)

X(t) =Q7'x(t) = L 0
2

] X () e R™, X (t) eR™  (35)

we obtain:
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da
dt_axl(t) = A (t) + Byu(t) (3.6a)
N ;jt—z X9 (t) = X5 (t) + Bou(t) (3.6b)
where:
B,
PB = { } B e R™ M, B, e R"M (3.6¢)
B,

Using (2.3) we obtain the solution to Eq. (3.6a) in the form:

t
x1(t) = P10 (% + [ P11 (t—7)Bu(r)dr (37a)
0
where:
Kiker
Dyo(t) = Z F/(Ai t+ 5 (3.7b)
(k+l)a-1
@py(t) = z Arl[(tk Da] (3.7¢)

and xg € R™ is the initial condition for (3.6a) defined by:

{ } Q0. % =x(0) (3.7d)
X20

To find the solution of Eq. (3.6b) we apply to the equation
the Laplace transform and we obtain:

NS X 5 () — Ns® xo0 = X(5) + BU(S) (3.8a)

Since Kaczorek (2010a) and (Dodog and Stosic, 2009)
forO<a<1

Ll:((ijt_“ X2 (t)} =5 X(8) — 5% Txgq (3.8b)

where X5 (s) = £[X,(t)] . From (3.8) we have:
X2(s) =[Ns” — 1, TH(BU (5) + Ns® xz0) (3.9)

Itis easy to check that:

[Ns® —1, 1 = ZN' s (3.10)

since:

[Ns* -1, { ZN' '“] (3.11)

andN'=0fori=u, u+1,..
Substitution of (3.10) into (3 9) yields:
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X, () = ~B,U (5) - NX”

= (3.12)
_Z[NistiaU (s) + Nilg(Daty
i=1
Using inverse Laplace transform (L£7%)
convolution theorem we obtain for 1 — a > 0:

to (3.12) and the

-
t) = £X5(s)] =—Bu(t)— N
Xa(t) = £7[X2(s)] = ~Bou(t) AT
_Z NI+1 d(l+1)a
dt (i+)a-1 X20

(3.13)

. 4| 1 t*
since L for a +1 >0.
Sa+1 F(l a)

Therefore the following theorem has been proved.
Theorem 3.1. The solution to Eg. (3.1a) with the initial condition
(3.1c) has the form

X(t) = QD;((?)} (3.14)

where x;(t) and x,(t) are given by (3.7) and (3.13) respectively.
Knowing the solution (3.14) we can find the output y(t) of the
system using the formula

X (t)

yt) = CQL(2 ®

}+ Du(t) (3.15)

4. SINGULAR FRACTIONAL ELECTRICAL CIRCUITS

Let the current ic(t) in the supercondensator with the capacity
C be the a order derivative of its charge q(t) (Gantmacher, 1960):

c="-2 (1)
dt

Taking into account that q(t) = Cuc(t) we obtain:

d%uc (t
ic(t)=C—2 c(®) (4.2)
d (24
where uc(t) is the voltage on the supercondensator.

Similarly, let the voltage uy(t) on the supercoil (inductor) with
the inductance L be the S order derivative of its magnetic flux

w(t):

d /3\? t
u =220 43
Taking into account that y(t) = Li, (t) we obtain
d”i_(t)
ut)y=L——=—= 4.4

where i (t) is the current in the supercoil.
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Example 4.1. Consider electrical circuit shown in Fig. 1 with given
resistance R, capacitances C;, C,, C3 and source voltages e;
and e,.

Using the Kirchhoff's laws we can write for the electrical circuit
the equations:

d“u,
e, =RC Liu, +u
1 17 ., dt 1 3
d%u d“u d%u
C LiC Z_C 3-0 45
i R (49)

The equations (4.5) can be written in the form:

RC]_ 0 0 Ul -1 0 -1 Ul
d(l
Cl C2 —C3 _0( U2 =0 0 0 UZ
0o o0 o ["u| o -1 -1]u
10 o
+[0 0{1}
0 1%
(4.6)
In this case we have:
RC, 0 0 -1 0 -1 10
E=| C, C, -C3|, A=|0 0 0| B=[0 0| (47
0 0] 0 0 -1 -1 01

Note that the matrix E is singular (det E = 0) but the pencil:

RCis“+1 0 1
det[Es® —Al=| C;s*  Cps* —Cgs”
0 1 1 (4.8)

=(RC;s” +1)(Cy +C3)s* +Cys“

is regular. Therefore, the electrical circuit is a singular fractional
linear system.

R
VWA
A\ 4 c = )u
C1::>u1 2"'\> 2
c::>u
A i ° A
fe N ey
7 e
e, e,

Fig.1. Electrical circuit

Remark 4.1. If the electrical circuit contains at least one mesh
consisting of branches with only ideal supercondensators and
voltage sources then its matrix E is singular since the row
corresponding to this mesh is zero row. This follows from the fact
that the equation written by the use of the voltage Kirchhoff's law
is algebraic one.
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Example 4.2. Consider electrical circuit shown in Fig. 2 with given
resistances Ry, R,, Rz inductances L;, L,, L3 and source voltages
e and e,.

Using the Kirchhoff's laws we can write for the electrical
circuit the equations:

o dfip d iy
e =R+ —=+Rgig+ L3 —~
1 1'1 1dtﬁ dtﬂ
. dfi, . d”iy
ey = Rolp + Ly — =+ Rgig + Lg— 4.9
Y “9)
i1+i2—i3=0

The equations (4.9) can be written in the form:

0o 0o oMl |1 1 -1

e
+0 1{61}
0 072

In this case we have:

(4.10)

L 0 L R, 0 -Rg 10
E=[0 L, Lg| A=| 0 -R, Ry}, B=|0 1|@411)
0 0 0 11 -1 00

Note that the matrix E is singular but the pencil:

Ls” +R, 0 Lys” + Ry
det[Es” —Al=| 0 L,s? +Ry Lgs? +Rg
-1 -1 1
(4.12)
=[Ly(Lp + Lg) + LyLgls™”

+[(Ly + L3)Ry +(Ly + )Ry +(Ly + Lp)Rg]s”
+ Rl(R2 + R3) + R2R3

is regular. Therefore, the electrical circuit is a singular fractional
linear system.

R‘] RZ
VWA AN
L b
Iy R, i
o
e1 e2

Fig.2. Electrical circuit

Remark 4.2. If the electrical circuit contains at least one node with
branches with supercoils then its matrix E is singular since it has
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at least one zero row. This follows from the fact that the equation
written using the current Kirchhoff's law for this node is algebraic
one.

In general case we have the following theorem.

Theorem 4.1. Every electrical circuit is a singular fractional system
if it contains at least one mesh consisting of branches with only
ideal supercondensators and voltage source or at least one node
with branches with supercoils.

Proof. By Remark 2.1 the matrix E of the system is singular if the
electrical circuit contains at least one mesh consisting of branches
with only ideal supercondensators and voltage source. Similarly
by Remark 2.2 the matrix E is singular if the electrical circuit
contains at least one node with branches with supercails.

Using the solution (3.14) of Eq. (3.1a) we may find the
voltages on the supercondensators and currents in the supercoils
in the transient states of the singular fractional linear electrical
circuits. Knowing the voltages and currents and using (3.15)
we may find also any currents and voltages in the singular
fractional linear electrical circuits.

Example 4.3. (an continuation of Example 4.1)

Using one of the well-known methods (Podlubny, 1999; Dodig
and Stosic, 2009; Kaczorek, 1992) we can find for the pencil (4.8)
the matrices:

1 o - S
RC, RC,(C, +Cj3)
p_|_ 1 1 C,
R(C,+C3) C,+C;  R(C, +Cy)?
0 0 -1
- - - (4.13)
10 0
Q=0 1 _ G
C, +C;
0 -1 _C
| C,+C5 |
which transform it to the canonical form (3.3) with:
1 1
RC, RC,
A= ,
1 1 (4.14)

R(C;+C3)  R(Cp+C)
N :[O], m= 2, Ny =1
Using the matrix B given by (4.7), (4.13) and (3.6¢) we obtain:

R S S
RCl RCl(Cz + C3)
B 1 C
{ -PB=|- L (4.15)
B, R(C2+C3)  R(C,+Cy)
0 -1

from (3.7) we have:
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t
x(t) = P10 + [ P11 (t-7)Byu(r)dr (4.16)
0

for any given initial condition X € R™ and input u(f), where:

k ke o A Ki(k+l)a-1
Dyp(t) = ZFZ&( @y () = gg% :
O<axl
In this case using (3.13) we obtain:
X9 (t) = —Bou(t) (4.17)

since N = [0].
In a similar way we may find currents in the supercoils of the
singular fractional electrical circuit shown in Fig. 2.

5. FRACTIONAL DISCRETE-TIME LINEAR SYSTEMS

Consider the singular fractional discrete-time linear system
described by the state equation:

EAaXi+1=AXi+BUi, iez, ={01...} (5.1)

where: x; € R"™, u; € R™ are the state and input vectors,
A € RV E € RV B € R™™ and the fractional difference
of the order a is defined by:

i (04
= Z(—l)k[ jxi_k ,O<a<1 (5.2)
k=0 k
a 1 for k=0
(kj a(a-1). ksa k+1) for k=12... (5.3)
It is assumed that:
detE=0 (5.4a)
and:
det[Ez— A] =0 (5.4b)

for some z € C (the field of complex numbers).
Lemma 5.1. (Fahmy and O'Reill, 1989; Kaczorek, 1992) If (5.4)
holds then there exist nonsingular matrices P, Q € R™ ™ such

that:
0 A0
N} PAQ ={ 0 Inj (5.5)

where: N € R™2*"2 is a nilpotent matrix with the index u (i.e.
N* =0 and N*~1 % 0), 4, € R™*™ 7, is equal to degree
of the polynomial:

PEQ = {'81

det[Es — Al =a, 2™ +...+ 82 + 2 (5.6)
andn, +n, = n.

A method for computation of the matrices P and Q has been
given in Van Dooren (1979).
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Using Lemma 5.1 we shall derive the solution x; to the
equation (5.1) for a given initial conditions X, and an input vector
U, i e Z+ .

6. SOLUTION OF THE SINGULAR FRACTIONAL
DISCRETE-TIME LINEAR SYSTEMS

Premultiplying the equation (5.1) by the matrix P € R™*"
and introducing the new state vector:

(1)
; {@} Q™ P e, P e iz, (1)

we obtain:
PEQQ "A%Xj,q = PEQA*Q~! Xiq1 = PAQQ_lxI + PBu; (6.2)
and after using (5.5) and (6.1):

MR [k e

(6.3)
where
B,
{B} PB, B, e R™™, B, e R"*™ (6.4)
2
Taking into account (5.2) from (6.3) we obtain:
O _ S k(@) @
Xiv1 = _Z(_l) (kjii—kﬂ + AT+ By
k=1
: (6.5)
0. &, ka e
= A% + D (D) k XiZk,1 + Buui
k=2

and:

{ .(3%+Z( D ( j |(2I)<+1}:)_(i(2)+82ui (6.6)

where: Ao = Ay + I, .

The solution xl.(l) to the equation (6.5) is well-known
(Kaczorek, 2007b; 2010) and it is given by the theorem.
Theorem 6.1. The solution x ‘( ) of the equation (6.5) is given
by the formula:

i-1
X = o + > i 4By ez, (6.7)
k=0

where the matrices ; are determined by the equation:
i+1 1
@iy = D Aia+2( 1) - ( ] i-kit Po=1In (68)

To find the solution x ) of the equation (6.6) for N = 0 it is
assumed that:
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N={0 1 ... 0 0|leR™

00 ..10

For (6.9) the equation (6.6) can be written in the form:

(0 0 ... 0 O] 22D
10 00 -+
i+1 e
1 ..00 Z(l)(J |J+1
SRS 2,
00 .. 1 0] i) ez,
%2 Ba1
%(22) B>

= ! . + . Uj
x(2M) || By,

From (6.10) we have:

XY = —leui

_(22) _ Z( 1) ( j I(ZZJI.)+1 Boo;

j=0
i+1

=—Z( 1 ( JBZM j+1— Baoui
_(23) — Z( 1)]( j |(21i.1 B,3U;
i+1 i—j+2
:—Z( 1)1( J Z -1 ( jBﬂul j—k+2

i+1

—Z( 1)1[ JBzzuu j+1— B2y

j=0
If N = 0 then from (6.6) we have:

B2,n2ui

% = _Byuj, ez,

This approach can be easily extended for :

N =blockdiag [N; N, ... Ng]

where: N, € R™ has the form (6.9) and ¥, ;. = n,.
If the matrix N has the form:
(01 0 ... 0]
001 ..0
N=: @ 1 - |ler™
00 1
0 00 |

(6.10)

(6.11)

(6.12)

(6.13)

(6.9)
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the considerations are similar (dual).

Note that the matrices (6.9) and (6.9') are related by:
00 ..01
— 00 10
N =SNS where S = .o
10 .00

Knowing i ‘() and x ‘()

of Eq. (5. 1)from (6.1):

(1)
X =Q (2) eZ,

7. EXAMPLES OF SINGULAR FRACTIONAL
DISCRETE-TIME SYSTEMS

we can find the desired solution

(6.14)

Example 7.1. Find the solution x; of the singular fractional linear
system (5.1) with the matrices:

-1 -1 -1 08 17 28 1

E={2 4 2| A={04 08 14| B=|0 (7.1)
1 4 1 22 46 22 -1

foro =05, ui=u, ieZ, andx, =[1 2 — 1] (T denotes

the transpose).

It is easy to check that the matrices (7.1) satisfy the
assumptions (5.4). In this case the matrices P and Q have the
forms:

. 1 -2 5 -2 1 -1
P=r7|-2 4 1} Q=1 00 (7.2)
4 3 -2 0 0 1

0.1 0
Aol IO}:PAQ: 0 02 0
10 I, 0 o 1 7.9
Bl 1| " 1
PB:{BJ_E _63’ Al“_A“'”la{o 0.7}’
(M =2,np=1)

The equations (6.5) and (6.6) have the forms:

06 1 05 1[4
—1 1 k-1 1 .
'(+)1{o 07}() Z( ) [ J.()m EMUi,.eA

(7.4)
and:
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x(?) = _B,u; = —1—61ui ez, (7.5)

The solution x  of the equation (7.4) has the form:

i—1
—(1 —(1 .
k=0
where:
o 1 0 p - 06 1
071g 1/ “ 1o 07/
(@-1) [0.485 1.300 7.7)
2 a(a-1 . .
D, = —1 = .
2=ha ~In, = { 0 0.615}
and:
01 0]1 2
Xo=Q=|1 2 1] 2 |=| 4|
00 1[-1] |-1 (7.8)

_ 20 _
[ -

The desired solution of the singular fractional system with
(7.1) is given by:

21

Xi=Qxi=1 0 O e (7.9)
0O 0 1"

where ™ and £ are determined by (6.7) and (7.5),

respectively.
Example 7.2. Find the solution x; of the singular fractional linear
system (5.1) with the matrices:

1 0 0 02 2 -2 1 2
E=l0 1 -1, A=| 2 1 0| B=|-1 2
1 -1 1 -18 0 -1 2 -1
(7.10)

foro=0.8, arbitrary ui, ieZ, and xg=[1 1 1]T.
It is easy to check that the matrices (7.10) satisfy

the assumptions (5.4). In this case the matrices P and Q have
the forms:

-1 2 2 1 00
P=|1 -1 -1, Q=|-2 1 1 (7.11)
-1 2 1 201

and:
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100
In, O}—PEQ— 000
0 N| B ’
L 010
BN
0 1, |TTAQ= (7.12)
L 2 0 01
10
_| B _ _
PB=| 1= 0 1} A, =A+lna=[1]
20 1211
(n =1ny=2)

In this case the equations (6.5) and (6.6) have the forms:

I(1>1:><(1)+Z( 1) 1[ J & 1L Oy, iez, (7.13)

00 i+1 Xl(zl?l— (21) 0 1 )
N e
(7.14)

and:

1 0 0|1 1 0

%=Q=0 1 ~1)1/=0\ %’ [ xé”{g}
2 0 1|1 3

(7.15)

The solution %" of Eq. (7.13) with %5 = 1 can be easily

found using (6.7) and (6.8).
From (7.14) we have:

V=0 -1y, iez,

22) i+1 (0.8 )

)_(i :Z(—]_)J( J J[O _l]ui—j+l+[1 —1]Ui, |EZ+
j=0

(7.16)

The desired solution of the singular fractional system
with (7.10) is given by:

1 0 o] x@
x=Q%=|-2 1 1|x® (7.17)
-2 0 1|x@

where: X; ) (21) and x ‘(22) are determined by (7.13) and (7.16),
respectlvely

8. CONCLUDING REMARKS

The singular fractional linear systems and electrical circuits
have been introduced. Using the Caputo definition of the fractional
derivative, the Weierstrass regular pencil decomposition and the
Laplace transform the solution to the state equation of singular
fractional linear system has been derived (Theorem 3.1). Singular
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fractional linear electrical circuits have been analyzed. It has been
shown that every electrical circuit is a singular fractional system
if it contains at least one mesh consisting of branches with only
ideal supercondensators and voltage sources or at least one node
with branches with supercoils (Theorem 4.1). The singular frac-
tional linear discrete-time systems have been introduced. Using
the Weierstrass regular pencil decomposition the solution to the
state equation of singular fractional linear discrete-time system
has been derived. The method of finding of the solution to the
singular fractional systems has been illustrated by two examples.
The considerations have been illustrated by singular linear electri-
cal circuits. Those considerations can be extended for singular
fractional linear systems with singular pencils. Open problem are
extension of these considerations for positive singular fractional
linear systems and for singular positive linear systems with differ-
ent fractional order. The linear systems with different fractional
orders are described by the equation (Kaczorek, 2007a).

daXl
dt® :[Au AlZ}{Xl]F[Bl}U
dPx, | A1 A Xe| |Ba]” (8.1)

dt?
p-l<a<p;, q-1<pf<Q; p,qeN

where: x; € R™, x, € R"2 are the state vectors and 4;; €
RN B, € R, j=1,2 and u € R™is the input
vector. Initial conditions for (8.1) have the form x;(0) = x4
and x,(0) = x4.
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