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Abstract: Considered the dynamic problem of the theory of elasticity for multilayered half-space. Boundary surface of inhomogeneous 
half-space loaded with normal load, and the boundaries of separation layers are in conditions of ideal mechanical contact. The formulation 
involves non-classical separation of equations of motion using two functions with a particular mechanical meaning   volumetric expansion 
and function of acceleration of the shift. In terms of these functions obtained two wave equation, written boundary conditions and the condi-
tions of ideal mechanical contact of layers. Using the Laguerre and Fourier integral transformations was obtained the solution of the formu-
lated problem. The results of the calculation of the stress-strain state in the half-space with a coating for a local impact loading are pre-
sented. 
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1. INTRODUCTION 

Questions concerning the propagation of a elastic waves 
in layered bodies under local loading of their surfaces are urgent 
due to great number of up to date problems of soil mechanics, 
acoustic flaw detection, problems involving strength of composite 
materials etc. In general the analysis of this phenomenon is con-
nected with solving a spatial dynamical elasticity problem with 
corresponding initial and boundary conditions and joining condi-
tions on flat or curvilinear surfaces. At present there have been 
formed different approaches to solving dynamical elasticity prob-
lems. 

Among the analytical methods in the first place there should 
be mentioned methods connected with the applying of Fourier and 
Laplace integral transformations (Slyep’yan and Yakovlyev, 1980). 
However the exact inversion of the received transforms can be 
performed only in few simplest cases and that's why here various 
numerical and asymptotical methods must be applied. And it's 
obvious it influences the accuracy and reliability of the received 
results. 

Among other approaches to solving dynamical elasticity prob-
lems the method of characteristics (Chou and Greif, 1968; Yang 
and Achenbach, 1970), the method of using finite integral trans-
formations (Slyep’yan and Yakovlyev, 1980; Wankhede 
and Bhonse, 1980), the method of summing up of elementary 
waves (Bedford and Drumheller, 1994) and others (Pao and Mow, 
1973; Poruchikov, 1986) can be pointed out. But in a spatial case 
and in the case of great number of separation boundaries the 
mentioned above methods are not always effective. 

In this paper Laguerre integral transform with respect to time 
variable (Galazyuk, 1981) is offered for solving this kind of prob-
lems. The advantage of this approach is the simplicity of perform-
ing an inversion which consists in summing up an orthogonal 
series as well as the possibility of construction of simple algorithm 
of series coefficients exact finding. The application of this method 
as well as the convergence of all procedures is justified by known 

theorems from an orthogonal polynomials theory (Szego, 1959). 
More over the scaling factor, introduced in Laguerre transform, 
permits us to "stretch" or "contract" time interval to depend 
on numerical analysis needs and make use of corresponding 
theorems about limiting value. 

2. BASIC EQUATIONS 

Let us a medium which consists of   flat layers with different 
thicknesses and different physical-mechanical properties. Each  

 -th layer has thickness   ,       (number   denotes the 

half-space) and is characterised by Lame elastic constants   ,    
and density   . When body forces applied to the medium are 

identity equal to zero then deformational field for every  -th layer 
can be found from equation of motion: 

2 ( ) 2 ( ) 2 ( )

1, 2,( ) ( )i i i

i i tc grad div c rot rot  U U U  (2.1) 

with corresponding initial and boundary conditions. 
The same as in Galazyuk and Chumak (1991), vector equa-

tions (2.1) in mixed cylindrical coordinates       referred to 
some linear dimension h with the help volumetric expansion: 

( ) 1 ( ) ( ) ( )( ) [ ( ) ( )]i i i ih CD Du Cv w         (2.2) 

twist functions: 

( ) 1 ( ) ( )( ) [ ( ) ( )]i i ih CD Dv Cu      (2.3) 

and functions of acceleration of a shift:  

( ) 2 2 ( ) ( )i i i

          (2.4) 

can be divided into 3M scalar wave equations: 

( ) ( ) 2 ( ) 2 2 ( )i i i i

i

h D C

CD C D
               

    
      

    
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( ) ( ) 2 ( ) 2 2 2 ( )i i i i

i i

h D C

CD C D
                

    
      

    

 

( ) ( ) 2 ( ) 2 2 2 ( )i i i i

i i

h D C

CD C D
                

    
      

    

 

Here and in the following     – dimensionless orthogonal co-

ordinates on the plane    ,                   – components 

of the displacement vector     ;   
       

 
 is the dynamical time; 

   
    

    
,  ̃  

    

    
,      √

      

  
,      √

  

  
  – are the long-

itudinal and transversal waves propagation velocities in the mate-

rial of  -th layer;      – velocity of wave propagation in some 
medium (it is selected to depend from a numerical analysis tasks); 

        √ ,         √ ,       ,        – coef-
ficients of the first quadric form in the system    . 

In the following we suppose that the transient processes 
source in the initially immovable layered medium is the shock 
loading of its boundary    . This loading in turn comes 

to action of a symmetrical to  -axis normal loading in the circle 

region of    radius. On the joining surfaces conditions of perfect 
mechanical contact take place and on infinity displacements 
and stresses are absent. 

In the considered statement our problem of determination-
of stress-strain state is plane and that is why all the characteristics 

of the problem will be functions only of       and function      
introduced by (2.3) is identically equal to zero. In the dimension-

less rectangular coordinates               coeffi-
cients of the first quadric form will be         ,         . 

Then in terms of separation functions             

and             problem reduces to initial- boundary problem 

of mathematical physics for the system of    wave equations: 

2 ( ) 2 ( ) 2 2 ( ) , 1i i i

x z i i M           (2.5) 

2 ( ) 2 ( ) 2 2 2 ( ) , 1i i i

x z i i i M            (2.6) 

under zero initial conditions: 

( ) ( ) ( ) ( ) 0i i i i

           (2.7) 

boundary conditions on the surface    : 

 
2 2

2 (1) 2 (1) (1) 21 1

2

1

1
1 ,

2 2
z z zp 

 
      



 
    

 

 (2.8) 

2
2 (1) (1) 2 (1)1

2

1

1
0 ;

2
x z 


  


       

 (2.9) 

Joining conditions on the surfaces      
  

 
 : 

   
2 2

2 ( ) 2 ( ) ( ) 2 ( 1) 2 ( 1) ( 1)1

2 2

1

1 1
1 1

2 2

i i i i i ii i
z z i z z

i i

 

 
           

 

  



     
           

     

              (2.10) 

2 2
2 ( ) ( ) 2 ( ) 2 ( 1) ( 1) 2 ( 1)1

2 2

1

1 1

2 2

i i i i i ii i
x z i x z

i i

r  

 
           

 

  



 
            

 

               (2.11) 

( ) ( ) ( 1) ( 1)

2 2

1

1 1i i i i

z z

i i

     
 

 



        
; (2.12) 

2 ( ) ( ) 2 ( 1) ( 1)

2 2

1

1 1
[ ] [ ]i i i i

x z x z

i i

       
 

 



    (2.13) 

and condition on the infinity: 

( ) ( ) 0,M M z     (2.14) 

In the equations (2.5)-(2.13)    
          

 

      
 ,    

      

      
 , 

       – known normal force loading. 

Using the functions      and     ,       found from the 
problem (2.5)-(2.14) normal components of displacement vector 

            can be determined as the solutions of Cauchy prob-
lems: 

2 ( ) ( ) ( ) ( ) ( )

2

1
, 0, 0i i i i i

z

i

w w w      


      
 (2.15) 

and radial components             can be determined with the 
help of integrals: 

( ) ( ) ( )

0

( , , ) [ ( , , ) ( , , )]

x

i i i

zu x z y z w y z dy      . (2.16) 

3. SOLUTION OF PROBLEM 

Laguerre integral transformation can be introduced by the ex-
pression:  

0

( , ) ( , , ) ( ) , 0,1,2,...n nF r z e F r z L d n   


  , (3.1) 

where                  – Laguerre polynomials. The or-
thogonal series:  

0

( , , ) ( , ) ( )n n

n

F x z F x z L  




    (3.2) 

serve as the inversion formula for the transformation (3.1). 

Under some limitations on the function          (Szego, 
1959) the integral (3.1) exists and series (3.2) uniformly coincides 
whit arbitrary interval       from      .  

Applying Fourier integral transformation with respect to spatial 

coordinate   and transformation (3.1) with respect to   and using 
then zero initial conditions (2.6) and differentiation formulae:  

 2 2

0

exp( ) ( ) exp( ) ( 1) ( )
n

n m

m

L n m L     


      , 

we'll receive a triangular sequence of boundary value problems 
of the following kind: 
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1
2 ( ) 2 ( ) 2 ( )

1, 1,

0

( 1) , 1
n

i i i

z n i n i m

m

d n m i M    




       (3.3) 
1

2 ( ) 2 ( ) 2 ( )

2, 2,

0

( 1) , 1
n

i i i

z n i n i m

m

d n m i M    




       (3.4) 

 
2 2

2 (1) 2 (1) (1) 21 1

2
0 01

1
1 ( 1) ( 1) , 0;

2 2

n n
m

m z n z n z

m m

n m d d n m p z
 

    
 

 
         

 
                   (3.5) 

22
(1) (1) 2 (1)1

2
01

( 1) 0 , 0
2

n

z n n m

m

d n m z


   
 

                             (3.6) 

 

 

2
2 ( ) 2 ( ) ( )

2
0

2
2 ( 1) 2 ( 1) ( 1)1

2
0 1

1
1 ( 1)

2

1
1 ( 1) , , 1 1;

2

n
i i ii

m z n z n

m i

n
i i ii

i m z n z n i

m i

n m d d

n m d d z z i M


   




   





  

 

 
      

 

   
            

   





                               (3.7) 

22
( ) ( ) 2 ( )

2
0

22
( 1) ( 1) 2 ( 1)1

2
01

( 1)
2

( 1) , , 1 1;
2

n
i i ii

z n n m

mi

n
i i ii

i z n n m i

mi

d n m

d n m z z i M


   




   





  



      

 
            

 





                (3.8) 

( ) ( ) ( 1) ( 1)

2 2

1

1 1
, , 1 1;i i i i

z n n z n n i

i i

d d z z i M   
 

 



            
                (3.9) 

2 ( ) ( ) 2 ( 1) ( 1)

2 2

1

1 1
, , 1 1i i i i

n z n n z n i

i i

d d z z i M     
 

 



            
               (3.10)

( ) ( ) 0,M M

n n z    . (3.11) 

In the expressions (3.3) – (3.11)            ∑     
    

are the Fourier–Laguerre transforms:  

( ) ( )

0

0 0

( , ) ( ) ( , , ) ( )i i

n nF z rJ r e F r z L d dr    
 

    

2 2 2 2

1, ;i i      

2 2 2 2 2 2 2 2 2 2 2 2

2, 1, 2,; ;i i i i i i i i                

As it is known (Galazyuk and Gorekcho, 1983) the general so-
lution of the triangular sequence of ordinary differential equations 
(3.3), (3.4) can be represented as the algebraically convolution: 

( ) ( ) ( ) ( ) ( )

1, 1,

0

( ) ( ) ( )
n

i i i i i

n n j j n j j

j

z A G z B W z  



     (3.12) 

( ) ( ) ( ) ( ) ( )

2, 2,

0

( ) ( ) ( )
n

i i i i i

n n j j n j j

j

z C G z D W z 



      (3.13) 

where     
   

,     
   

,     
   

,     
   

 ,       – unknown functi-

ons which can be found from boundary conditions and     
      , 

    
      ,     

      ,     
        – respectively systems of fundamen-

tal solutions of sequences (3.3) and (3.4). Using the unknown 
coefficients method they can be represented in the form:  

,( ) ,
, , ,

0

( )
( ) exp( )

!

j k
l ii l i

l j l i j k
k

z
G z z a

k



   ;  

,( ) ,
, , ,

0

( )
( ) exp( )

!

j k
l ii l i

l j l i j k
k

z
W z z a

k



   , (3.14) 

where coefficients     
    can be determined from simple recurrent 

expressions:  

1
,, , ,

, 1 , 2 ,

,

( 1)
2

j
l il i l i l i

j k j k p k

p kl i

a a j p a






 



 
    

 
  (3.15) 

under arbitrary     
   

. In the expressions (3.15)           

          and all     
   

 for     are identically equal to zero. 

Since functions     
       unlimitedly increase while     

it's evident that according to conditions (3.11) it should be taken:  

( ) ( )0, 0, 0,1,2,...M M

j jB D j     (3.16) 

We use conditions (3.5)-(3.10) for the determination of the un-

known functions     
   

,     
   

,     
   

,     
   

. For this we substitute 

representation (3.12), (3.13) into the condition (3.5). Using the 

meaning for   
  ̅ 

   
 from the equation (3.3) and after regrouping 

we obtain: 

2 22
(1) (1) (1)1

1, 1,2
0 1

(0) (0)
2

n n

j n j m j

j m j

A G G
 


 

 

  
   

  
 

2 22
(1) (1) (1)1

1, 1,2

1

(0) (0)
2

n

j n j m j

m j

B W W
 


 



 
  

 
   

2
(1) (1) (1) (1) 21

2, 2,

0

(0) (0) ( 1)
2

n
m

j z n j j z n j z

m

C d G D d W n m p


 



      . 

(3.17) 
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Let     
     ,     

     ,        ,      . In the left 

part of the equation (3.17) we leave only expressions for    , 

the rest we write in the right part. As a result we obtain: 

 

2 2 2 2 2 22 2
(1) (1) (1) (1)1 1 1

2,1 2,12 2
01 1

2 21
(1) (1) (1) (1) (1) (1)1

2, 2,

0

( 1)
2 2 2

( 1) (0) (0) .
2

n
m

n n n n z

m

n

j j j z n j j z n j

j

A B C D n m p

A B n j C d G D d W

      
 

 

 





 



   
           

   

 
      

 





 
(3.18) 

Using the same technique as for equations (3.6) – (3.10) 
we receive the recurrent sequence of the equation systems of the 
dimension              . With the help of these sys-

tems the unknown functions     
   

,     
   

,     
   

,     
   

 can be 

determined. Thus, the construction of the solution of the problem 
(2.5)-(2.14) is completed. 

The final expressions for functions            ,             
and nonzero components of displacements vector received from 
Fourier and Laguerre integral transformations inversion formulae: 

( ) ( )

0

( , , ) ( , , )cos( )i ix z z x d



        ; 

( ) ( )

0

( , , ) ( , , )cos( )i ix z z x d



        ; 

( ) ( )

0

( , , ) ( , , )cos( )i iw x z w z x d



      ; 

( ) ( )
( )

0

( , , ) ( , , )
( , , ) sin( )

i i
zi z w z

u x z x d


      

   
 , 

where { ̅     ̅     ̅   }   ∑ { ̅     ̅     ̅   }       
    

and for calculation of  ̅ 
   

 we can use formulae: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 22 2

1
2 2i i i i i i i

n n n n z n z n z n

i

w d d d  
 

   
         

. 

Using the known displacements the stress tensor components 
can be determined according to Hook's law: 

 ( ) 2 ( ) ( )/ 2 2
i i i
zz i zi w        ; 

 ( ) 2 ( ) ( )/ 2 2
i i i
xx i xi u        ; 

( ) ( ) ( )/
i i i
xz i z xu w      , 

where    is the shear modulus of the  -th layer. 

4. NUMERICAL SOLUTION 

In this example we show the results of calculation of dis-

placement             and normal stresses    
   

        on the 

interfaces of elastic layer and half-space loaded by shock effect 
on the surface    , when in the area | |    the normal pres-
sure is given by the law:  

2( , ) 1 ( )p x p x S
    , 

and in the area | |     equal to zero.  
The calculation refers for condition with the following 

parameters    
  

 
    ;  ̃   ,  ̃       ,         , 

           . 
The displacements and stresses are the suitable solution to 

related of statically problem. It is based on the Laguerre integral 
transform method with limit transition. For example we may write, 

   
                 

   
     , where    

   
      – is the 

displacements in the static problem,   
   

      is the value of the 

transform   
   

      when    . 

  
Fig. 1. Time distribution of normal displacement  
            at the boundary of coating and half-space 

Figures 1 and 2 give the dimensionless displacements 

          
              

   
   

     
 and stresses on the interface of elastic 

layer and half-space at the point    . As seen from the results 
of the time variation of displacements and normal stresses in the 
process of transition is in the form of oscillations around the static 
equilibrium position (unit values).  

The first wave of the displacements and stresses arrives 
at and it is in accordance with the physics of the phenomenon. 
The peak value of amplitude gets its maximum and soon after 
arrival of the compression wave and thereafter the amplitudes 
decrease. The extreme values of amplitudes are attained in the 
beginning of transitional period when the compression wave-
reflection from the interfaces of elastic layer and half-space  
arrives. The multiple reflection results increase of frequency-wave. 
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Fig. 2. Time distribution of normal stresses  
            at the boundary of coating and half-space 

The numerical results have demonstrated the advantages 
of the present theory in terms of effectiveness and efficiency, 
which seem to justify its more intensive formulation. Future work 
will address the extension of the present theory for the dynamic 
problems of layered bodies. 

5. CONCLUSION  

The paper proposes a new mathematical formulation of the 
plane dynamic problem of elasticity theory for a layered half-
space. The formulation involves non-classical separation of equa-
tions of motion using two functions with a particular mechanical 
meaning – volumetric expansion and function of acceleration of 
the shift. In terms of these functions obtained two wave equation, 
written boundary conditions and the conditions of ideal mechani-
cal contact of layers. Using the Laguerre and Fourier integral 
transformations was obtained the solution of the formulated prob-
lem. The results of the calculation of the stress-strain state in the 
half-space with a coating for a local impact loading are presented. 
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