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Abstract: This paper considers the doubly periodic problem of elasticity for anisotropic solids containing regular sets of thin branched in-
clusions. A coupling principle for continua of different dimension is utilized for modeling of thin inhomogeneities and the boundary element
technique is adopted for numerical solution of the problem. The branches of the inclusion can interact both inside the representative vol-
ume element and at the interface of neighbor representative elements. A particular example of the elastic medium reinforced by a doubly
periodic set of I-beams is considered. Stress intensity and stress concentration inside and outside thin inclusions are determined. The de-
pendence of the effective mechanical properties of the reinforced composite material on the volume fraction of the filament and its rigidity

is obtained.
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1. INTRODUCTION

One of the important tasks of mechanics of inhomogeneous
solids, in particular the theory of thin inclusions (Sulym, 2007),
is the study of stress concentration at the reinforcements in the
concrete and composite materials. The corresponding reinforce-
ments are commonly produced using the standard shapes
(a T-beam, an I-beam, a channel, and angle etc.), which have the
shape of non-smooth thin branched inclusions. The solution
of elasticity problems for solids containing doubly or triply periodic
sets of thin inhomogeneities also allows estimating the effective
mechanical properties of the corresponding composite materials.
Moreover, it is possible to consider both cases of interaction
of reinforcements: inside a representative volume element, and on
its boundary. The latter allows modeling of novel continuously
reinforced composite materials, which strength and rigidity should
be very high due to their solidity and the absence of high stress
concentration.

The analysis of elastic crooked or cross-like inclusions was
mainly performed for the aperiodic problems of elasticity. In par-
ticular, the papers (Osiv and Sulym, 2001; 2002) considered the
antiplane deformation of solids containing a set of arbitrarily ori-
ented rectilinear joined ribbon-like elastic inclusions. Sackyj and
Kundrat (2004) provided the analysis of the out-of-plane defor-
mation of an isotropic medium containing a set of joined rigid line
inclusions, in particular, those with the shape of and angle,
a T-beam, an |-beam etc. The plane problem of elasticity was
considered for an infinite medium containing a cross-like rigid line
inclusion (Antipov et al., 1987; Popov, 1993) and a flexible cross-
like elastic inclusion (Grigoryan et al., 2002). Pasternak and
Sulym (2011) were the fist to propose the general boundary ele-
ment approach for the solution of plane problems of elasticity for
isotropic and anisotropic solids containing systems of joined multi-
branched thin elastic inclusions.

The study of doubly periodic sets of thin inhomogeneities was
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held in Refs. (Kosmodamianskij, 1976; Dolgikh and Fil'shtinskii,
1979; Pasternak, 2012; Pasternak and Sulym 2013). However,
to the best of authors’ knowledge the doubly periodic problems for
thin branched inclusions were not referenced in the scientific
literature. Therefore, this paper considers the general approach
for studying the doubly periodic problems for anisotropic elastic
solids containing thin branched inclusions. This approach is based
on the coupling principle for continua of different dimension and
the boundary element method.

2. PROBLEM FORMULATION BASED ON THE COUPLING
PRINCIPLE

Consider an infinite anisotropic elastic medium containing
a doubly periodic set of thin elastic branched inclusions identical
to each other, such that translation symmetry conditions are satis-
fied both for geometrical and physical properties of the solid. For
modeling of the corresponding composite material the coupling
principle for continua of different dimension (Sulym, 2007) is used.
Thus, the inclusion is replaced with the line T of field discontinui-
ties. One can assume that the line T'x coincides with a median line
of the thin inhomogeneity. Thus, using this technique the problem
is split into two sub-problems: an external one, which considers
the stress-strain state of a solid and its effective mechanical prop-
erties due to a set of discontinuity lines, and an internal one,
which is focused on the modeling of relations between displace-
ments and tractions at the opposite sides of the thin inhomogenei-
ty, and thus, at the opposite faces of the discontinuity line T

According to Pasternak (2012), the external problem is re-
duced to the following system of dual integral equations:


mailto:h.sulym@pb.edu.pl
mailto:pasternak@ukrpost.ua

~ _\;/

VERSITA

1
52U (y)=RPV [, U (x,y) 2t (x)dI(x)

—CPVIr+ TP (x,y)Aul (x)dr(x)+ 17 (y),
1 +
EAtO (y)=nj (y){CPVL_6 chglp (xy)2t°(x)dr(x)

—HPVJ‘FS sj?P(x,y)Auo(x)dr(x)mﬂ,
where u® and t° are displacement and traction vectors at the
base contour Iy U I in the selected representative volume ele-
ment; AC) = ()" = ()7, () = ()" + ()7 signs “+" and *-
" denote variables concerned with faces I' and Iz of the math-
ematical cut T;; symbols RPV stands for the Riemann Principal
Value, CPV for the Cauchy Principal Value and HPV for the
Hadamard Principal Value (finite part) of an integral. The functions
I”(y) and E°(y) define the external load set by the compo-
nents (o;;) of the average stress tensor and are given by special
integral identities (Pasternak, 2012). Closed-form expressions for
the kernels K9P = [U9P, T9P, Dj‘.ip, S.dp] are given in Ref. (Pas-
ternak, 2012). These kernels are functions of coordinates of collo-
cation point y and integration point x, and also depend on the
vectors w™ and w®@ of the fundamental periods, which form the
lattice (Fig. 1).

.
.
.
d
.
.
g
L
— -
g .
g e
. PRGN
. o 4
g .- g
s e ® .
.- .
- g
= "

Fig. 1. The sketch of the problem

Pasternak and Sulym (2011), Pasternak (2011) provide the
closed-form relations for the mathematical models of thin non-
branched elastic and piezoelectric, isotropic and anisotropic inclu-
sions, which can be generally presented with the following func-
tional dependences:

u(y)=F (y,Zt,Au,PO,Pl,MO,Ml)

t 0 pl 0 1 (2)
At(y)=F (y,Et,Au,P PLMO M )

Here P, M°, P* and M? are the resultant force and moment
applied at the left and right ends of a thin inclusion, respectively.
The inclusion model given by Eq. (2) is used as a basic one
for description of the edges of the branched inhomogeneities.
According to Pasternak and Sulym (2011), to study a thin
branched inclusion the latter is described by the undirected graph
G(V), which edges Ej; = E;; = (v, v;), v;, v; € V correspond
to the non-branched links of the inclusion. It is assumed that the
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graph G (V) contains no loops (E;; = (v;, v;) € 0) and no iso-
lated vertices. Nevertheless, the absence of loops does not mean
that one cannot model the stress state of solids with closed thin
inclusions. The later can be described with a closed graph, which
contain at least two vertices. Those vertices, which join two
or more edges, are further called nodes, and the other are called
the free ends of a branched inclusion. Each of the edges E;; can
be modeled using various variants of the generalized inclusion
model given by Eq. (2).

While studying the doubly periodic problems one should con-
sider two possible cases of interaction of the edges of the
branched inclusion: 1) inside the representative volume element,
and 2) between the inhomogeneities at the interface of two neigh-
bor representative elements.

To study the first case one can directly use the algorithm de-
veloped by Pasternak and Sulym (2011). In particular, if a thin
branched inclusion consists of n edges joined with m < n nodes
and the contact between inclusion’s edges is perfect, then at the
each of m nodes the following balance equations should be satis-
fied:

J k J k
> PY=0, > M*=0, (3)

where g is a number of edges of the inclusion, which are joined
by the node; P* and M* are the force and the moment applied at
the end of the k-th edge included by the vertex. Besides, the
continuity conditions for displacements at the node can be satis-

fied by equating the average values of displacements u = %Z u
and rotation angles w of the edges united by the node:

w=ul=..=u% ol=0’=.=0". 4)

The rotation angles (the slope) of the inclusion’s lines can be
determined, for example, using the Euler-Bernoulli beam equa-
tion.

Equations (1), (2) together with relations (3), (4), which pro-
duce 3q additional equations for determination of 3g unknown
components of contact force ; P* vectors and moments M* at the
nodes of the branched inclusion, can be used for studying doubly
periodic problems for inhomogeneous solids, which representative
volume elements contain internal thin inclusions.

Fig. 2. Doubly periodic set of the thin inclusions joined the interface
of neighbor representative volume elements

As for the case of thin branched inclusions, which are joined
at the interface of neighbor representative volume elements,
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the displacement continuity conditions (4) are more complicated.
For example, consider honeycomb with hexagonal cells filled with
honey (Fig. 2). The walls of the cells can be considered as thin
inclusions and the honey represents the elastic medium.
The geometry of this doubly periodic problem thus can be set by
means of three rectilinear branches of inclusion of the length a
each, which repeats with the fundamental periods w® =

[V32,0]", 0® =1[v3a3d] .

For the internal node 1 inside the representative volume ele-
ment (Fig. 2) relations (3), (4) can be used without any cautions.
As for the node 2 formed by the ends 2-2'-2" of the edges of the
thin inclusion, the balance equations (3) for forces and moments
are also satisfied. However, due to the quasi-periodicity of the
displacements, the displacement continuity conditions for the
joints at the interface of the neighbor representative elements
should account for the cyclic constants. In particular, for the set of
inclusions depicted in Fig. 2 the displacement continuity condi-
tions write as:

u? =u? +ou® , u? =u? +5u®

2_ 2 2 2" ©
O =w" , 0" =w
Here su™ and su® are the cyclic constants of the displace-
ment vector along the corresponding fundamental periods. In case
of a perfect contact between inclusions and the medium these
constants can be determined through the external problem. Ac-
cording to Pasternak (2012), they are defined with the following
integral identities:

0

su® =y 9

i 6XJ

sa® =, (6)
50® = [ [U"(x) 2 (x) - T" (x) au® (x) [ar(x)

0

1 (x) ol + 500,
]

The kernels U*(x) and T*(x) are regular.

The obtained system of the boundary integral equations
(1)-(6) is suitable for the solution by the modified boundary ele-
ment method (BEM) of Pasternak (2011). Besides, obtained
equations allow determination of the effective mechanical proper-
ties of composite materials with the regular structure based on the
BEM using the approach of Pasternak (2012).

The BEM numerical implementation should account for the
stress square root singularity at the free ends of a thin inclusion.
This singularity can be accounted for by utilizing special shape
functions (Pasternak, 2011) for modeling of displacement and
stress discontinuities at the ends of the discontinuity line T, which
replaces the inhomogeneity. Moreover, according to Pasternak
(2011), the strength of the fields’ singularity at tips of a thin inho-
mogeneity is described by generalized stress intensity factors
(SIF), which are determined through the discontinuity functions
in the local rectangular coordinate system with the origin at the tip
of an inhomogeneity by the following formulae:

k® = lim \/EL-AU(S) , k® =_1im \/EST 2t(s), (7)
s—0\8s s>0\ 2

where:  k® = [K,;, Ki;17, Au= [Au,, Mu,]T, Yt=
[Xt;, Xt,]", K;; the generalized SIF. For a crack Kq; = K;,
K,, = K;;, K, = K,, = 0, where K;, K;;, are classical SIF
of the cracks theory; L and S are real Barnett-Lothe tensors
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(Ting, 1996), which depend only on the material properties of the
medium in the local coordinate system.

The displacement vector and the stress function in the local
coordinate system Ox;x; with the origin O at the inclusion tip
and Ox; axis directed along a median line are related to the
generalized SIF by the following asymptotic formulae (Pasternak,
2011)

u=|2 |m{A<\/Z>[\/—_181k(l) _2AT (ST)_lk(z)j},

T

0= EIm{B<\/Z>(\/—_1B1k(1) _2AT (sT )11((2)]}

Here A and B are the Stroh matrices (Ting, 1996); (,/Z.) =
diag[/x] + pyx3; /x| + p2x5]; py and p, are the eigenval-
ues of the Stroh eigenvalue problem (Ting, 1996); ¢ is the stress
function vector, which defines the components of the stress tensor
at the arbitrary point by the following relations:

(8)

o1 =[on)=-02
- J_Tiﬂ Im{B<p*\/Z_* >(x/—_lBlk(1) —2AT (sT)_lk(Z)j},
02 :[6i2:|: 01

_ \/%_” |m{B<JZ *>[«/—_151k(1) —2AT (s )_1 k(z)]}.
)

According to Sulym (2007), the order of stress singularity
at the nodes of the branched inclusion is assumed to be weaker
than a square root one (the same as and in the theory
of branched cracks). Therefore, to model the ends of the edges
joined in the node one can use quadratic discontinuous boundary
elements. The same concerns nodes at the interface of the neigh-
bor representative volume elements.

3. NUMERICAL ANALYSIS OF REGULAR SETS
OF THIN BRANCHED INCLUSIONS

Consider plane strain of the isotropic elastic medium
(the Poisson ratio equals 0.3) containing a doubly periodic set
of thin branched inclusions. The inhomogeneities form the rectan-
gular lattice with the fundamental periods w® = [d,0]T
and @ = [0, 2d]". Inclusions have the shape of the I-beam
cross-section with the width of 2a and the height of 4a (Fig. 3).
The thickness of inclusions’ edges equals 2h (h = 0.01a).
The medium is loaded at the infinity with the uniform bi-axial
stress p.

Fig. 4 depicts the plots of the normalized generalized SIF

« _ Kij . i . .
K = o~ at the tips of the branched |-beam inclusion and the

components P;" = % of the force vector, and the bending mo-

ment M* = % at the point E of the edge AE of the inclusion

depending on the relative rigidity K =%l of the latter (G is the
shear modulus). The density of the filament of the medium
is defined by the parameter 1 = %a. Continuous curves corre-
spond to the density of A = 0.1, dashed ones —1 = 0.5,
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and dash-dot —1 = 0.8. For 4 = 0.1 the difference between the
values of SIF from those obtained for the aperiodic problem
for a single I-beam inclusion (Pasternak and Sulym, 2011) does
not exceed 0.5 % that justifies the reliability of the developed
algorithm and verifies the obtained results.

One can see in Fig. 4 that for soft (k < 1) inclusions their ap-
proaching essentially increases mode | SIF K, ; (the normal open-
ing mode). Instead of that, mode Il SIF K, does not show such
obvious dependence: with the increase in the parameter A SIF
K, first decreases, and then starts to increase.

For rigid (k > 1) elastic inclusions the generalized mode
| SIF K, increases with the growth of A. Approaching of the
inclusions also causes the growth of the longitudinal force P,
in the flanges of the I-beam. Instead of that, limiting values of the
mode Il generalized SIF K,, decrease. Besides, at approaching
of the inclusions the bending moment M and the shear force P,
at the node E of the flange AE also decrease. These values are
determinative for the assessment of the strength of the thin inho-
mogeneity. Thus, approaching of inclusions allows to reduce
stresses both outside and inside the inclusion.

10 &
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Fig. 4. Stress intensity at the tips of inclusion and the force and bending moment inside it
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Fig. 5. Effective moduli of the medium reinforced with the I-beams
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Fig. 3. The elastic medium reinforced
with a doubly periodic set of I-beams
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Besides stress intensity, developed numeric-analytic approach
allows determining of the effective mechanical properties of the
medium reinforced by the doubly periodic set of I-beams.
For example, Fig. 5 depicts the effective moduli (E;) and (E,),
and the effective shear modulus (G) for three selected values
of the filament density A depending on the relative rigidity &
of inclusions.

One can see in Fig. 5 that the reinforced medium is essentially
anisotropic. To increase the effective moduli one should reinforce
the medium with essentially rigid fibers. It should be noted that the
effective moduli (E; ) and (G) increase with the growth of k in two
stages, which is well observed in Fig. 5. Such step-like character
of the plot can be related with the influence of bending of the
flanges of |-beam. Comparing Fig. 4 and Fig. 5 one can see that
the second stage of growth of elastic moduli is related with the
increase in the bending moment at the flange.

The most essential increase in the effective modulus is ob-
served for a composite along the vertical axis of the rigid rein-
forcement |-beam. Moreover, for A = 0.8 it is possible to increase
this modulus up to six times comparing to the unreinforced medi-
um. Taking into account that according to Fig. 4 the generalized
SIF K,,, shearing force and the bending moment at the flange
decrease, such reinforcing can be considered as a favorable one.

4. CONCLUSIONS

The proposed approach for studying of doubly periodic sets
of thin branched inclusions allows not only to determine stress
concentration and intensity in composites with regular reinforce-
ment, but also to assess the effective mechanical properties
of such materials. Thus, the developed technique can be used as
a tool for designing and optimization of the composite materials
reinforced with thin filament, in particular, with a standard shapes.
The considered example for a medium reinforced with the
I-beams justified the efficiency of the proposed approach and
allowed determining effective moduli of such composite. In par-
ticular, it is observed that approaching of such thin rigid rein-
forcements allows both to increase effective moduli and to de-
crease internal stress concentration and intensity.
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