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Abstract: Considered the dynamic problem of the theory of elasticity for multilayered half-space. Boundary surface of inhomogeneous
half-space loaded with normal load, and the boundaries of separation layers are in conditions of ideal mechanical contact. The formulation
involves non-classical separation of equations of motion using two functions with a particular mechanical meaning volumetric expansion
and function of acceleration of the shift. In terms of these functions obtained two wave equation, written boundary conditions and the condi-
tions of ideal mechanical contact of layers. Using the Laguerre and Fourier integral transformations was obtained the solution of the formu-
lated problem. The results of the calculation of the stress-strain state in the half-space with a coating for a local impact loading are pre-

sented.
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1. INTRODUCTION

Questions concerning the propagation of a elastic waves
in layered bodies under local loading of their surfaces are urgent
due to great number of up to date problems of soil mechanics,
acoustic flaw detection, problems involving strength of composite
materials etc. In general the analysis of this phenomenon is con-
nected with solving a spatial dynamical elasticity problem with
corresponding initial and boundary conditions and joining condi-
tions on flat or curvilinear surfaces. At present there have been
formed different approaches to solving dynamical elasticity prob-
lems.

Among the analytical methods in the first place there should
be mentioned methods connected with the applying of Fourier and
Laplace integral transformations (Slyep’yan and Yakovlyev, 1980).
However the exact inversion of the received transforms can be
performed only in few simplest cases and that's why here various
numerical and asymptotical methods must be applied. And it's
obvious it influences the accuracy and reliability of the received
results.

Among other approaches to solving dynamical elasticity prob-
lems the method of characteristics (Chou and Greif, 1968; Yang
and Achenbach, 1970), the method of using finite integral trans-
formations (Slyep’yan and Yakovlyev, 1980; Wankhede
and Bhonse, 1980), the method of summing up of elementary
waves (Bedford and Drumheller, 1994) and others (Pao and Mow,
1973; Poruchikov, 1986) can be pointed out. But in a spatial case
and in the case of great number of separation boundaries the
mentioned above methods are not always effective.

In this paper Laguerre integral transform with respect to time
variable (Galazyuk, 1981) is offered for solving this kind of prob-
lems. The advantage of this approach is the simplicity of perform-
ing an inversion which consists in summing up an orthogonal
series as well as the possibility of construction of simple algorithm
of series coefficients exact finding. The application of this method
as well as the convergence of all procedures is justified by known

theorems from an orthogonal polynomials theory (Szego, 1959).
More over the scaling factor, introduced in Laguerre transform,
permits us to "stretch" or "contract" time interval to depend
on numerical analysis needs and make use of corresponding
theorems about limiting value.

2. BASIC EQUATIONS

Let us a medium which consists of M flat layers with different
thicknesses and different physical-mechanical properties. Each
i-th layer has thickness h;, 1 < i < M (number M denotes the
half-space) and is characterised by Lame elastic constants 4;, u;
and density p;. When body forces applied to the medium are
identity equal to zero then deformational field for every i-th layer
can be found from equation of motion;

¢, grad (divu®) —cZ,rot(rotu®) = 52U® (2.1)

with corresponding initial and boundary conditions.

The same as in Galazyuk and Chumak (1991), vector equa-
tions (2.1) in mixed cylindrical coordinates «, 8,y referred to
some linear dimension h with the help volumetric expansion:

6" =h(CD) [, (Du®)+3,(Cv¥)]+2,w" (22)
twist functions:
27 =h(CD) 4, (Dv?) -3, (Cu™)] (2.3)

and functions of acceleration of a shift:
" =772 — 5,61 (2.4)
can be divided into 3M scalar wave equations:

Do (Bsgo)is (C5 00 |1a200 = 25200
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Here and in the following «, 8 — dimensionless orthogonal co-
ordinates on the plane y = 0, hu®, hv®, hw® — components
of the displacement vector U®; ¢ = <

1—"t is the dynamical time;

n = Cll, fi, = _', Ai +2#1 Hi
|tud|nal and transversal waves propagahon velocities in the mate-
rial of i-th layer; ¢;,0 — velocity of wave propagation in some
medium (it is selected to depend from a numerical analysis tasks);
C(a,B) = hWE, D(a,B) = hWG, E(a,pB), G(a,B) - coef-
ficients of the first quadric form in the system «, .

In the following we suppose that the transient processes
source in the initially immovable layered medium is the shock
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In the considered statement our problem of determination-
of stress-strain state is plane and that is why all the characteristics
of the problem will be functions only of a, 8,y and function y®
introduced by (2.3) is identically equal to zero. In the dimension-
less rectangular coordinates (a = x, B = v,y — z) coeffi-
cients of the first quadric form will be C(x,y) = h, D(x,y) = h

Then in terms of separation functions 6®(x,z,1)
and 9@ (x, z,7) problem reduces to initial- boundary problem
of mathematical physics for the system of 2M wave equations:

0"349(” +0”2249“) = ﬁf&fé’(‘) ,1<isM (2.5)
ﬁfgo“) +af¢<” =ﬁfqﬁa‘f¢“) , 1<isM (2.6)
under zero initial conditions:

oM = 576?(” = (p(i) = ér(p(i) =0 2.7)

boundary conditions on the surface z = 0:

loading of its boundary y = 0. This loading in turn comes n? 1 n? 28
to action of a symmetrical to y-axis normal loading in the circle ( o ‘1}129(1) +?(5f 0% +é’z<”(1)) O 28)
region of a, radius. On the joining surfaces conditions of perfect '
mechanical contact take place and on infinity displacements
and stresses are absent. Eaz [a o +(/’(1)] n o =0; 29)
Joining conditions on the surfaces z = z; = % :
2

’7i i i i i+ i+ 1 i+ i+ .
(?—1jaze<) = (220" +2,9p") = {( L jaf@ 1>+ﬁ_—21(.f;>30< 16,0 1>)} (2.10)
Lo [009 40" 200 =0 1 L32[ 2,009 4 ] Tt g2t (2.11)
ﬁiz " ‘ 2 |+l 2 ’

%[0@190) +¢(i)]:%[ﬁzg(iﬂ) +¢)(i+1):|; (2.12) 3. SOLUTION OF PROBLEM

i Tha

1 _ Laguerre integral transformation can be introduced by the ex-
= [026% -2, 1= [ﬁ 2000 — 5, ] (2.13) pression:

i |+l
and condition on the infinity:

O™ =™ =0, z—> o0 (2.14)

. _ Pi+1C5 41 _ p(x7)
In the equations (2.5)-(2.13) 0; = 7 Pz =

2
PiCy; P11

p(x, T) — known normal force loading.

Using the functions 8® and ¢®, 1 < i < M found from the
problem (2.5)-(2.14) normal components of displacement vector
w@(r, z,T) can be determined as the solutions of Cauchy prob-
lems:
RIS :%[q)(i) +0”z9(i)]’ WO =ow" =0, r=0 (219)
u

and radial components u® (r, z,7) can be determined with the
help of integrals:

u(x,z,7) = I[H(‘) (y,z,7) - WO (y,z,7)]dy- (2.16)

54

F.(r,2) :Te’“F(r, z,7)L, (A7)dr, n=0,1,2,..., (3.1)

where L,(At),n=10,1,2, ...
thogonal series:

— Laguerre polynomials. The or-

F(x2,7) =43 F,(x 2)L, (17) (3.2)

serve as the inversion formula for the transformation (3.1).

Under some limitations on the function F(x,z,t) (Szego,
1959) the integral (3.1) exists and series (3.2) uniformly coincides
whit arbitrary interval [a, b] from (0, o0).

Applying Fourier integral transformation with respect to spatial
coordinate x and transformation (3.1) with respect to T and using
then zero initial conditions (2.6) and differentiation formulae:

2 [exp(-A7)L, (A7)]|=-A*exp(=A7) > (n-m+1)L, (A7)

m=0
we'll receive a triangular sequence of boundary value problems
of the following kind:
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n-1
d200 ~g29" = w2y (n-m+DFY , 1<i<M (33) d2p" - 2" =a)2|2(n m+1)p® , 1<i<M (34)
m=0 m=0
2 n 2 n
(%— j/IZZ(n—m+1)§n§1)+~iz(dféf1) +d,p") = %iZZ(n—m+1) P, z=0; (3.9)
m=0 1 m=0
& 21d,6% +¢><1>]+'71 AZZ(n m+1)p® = z2=0 (3.6)
7
( ; j z 210} ( 210} ())
A2 (n-m+)0" +=(d?9" +d,p"
2 7 (3.7)
=0, {(%—1}122(n—m+1)§m““) +%(df§n(”” +d g )} 2=z, 1<i<M-1
m=0 i+l
2 2 n )
éj—z[d g9 + ("] n—‘/IZZ(n—erl)@nﬂ') =
7, 2 = (3.8)
2
=0, {%[d o +—<'+1>]+’7'+1 /122(n m-+1) —<'+1>} 2=z, 1<i<M-1
77i+l m=0
[d a9 + 5" :' = [dzgn(nl) +¢r$i+l):| L 2=z, 1<i<M-I; (3.9)
77| 77|+1
[5 0 +d,p" | == [5 0" +d,p! |, <i<M-1 (3.10)
QM) _ —(M) _ z
oM =™ =0, 7o, (3.11) G|(')(Z) exp(— C._,“Z)Zal. (mn )X ,
In the expressions (3.3) - (3.11) n =0,1,2,...; Xl =
are the Fourier-Laguerre transforms: ( z)
O]
_ = = , (')(Z)—eXD(q. .Z)Za"' —k', : (3.14)
FO&2) = [r3,(én) [e " FO(r,2,7)L, (Ar)drdr
’ ’ where coefficients a]l-,'fc can be determined from simple recurrent
o =E+ AN expressions:
2 _ g2 2~2 2. 2 _ q2~2. 2 _ 92~2 2 . C()-
G =& AT @ = AT @y = AT, a'j~"k+1 =?|: M2 Z(J - p+1)a } (3.15)
Li

As it is known (Galazyuk and Gorekcho, 1983) the general so-
lution of the triangular sequence of ordinary differential equations

under arbitrar a .n the expressions (3.15) j = 1,2, ...,k =
(3.3), (3.4) can be represented as the algebraically convolution: y P (319 /=

0,1,..,j—k and all a for] < k are identically equal to zero.

H(')(z) Z[ @) G(')(z)+ B(')W(')(z)] (3.12) Since functions Wz,(zl) (z) unlimitedly increase while z —» o
it's evident that according to conditions (3.11) it should be taken:
i i) A iy \a G BM =0, D™ =0, j=0,12,... (3.16)
oV (z) = Z[C() G (2)+ ngngj)(z)} (3.13) J J J
We use conditions (3.5)-(3.10) for the determination of the un-
where A;‘)], Br(ll)]’ Cr(ll)], Dr(zl)j 1 <i< M - unknown functi- known functions A(‘Z " Br(l‘) " Cr(ll) " D(l) For this we substitute
ons which can be found from boundary conditions and G(i?(z) repre§entat|on2(£3(l)2) (3.13) into the cond|t|on (3.5). Using t.he
W(‘) ), G(‘) ), W(L) (2) - respectively systems of fundamen- Vrc:irgtr;lgi;nfor 076,,” from the equation (3.3) and after regrouping

tal solutlons of sequences (3.3) and (3.4). Using the unknown
coefficients method they can be represented in the form:

nf o [ P 3 2o
zg{Aﬁv{n o2, @55 36 0+ 8 Ew 0+ S o
1= 1 m=j

(3.17)
+C%d,GY

2,n—j

2 n
(0)+DPd W2 (0) ] :%AZZ(n—m+1)E;" :
m=0
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letagy =1, a7 =0,j=1,2..., 1< i < M. In the left
part of the equation (3.17) we leave only expressions for j = n,

77
¥ 4
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the rest we write in the right part. As a result we obtain:

2 2 n
Agl) [5 & J"' B(l)(g : 3 j C(l)g21+ D(l)gu A 771 Z(n m+1)p; -
771 771 ' 2
3 " (3.18)
[(A}” +B}“)%(n—j+l) +C%d,G) ;(0)+DPd W, J(O)}.

j=0

Using the same technique as for equations (3.6) — (3.10)
we receive the recurrent sequence of the equation systems of the
dimension (4M — 2) X (4M — 2). With the help of these sys-
tems the unknown functions A% ., B, ¢, D can be
determined. Thus, the construction of the solution of the problem
(2.5)-(2.14) is completed.

The final expressions for functions 6@ (x, z, ), @ (x, z,7)
and nonzero components of displacements vector received from
Fourier and Laguerre integral transformations inversion formulae:

00 (x,2,7) = [0W (&, 2, 7)cos(xe)de
0

oW xz,7) = [90)( 2, v)cos(xe)de ;
0

w(x,z,7) = IW(i)(ﬁ,Z,r) cos(xg)d¢ -
0

u®(x,2,7) =Té(i)(§'z'r)_52"_"0)(%2,1)
- g

0
{Q(i) (T)(i) W(i)} — ,12;0:0{6(1'), (T)(i),\/_v(i)}Ln(/lT)
and for calculation of w. _( ) we can use formulae:

1
ﬁiz /12

sin(xg)dg |

where

2d,6 +d, 0"

z7n-2

w0 =

n

[0 280, + B, +d,5° -

Using the known displacements the stress tensor components
can be determined according to Hook's law:

o 11 =(m? —2)0® + 20,7,
G@/ui=(ni2—

oW 1pi = o,u® + o,

z)e(i) +20,u

where y; is the shear modulus of the i-th layer.
4. NUMERICAL SOLUTION

In this example we show the results of calculation of dis-

placement w™® (x, z, ) and normal stresses o (x, z, 7) on the
interfaces of elastic layer and half-space loaded by shock effect
on the surface z = 0, when in the area |x| < 1 the normal pres-
sure is given by the law:

56

] :

p(x1) = p*V1-x2S, (1),

and in the area |x| > 1 equal to zero.

The calculation refers for condition with the following
parameters z, = -1 = 0.5, 7; = 1,7, = 0.943, 0, = 1.543,
771 = 771 = 1.528

The displacements and stresses are the suitable solution to

related of statically problem. It is based on the Laguerre integral

transform method with Iimit transition. For example we may write,
wiP (x,2) = limy_o w (x, 2), where w®(x,z) - is the
dlsplacements in the static problem, w, )(x z) is the value of the

transform w, )(x z) whenn = 0.
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Fig. 1. Time distribution of normal displacement
at the boundary of coating and half-space

Figures 1 and 2 give the dimensionless displacements
wD(x,z,1)

ws(;)(x,z)
layer and half-space at the point x = 0. As seen from the results
of the time variation of displacements and normal stresses in the
process of transition is in the form of oscillations around the static
equilibrium position (unit values).

The first wave of the displacements and stresses arrives
atand it is in accordance with the physics of the phenomenon.
The peak value of amplitude gets its maximum and soon after
arrival of the compression wave and thereafter the amplitudes
decrease. The extreme values of amplitudes are attained in the
beginning of transitional period when the compression wave-
reflection from the interfaces of elastic layer and half-space
arrives. The multiple reflection results increase of frequency-wave.

w*(x,z,1) = and stresses on the interface of elastic
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Fig. 2. Time distribution of normal stresses
at the boundary of coating and half-space

The numerical results have demonstrated the advantages
of the present theory in terms of effectiveness and efficiency,
which seem to justify its more intensive formulation. Future work
will address the extension of the present theory for the dynamic
problems of layered bodies.

5. CONCLUSION

The paper proposes a new mathematical formulation of the
plane dynamic problem of elasticity theory for a layered half-
space. The formulation involves non-classical separation of equa-
tions of motion using two functions with a particular mechanical
meaning — volumetric expansion and function of acceleration of
the shift. In terms of these functions obtained two wave equation,
written boundary conditions and the conditions of ideal mechani-
cal contact of layers. Using the Laguerre and Fourier integral
transformations was obtained the solution of the formulated prob-
lem. The results of the calculation of the stress-strain state in the
half-space with a coating for a local impact loading are presented.
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