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Abstract: This study examines a novel use of the Jacobi elliptic function expansion method to solve the Shynaray-IIA equation,  
a significant nonlinear partial differential equation that arises in optical fiber, plasma physics, surface symmetry geometry, and many other 
mathematical physics domains.  This kind of solution has never been attained in research prior to this study. Numerous properties  
of a particular class of solutions, called the Jacobi elliptic functions, make them useful for the analytical solution of a wide range  
of nonlinear problems. Using this powerful method, we derive a set of exact solutions for the Shynaray-IIA equation, shedding light on its 
complex dynamics and behaviour. The proposed method is shown to be highly effective in obtaining exact solutions in terms of Jacobi  
elliptic functions, such as dark, bright, periodic, dark-bright, dark-periodic, bright periodic, singular, and other various types of solitons.  
Furthermore, a detailed analysis is conducted on the convergence and accuracy of the obtained solutions. The outcomes of this study  
extend the applicability of the Jacobi elliptic function approach to a novel class of non-linear models and provide valuable insights into the 
dynamics of Shynaray-IIA equation. This study advances the creation of efficient mathematical instruments for resolving intricate nonlinear 
phenomena across a range of scientific fields. 
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1. INTRODUCTION 

The Shynaray-IIA is a coupled partial differential equation,  
a significant nonlinear partial differential equation (PDE), arises  
in numerous branches of physical and mathematical sciences, like 
as fluid mechanics, quantum physics and plasma physics.  
Its complex nonlinear nature presents a substantial challenge  
in finding exact analytical solutions, leading researchers to explore 
innovative and efficient methods for resolution such as tanh meth-
od [1], extended auxiliary equation method [2 − 4], variational 

method [5], modified and extended simple equation method [6 −
8], direct algebraic method [9], generalized exponential rational 
function technique [10], extended F-expansion scheme 

[11, 12],   𝐺
𝐺′⁄  – expansion algorithm [13], sine-Gordon ex-

pansion method [14], modified sub-equation method [15], dar-
boux method [16], homogeneous balance [17],  and so on 

[18 − 33]. Among the abundance of mathematical tools availa-
ble, the Jacobi elliptic function approach has emerged as a prom-
ising scheme for solving the non-linear partial differential equa-
tions (PDEs). This technique is particularly valuable in handling 
nonlinear equations with high nonlinearity, as it enables research-
ers to obtain exact solutions by transforming the original equation 
into a more manageable elliptic equation. In this research article, 

we focus on investigating the application of the Jacobi elliptic 
function approach to handle the Shynaray-IIA equation. The con-
sidered model is given as,  

𝑖𝑞𝑡 + 𝑞𝑥𝑡 − 𝑖(𝑣𝑞)𝑥 = 0, 

𝑖𝑟𝑡 − 𝑟𝑥𝑡 − 𝑖(𝑣𝑟)𝑥 = 0,                                                            (1) 

𝑣𝑥 −
𝑛2

𝛼
(𝑟𝑞)𝑡 = 0. 

We aimed to construct exact analytical solutions that shed 
light on the intricate dynamics described by the equation. The 
obtained solutions not only contribute to a deeper understanding 
of underlying physical processes but also offer a valuable stand-
ard for validating numerical and approximate method in solving 
this challenging PDE. The Jacobi elliptic function expansion 
method serves as a powerful mathematical tool to solve the 
Shynaray-IIA (S-IIA) equation, allowing us to gain deeper insight 
into the behavior of complex physical systems. The exact analyti-
cal solutions obtained through this research contribute to the 
existing body of knowledge, paving the way for further advance-
ment in the study of nonlinear Partial differential equations (PDEs) 
and their implications in diverse scientific disciplines. Sachin et al. 
[34 − 38] have examined the Konopelchenko–Dubrovsky (KD) 
equation, generalized complex coupled Schrödinger–Boussinesq 
equations, Sakovich equation, Zakharov–Kuznetsov–Benjamin–
Bona–Mahony (ZK-BBM) equation and Vakhnenko-Parkes equa-
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tion to develop the solitary wave solution and visualized their 
propagation by utilizing the distinct analytical techniques. Rani et 
al. [39] constructed exact analytical solutions for complex modified 
Kortewegde-Vries. Nonlaopon et al. [40] performed Painlevé 
analysis to form the exact soliton solutions. 

The remainder of this article is presented in the following 
structure: Section 1, provides a brief overview of the Shynaray-IIA 
equation and its relevance in various scientific fields. Section II 
outlines the theoretical basis of considered method. In Section III, 
we present the step-by-step implementation of the method to 
obtain exact solutions for the Shynaray-IIA equation. In section IV, 
provide the analysis of graphs for direct study. Section V, dis-
cusses the conclusion and applicability of the proposed approach. 

2.  DESCRIPTION OF ANALYTICAL TECHNIQUE  

An overview of the Jacobi elliptic function methodology is 
given in this section. We will use nonlinear partial differential 
equations, which typically have the following mathematical 
conclusion, 

𝑁(𝑢,
𝜕𝑢

𝜕𝑡
,

𝜕𝑢

𝜕𝑥
,

𝜕2𝑢

𝜕𝑡2 ,
𝜕2𝑢

𝜕𝑥2 , . . . ) = 0.                                         (2) 

Utilizing the following wave transformation to convert Eq. (1) 
into an ordinary differential equation,  

𝑢 = 𝑢(𝜉), 𝜉 = 𝑘(𝑥 − 𝑐𝑡),                                                       (3) 

where the symbols for frequency and wave number, respectively, 
are c and k. Equation (1) has been successfully transformed into 
an ordinary differential equation (ODE) by the procedure descri-
bed in Equation (2).  

𝜕(.)

𝜕𝑡
= −𝑐𝑘

𝑑(.)

𝑑𝜉
,

𝜕(.)

𝜕𝑥
= 𝑘

𝑑(.)

𝑑𝜉
,                                                     (4)                                      

𝑁(𝑢′, 𝑢′′, 𝑢′′′, . . . . ) = 0.                                                            (5) 

 
Tab. 1. The chosen value of 𝑃, 𝑄 and 𝑅 

 𝑷 𝑸 𝑹 𝑭 

1 m2 −(1
+ m2) 

1 𝑠𝑛, 𝑐𝑑 

2 −m2 2m2 − 1 1 − 𝑚2 𝑐𝑛 

3 −1 2 − 𝑚2 𝑚2 − 1 𝑑𝑛 

4 1 −(1
+ 𝑚2) 

𝑚2 𝑛𝑠, 𝑑𝑐 

5 1 − 𝑚2 2𝑚2 − 1 −𝑚2 𝑛𝑐 

6 𝑚2 − 1 2 − 𝑚2 −1 𝑛𝑑 

7 1 − 𝑚2 2 − 𝑚2 1 𝑠𝑐 

8 −𝑚2(1
− 𝑚2) 

2𝑚2 − 1 1 𝑠𝑑 

9 1 2 − 𝑚2 1 − 𝑚2 𝑐𝑠 

10 1 2𝑚2 − 1 -𝑚2(1 −
𝑚2) 

𝑑𝑠 

11 −1

4
 

𝑚2 + 1

2
 

−(1 − 𝑚2)2

4
 

𝑚𝑐𝑛 ∓ 𝑑𝑛 

12 1

4
 

−2𝑚2 + 1

2
 

1

4
 

𝑛𝑠 ∓ 𝑐𝑠 

13 1 − 𝑚2

4
 

𝑚2 + 1

2
 

1 − 𝑚2

4
 

𝑛𝑐 ∓ 𝑠𝑐 

14 1

4
 

𝑚2 − 2

2
 

𝑚4

4
 

𝑛𝑠 ∓ 𝑑𝑠 

15 𝑚2

4
 

𝑚2 − 2

2
 

𝑚2

4
 

𝑠𝑛

∓ 𝑖𝑐𝑛,
𝑠𝑛

√1 − 𝑚2𝑠𝑛 ∓ 𝑐𝑛
 

16 1

4
 

1 − 2𝑚2

2
 

1

4
 

𝑚𝑐𝑛

∓ 𝑖𝑑𝑛,
𝑠𝑛

1 ∓ 𝑐𝑛
 

17 𝑚2

4
 

𝑚2 − 2

2
 

1

4
 

𝑠𝑛

1 ∓ 𝑑𝑛
 

18 𝑚2 − 1

4
 

𝑚2 + 1

2
 

𝑚2 − 1

4
 

𝑑𝑛

1 ∓ 𝑚𝑠𝑛
 

19 1 − 𝑚2

4
 

𝑚2 + 1

2
 

−𝑚2 + 1

4
 

𝑐𝑛

1 ∓ 𝑠𝑛
 

20 (1−𝑚2)2

4
    𝑚2 + 1

2
 

1

4
 

𝑠𝑛

𝑑𝑛 ∓ 𝑐𝑛
 

21 𝑚4

4
 

𝑚2 − 2

2
 

1

4
 

𝑐𝑛

√1 − 𝑚2 ∓ 𝑑𝑛
 

   
In conjunction with utilizing this advanced directed technique, 

the underlying principle entails augmenting the likelihood of 
resolving an auxiliary ODE, namely first-order Jacobian problem 
with the three parameters. This method aims to produce a 
multitude of Jacobian elliptic solutions for the given issue. 
Visualizing the auxiliary equation is a feasible step in 
understanding this process.                                                                         

(𝐹′)2(𝜉) = 𝑃𝐹4(𝜉) + 𝑄𝐹2(𝜉) + 𝑅.                                      (6) 

Let 𝐹′ =
𝑑𝐹

𝑑𝜉
, where 𝜉 = 𝜉(𝑥, 𝑡), and the constants 𝑃, 𝑄 and 

𝑅 are involved. The solution for equation (5) is provided in Tab. 1. 

It is important to note that 𝑖2 = −1. Additionally, the Jacobi ellip-
tic functions are denoted as 𝑠𝑛𝜉 = 𝑠𝑛(𝜉, 𝑚), 𝑐𝑛𝜉 =
𝑐𝑛(𝜉, 𝑚),  and 𝑑𝑛𝜉 = 𝑑𝑛(𝜉, 𝑚), where 𝑚 lies in the range 
0 < 𝑚 < 1 and represents the modulus.                                                   

Tab. 2.  Analysis of Jacobi elliptic functions in the limit of 𝑚 →
0 𝑎𝑛𝑑 𝑚 → 1. 

  𝑚 →
1       

𝑚 → 0   𝑚 → 1 𝑚 → 0 

1 𝑠𝑛𝑢 𝑡𝑎𝑛ℎ𝑢 𝑠𝑖𝑛𝑢 7 𝑑𝑐𝑢 1 𝑠𝑒𝑐𝑢 

2 𝑐𝑛𝑢 𝑠𝑒𝑐ℎ𝑢 𝑐𝑜𝑠𝑢 8 𝑛𝑐𝑢 𝑐𝑜𝑠ℎ𝑢 𝑠𝑒𝑐𝑢 

3 𝑑𝑛𝑢 𝑠𝑒𝑐ℎ𝑢 1 9 𝑠𝑐𝑢   𝑠𝑖𝑛ℎ𝑢   𝑡𝑎𝑛𝑢 

4 𝑐𝑑𝑢 1 𝑐𝑜𝑠𝑢 10 𝑛𝑠𝑢 𝑐𝑜𝑡ℎ𝑢 𝑐𝑠𝑐𝑢 

5 𝑠𝑑𝑢 𝑠𝑖𝑛ℎ𝑢 𝑠𝑖𝑛𝑢 11 𝑑𝑠𝑢 𝑐𝑠𝑐ℎ𝑢 𝑐𝑠𝑐𝑢 

6 𝑛𝑑𝑢 𝑐𝑜𝑠ℎ𝑢 1 12 𝑐𝑠𝑢 𝑐𝑠𝑐ℎ𝑢 𝑐𝑜𝑡𝑢 

The elliptic functions exhibit a distinctive double periodic, pro-
cessing distinct properties as outline below: 

𝑠𝑛2𝜉 + 𝑐𝑛2𝜉 = 1, 

𝑑𝑛2𝜉 + 𝑚2𝑠𝑛2𝜉 = 1, 

𝑑

𝑑𝜉
𝑠𝑛𝜉 = 𝑐𝑛𝜉𝑑𝑛𝜉, 

𝑑

𝑑𝜉
𝑐𝑛𝜉 = −𝑠𝑛𝜉𝑑𝑛𝜉, 

𝑑

𝑑𝜉
𝑑𝑛𝜉 = −𝑚2𝑠𝑛𝜉𝑐𝑛𝜉. 
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With reference to Tab. 2, this reduction makes it possible to 
derive the solutions for the given problem using the trigonometric 
function and solitons. The Jacobi elliptic function expansion met-
hod can be used to describe the function as a finite series of 
Jacobi elliptic functions. 

𝑢(𝜉) = ∑ 𝑎𝑖𝐹
𝑖(𝜉).                   𝑛

𝑖=0                                              (7) 

Here the function 𝐹(𝜉) represents solution to the non-linear 
ordinary equation denoted as Eq. 5. The constants 𝑛 and 𝑎𝑖 (whe-

re 𝑖 =  0, 1, 2, . . . , 𝑛) are parameters that have to be found. The 
determination of the integer 𝑛 in Eq. 6 involves an analysis of the 
highest order linear term.                                                              

𝑂 (
𝑑𝑝𝑢

𝑑𝜉𝑝) = 𝑛 + 𝑝, 𝑝 = 0,1,2,3, … …,                                      (8)                  

thus, the most significant nonlinear terms at the highest order are 

𝑂 (𝑢𝑞 𝑑𝑝𝑢

𝑑𝜉𝑝) = (𝑞 + 1)𝑛 + 𝑝, 𝑝 = 0,1,2,3, … …,    

𝑞 = 1,2,3, …,                                                                               (9) 

in Eq. 4. 
Utilizing Eq. 6 and setting all coefficients of powers 𝐹 to zero, 

we derive a set of nonlinear algebraic equations for the varia-
bles𝑎𝑖, (where 𝑖 = 0,1,2,3, ….). Employing Mathematica, we 
proceed to solve this system of algebraic equations and put all the 
values for 𝑃, 𝑄, and 𝑅 as per Eq. 5 in Tab. 1. This approach, 
integrating the information from Eq. 6 with the selected auxiliary 
equation, allows for the determination of exact solutions for Eq. 1. 

3. THE CONSTRUCTION OF SOLITONS OF SHYNARAY-IIA 
EQUATION (S-IIAE) 

The precise solutions to Shynaray-IIA Eq. 1 using the Jacobi 
elliptic function expansion approach are shown in this section, 

𝑖𝑞𝑡 + 𝑞𝑥𝑡 − 𝑖(𝑣𝑞)𝑥 = 0, 

𝑖𝑟𝑡 − 𝑟𝑥𝑡 − 𝑖(𝑣𝑟)𝑥 = 0,      

 𝑣𝑥 −
𝑛2

𝛼
(𝑟𝑞)𝑡 = 0. 

In case when = 𝜖𝑞̅ (𝜖 = ±1), the S-IIAE takes the following 
form: 

𝑖𝑞𝑡 + 𝑞𝑥𝑡 − 𝑖(𝑣𝑞)𝑥 = 0, 

𝑣𝑥 −
𝑛2𝜖

𝛼
(|𝑞|2)𝑡 = 0.                                                              (10) 

In the above equation 𝑚, 𝑛 and 𝜖 are constants. By using the 

traveling wave transformation Eq. 11 is reduced into the following 
ODE:  

𝑞(𝑥, 𝑡) = 𝑈(𝜂)𝑒𝑖𝜉(𝑥,𝑡), 𝑣(𝑥, 𝑡) = 𝐺(𝜂), 

𝜉(𝑥, 𝑡) = −𝛿𝑥 + 𝜔𝑡 + 𝜃, 𝜂 = 𝑥 − 𝑐𝑡,                                 (11) 

where 𝑣, 𝜃, 𝜔, 𝛿 characterize the frequency, the phase constant, 
the wave number and the velocity, respectively. The Eq. 27 is 
plugging into the first part of Eq. 26 and getting the real and 
imaginary parts, 

𝑐𝑈′′(𝜂) + 𝜔(1 − 𝛿)𝑈(𝜂) + 𝛿𝐺(𝜂)𝑈(𝜂) + 𝑖(𝜔 −

𝑐(1 − 𝛿))𝑈′(𝜂) − 𝐺(𝜂)𝑈′(𝜂) − 𝐺′(𝜂)𝑈(𝜂) = 0,  

𝐺′(𝜂) +
2𝑐𝜖𝑛2

𝛼
𝑈(𝜂)𝑈′(𝜂) = 0.                                              (12) 

The second Eq. 28 is integrated, and we get 

𝐺(𝜂) = −
𝑐𝜖𝑛2

𝛼
𝑈2(𝜂).                                                             (13) 

Substitute the Eq. 13 into the first part of 12 and separating 
the real and imaginary parts as  

𝑐𝑈′′(𝜂) + 𝜔(1 − 𝛿)𝑈(𝜂) −
𝛿𝑐𝜖𝑛2

𝛼
𝑈3(𝜂) = 0.                   (14) 

And we have the imaginary part as, 

(𝜔 − 𝑐(1 − 𝛿))𝑈′(𝜂) +
3𝑐𝜖𝑛2

𝛼
𝑈′′(𝜂)𝑈′(𝜂) = 0.              (15) 

By using the homogeneous balancing procedure, we obtained  
𝑛 = 1,  the determine value of n is substituted in Eg. 7 we 
obtained the simple form of the solution as: 

𝑈(𝜂) = 𝑎0 + 𝑎1𝐹(𝜂),                                                             (16) 

𝑈3(𝜂) = 𝑎0
3 + 𝑎1

3𝐹3(𝜂) + 3𝑎0𝑎1
2𝐹2(𝜂) + 3𝑎0

2𝑎1𝐹          (17) 

and  

𝑈′′(𝜂) = 𝑎1(2𝑃𝐹3(𝜂) + 𝑄𝐹(𝜂)).                                        (18) 

Substitute Eq. 16-18 into Eq. 15, we get, 

𝑐𝑎1(2𝑃𝐹3(𝜂) + 𝑄𝐹(𝜂)) + 𝜔(1 − 𝛿)(𝑎0 + 𝑎1𝐹(𝜂)) −
𝛿𝑐𝜖𝑛2

𝛼
(𝑎0

3 + 𝑎1
3𝐹3(𝜂) + 3𝑎0𝑎1

2𝐹2(𝜂) + 3𝑎0
2𝑎1𝐹(𝜂)) = 0.  

                                                                                                   (19) 

By collecting the various coefficients of 𝐹𝑖(𝜂), we get the 
system of equations, 

𝑈0:    (𝜔(1 − 𝛿) −
𝛿𝑐𝜖𝑛2

𝛼
𝑎0

2) 𝑎0 = 0,                                   (20) 

𝑈1: (𝑐𝑄 + 𝜔(1 − 𝛿) − 3𝑎0
2 𝛿𝑐𝜖𝑛2

𝛼
)𝑎1 = 0,                          (21) 

𝑈2 : − 3𝑎0𝑎1
3 𝛿𝑐𝜖𝑛2

𝛼
 = 0,                                                        (22) 

𝑈3 = (2𝑃𝑐 − 𝑎1
2 𝛿𝑐𝜖𝑛2

𝛼
)𝑎1 = 0.                                             (23) 

Upon solving the aforementioned system by using Maple 
software, we obtain the coefficients pertaining to the series 16,  

 𝑎0 = 0, 𝑎1 = ±
√

2𝛼𝑃

𝛿𝜖

𝑛
.                                                             (24) 

The obtained solution is of the form, 

𝑈 = ±
√

2𝛼𝑃

𝛿𝜖

𝑛
 𝐹(𝜂).                                                                    (25) 

When the values 𝑃 = 𝑚2, 𝑄 = −(1 + 𝑚2), and 𝑅 = 1 are 
chosen, table 1 provides the corresponding values of 𝐹 = 𝑠𝑛. 
Therefore, the periodic solution of Equation 1 can be represented 
as,       

𝑞1,1 = ±
√2𝛼𝑚2

𝛿𝜖

𝑛
  𝑠𝑛(𝑥 − 𝑐𝑡),                                                  (26) 

 𝑣1,1 = −
2𝑐𝑚2

𝛿
𝑠𝑛2(𝑥 − 𝑐𝑡).                                                   (27) 

Supposing 𝑚 → 1, hence, by referring to table 2, one may 
derive the solitary wave solution of Eq. 1. 

 𝑞1,2 = ±
√

2𝛼

𝛿𝜖

𝑛
  𝑡𝑎𝑛ℎ(𝑥 − 𝑐𝑡),                                                 (28) 
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𝑣1,2 = −
2𝑐

𝛿
𝑡𝑎𝑛ℎ2(𝑥 − 𝑐𝑡).                                                    (29) 

Choosing  𝑃 = −𝑚2, 𝑄 = 2𝑚2 − 1, 𝑅 = 1 − 𝑚2, based 
on the data supplied in Table 1, it can be inferred that the variable 
F can be mathematically expressed as 𝐹 = 𝑐𝑛. Consequently, 
the periodic solution of Equation (1) can be derived as follows:   

𝑞1,3 = ±
√−2𝛼𝑚2

𝛿𝜖

𝑛
 𝑐𝑛(𝑥 − 𝑐𝑡),                                                 (30) 

𝑣1,3 =
2𝑐𝑚2

𝛿
𝑐𝑛2(𝑥 − 𝑐𝑡).                                                        (31) 

Considering 𝑚 → 1 the solitary wave solution of Eq. 1 can be 
expressed as per the information provided in Tab. 2.     

𝑞1,4 = ±
√

−2𝛼

𝛿𝜖

𝑛
 𝑠𝑒𝑐ℎ(𝑥 − 𝑐𝑡),                                                 (32) 

𝑣1,4 =
2𝑐

𝛿
𝑠𝑒𝑐ℎ2(𝑥 − 𝑐𝑡).                                                         (33) 

Setting  𝑃 = −1,   𝑄 = 2 − 𝑚2,   𝑅 = 𝑚2 − 1, based on 
the data shown in Tab. 1, it can be inferred that the periodic solu-
tion of Eq. 1 can be mathematically represented as follows:                                                   

𝑞1,5 = ±
√

−2𝛼

𝛿𝜖

𝑛
 𝑑𝑛(𝑥 − 𝑐𝑡),                                                     (34) 

𝑣1,5 =
2𝑐

𝛿
𝑑𝑛2(𝑥 − 𝑐𝑡).                                                            (35) 

In the context of 𝑚 → 1 from Tab. 2, the similarity between 
the solution shown and the solution derived in Eq. 27 is clearly 
demonstrated.         

While 𝑃 = 1, 𝑄 = −(1 + 𝑚2), 𝑅 = 𝑚2, 𝐹 = 𝑛𝑠,  accor-
ding to the data presented in Tab. 1, the answer to Eq. 1 can be 
represented as follows:      

𝑞1,6 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑛𝑠(𝑥 − 𝑐𝑡),                                                        (36) 

𝑣1,6 = −
2𝑐

𝛿
𝑛𝑠2(𝑥 − 𝑐𝑡).                                                        (37) 

Additionally, when 𝑚 → 1 the solitary wave solution of Eq. 1 
is presented in Tab. 2.                      

𝑞1,7 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑐𝑜𝑡ℎ(𝑥 − 𝑐𝑡),                                                   (38) 

𝑣1,7 = −
2𝑐

𝛿
𝑐𝑜𝑡ℎ2(𝑥 − 𝑐𝑡).                                                    (39) 

Using Tab. 2, the periodic solution of Eq. 1 can be stated as 
follows if m→0: 

𝑞1,8 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑐𝑠𝑐(𝑥 − 𝑐𝑡),                                                      (40) 

𝑣1,8 = −
2𝑐

𝛿
𝑐𝑠𝑐2(𝑥 − 𝑐𝑡).                                                       (41) 

Supposing  𝑃 = 1, 𝑄 = −(1 + 𝑚2), 𝑅 = 𝑚2.  
Thus,  𝐹 = 𝑑𝑐, 

𝑞1,8 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑑𝑐(𝑥 − 𝑐𝑡),                                                       (42) 

𝑣1,8 = −
2𝑐

𝛿
𝑑𝑐2(𝑥 − 𝑐𝑡).                                                         (43) 

Using Tab. 2, the periodic solution of Eq. 1 can be stated as 
follows if m→0: 

𝑞1,10 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑠𝑒𝑐(𝑥 − 𝑐𝑡),                                                    (44) 

𝑣1,10 = −
2𝑐

𝛿
𝑠𝑐𝑐2(𝑥 − 𝑐𝑡).                                                     (45) 

When 𝑃 = 1 − 𝑚2, 𝑄 = 2𝑚2 − 1, 𝑅 = −𝑚2.  𝑇ℎ𝑢𝑠, 𝐹 =
 𝑛𝑐 and the solution of periodic nature of Eq. 1 as: 

𝑞1,11 = ±
√2𝛼(1−𝑚2)

𝛿𝜖

𝑛
 𝑛𝑐(𝑥 − 𝑐𝑡),                                           (46) 

𝑣1,11 = −
2𝑐(1−𝑚)2

𝛿
𝑛𝑐2(𝑥 − 𝑐𝑡).                                           (47) 

As 𝑚 → 0 from Tab. 2, it is shown that the solution found as 
that of 33. 

Also regarding  𝑃 = 1 − 𝑚2,   𝑄 = 2 − 𝑚2, 𝑅 = 1.  
Thus, 𝐹 = 𝑠𝑐: 

𝑞1,12 = ±
√2𝛼(1−𝑚2)

𝛿𝜖

𝑛
 𝑠𝑐(𝑥 − 𝑐𝑡),                                           (48) 

𝑣1,12 = −
2𝑐(1−𝑚)2

𝛿
𝑠𝑐2(𝑥 − 𝑐𝑡).                                            (49) 

Furthermore, we find the periodic solution of Eq. 1 as follows 
for m→0, as shown in Tab. 2: 

𝑞1,13 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑡𝑎𝑛(𝑥 − 𝑐𝑡),                                                   (50) 

𝑣1,13 = −
2𝑐

𝛿
𝑡𝑎𝑛2(𝑥 − 𝑐𝑡).                                                     (51) 

Considering 𝑃 = 1,   𝑄 = 2 − 𝑚2, 𝑅 = 1 − 𝑚2  and  𝐹 =
𝑐𝑠, thus: 

𝑞1,14 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑐𝑠(𝑥 − 𝑐𝑡),                                                      (52) 

 𝑣1,14 = −
2𝑐

𝛿
𝑐𝑠2(𝑥 − 𝑐𝑡).                                                      (53) 

The solitary wave solution Eq. (1) is given as follows as m→1, 
per Tab. 2: 

𝑞1,15 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑐𝑠𝑐ℎ(𝑥 − 𝑐𝑡),                                                  (54) 

𝑣1,15 = −
2𝑐

𝛿
𝑐𝑠𝑐ℎ2(𝑥 − 𝑐𝑡).                                                   (55) 

The solitary wave solution Eq. 1 is given as follows as m→0, 
per Tab. 2, 

𝑞1,16 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑐𝑜𝑡(𝑥 − 𝑐𝑡),                                                    (56) 

𝑣1,16 = −
2𝑐

𝛿
𝑐𝑜𝑡2(𝑥 − 𝑐𝑡).                                                     (57) 

 
Also assigning  𝑃 = 1 ,  𝑄 = 2𝑚2 − 1,   𝑅 = 𝑚4 − 𝑚2  

and  𝐹 = 𝑑𝑠. Thus,  

𝑞1,17 = ±
√

2𝛼

𝛿𝜖

𝑛
 𝑑𝑠(𝑥 − 𝑐𝑡),                                                     (58) 

 𝑣1,17 = −
2𝑐

𝛿
𝑑𝑐2(𝑥 − 𝑐𝑡).                                                      (59) 

In this family, the soliton solution is the similar to Eq. 30. If the 
limit of 𝑚 → 0, the solution can be articulated as per Eq. 38 with 
reference to Tab. 2. 



Muhammad Ishfaq Khan, Waqas Ali Faridi, Muhammad Amin Murad, Mujahid Iqbal, Ratbay Myrzakulov, Zhanar Umurzakhova                               DOI 10.2478/ama-2025-0016                                                                                                                                                           

The Formation and Propagation of Soliton Wave Profiles for The Shynaray-IIa Equation 

140 

Assuming 𝑃, 𝑄, 𝑅   as 𝑃 =
−1

4
, 𝑄 =

𝑚2+1

2
, 𝑅 =

−(1−𝑚2)

4
, 

according to Tab. 1, 𝐹 formulated as 𝐹 = 𝑚𝑐𝑛 ∓ 𝑑𝑛, the solu-
tion is determined as, 

 

𝑞1,18 = ±
√

−𝛼

2𝛿𝜖

𝑛
 𝑚𝑐𝑛(𝑥 − 𝑐𝑡) ∓ 𝑑𝑛(𝑥 − 𝑐𝑡),                      (60) 

𝑣1,18 =
𝑐

2𝛿
(𝑚𝑐𝑛(𝑥 − 𝑐𝑡) ∓ 𝑑𝑛(𝑥 − 𝑐𝑡))2.                         (61) 

Additionally, when 𝑚 → 1, the obtained solution is similar the 
solution found in Eq. (25). 

If we select 𝑃, 𝑄, 𝑅  as  𝑃 =
1

4
,   𝑄 =

−2𝑚2+1

2
, 𝑅 =

1

4
 , and 

evaluate 𝐹 from table 1 where = 𝑛𝑠 ∓ 𝑐𝑠 , thus solution of Eq. 
(1) can be indicated as, 

𝑞1,19 = ±
√

𝛼

2𝛿𝜖

𝑛
(𝑛𝑠(𝑥 − 𝑐𝑡) ∓ 𝑐𝑠(𝑥 − 𝑐𝑡)),                        (62) 

𝑣1,19 = −
𝑐

2𝛿
(𝑛𝑠(𝑥 − 𝑐𝑡) ∓ 𝑐𝑠(𝑥 − 𝑐𝑡))2.                          (63) 

The solitary wave solution for 𝑚 → 1 in Eq. 1 is identified as, 

𝑞1,20 = ±
√

𝛼

2𝛿𝜖

𝑛
 𝑐𝑜𝑡ℎ(𝑥 − 𝑐𝑡) ∓ 𝑐𝑠𝑐ℎ(𝑥 − 𝑐𝑡),                   (64) 

𝑣1,20 = −
𝑐

2𝛿
(coth (𝑥 − 𝑐𝑡) ∓ csch (𝑥 − 𝑐𝑡))2.                (65) 

Additionally, in the case where 𝑚 → 0, based on Tab. 2, ob-
taining a periodic solution is evident. 

 𝑞1,21 = ±
√

𝛼

2𝛿𝜖

𝑛
 𝑐𝑠𝑐(𝑥 − 𝑐𝑡) ∓ 𝑐𝑜𝑡(𝑥 − 𝑐𝑡),                      (66) 

𝑣1,21 = −
𝑐

2𝛿
(csc (𝑥 − 𝑐𝑡) ∓ cot (𝑥 − 𝑐𝑡))2.                     (67) 

If   𝑃 =
1−𝑚2

4
, 𝑄 =

𝑚2+1

2
, 𝑅 =

1−𝑚2

4
  and  𝐹 = 𝑛𝑐 ∓ 𝑠𝑐,  

the solution of Eq. (1) can be found as, 

𝑞1,22 = ±
√𝛼(1−𝑚2)

2𝛿𝜖

𝑛
 (𝑛𝑐(𝑥 − 𝑐𝑡) ∓ 𝑠𝑐(𝑥 − 𝑐𝑡)),                (68) 

𝑣1,22 =
−𝑐(1+𝑚2)

2𝛿
 (𝑛𝑐(𝑥 − 𝑐𝑡) ∓ 𝑠𝑐(𝑥 − 𝑐𝑡))2.                 (69) 

The solitary wave solution for 𝑚 → 0 in Eq. 1 is identified as, 

𝑞1,23 = ±
√

𝛼

2𝛿𝜖

𝑛
 (𝑠𝑒𝑐(𝑥 − 𝑐𝑡) ∓ 𝑡𝑎𝑛(𝑥 − 𝑐𝑡)),                   (70) 

𝑣1,23 = −
𝑐

2𝛿
(sec (x − ct) ∓ tan (x − ct))2.                      (71) 

Setting  𝑃 =
𝑚2

4
, 𝑄 =

𝑚2−2

2
, 𝑅 =

𝑚2

4
, as per Table 1,   𝐹 =

𝑠𝑛 ∓ 𝑖𝑐𝑛, due to this setting the solution of Eq. 1 can be found 
as: 

𝑞1,24 = ±
√𝛼𝑚2

2𝛿𝜖

𝑛
 (𝑠𝑛(𝑥 − 𝑐𝑡) ∓ 𝑖𝑐𝑛(𝑥 − 𝑐𝑡)),                    (72) 

𝑣1,24 = −
𝑐𝑚2

2𝛿
(𝑠𝑛(𝑥 − 𝑐𝑡) ∓ 𝑖𝑐𝑛(𝑥 − 𝑐𝑡))2.                     (73) 

The solitary wave solution for 𝑚 → 1 in Eq. (1) is identified 
as, 

𝑞1,25 = ±
√

𝛼

2𝛿𝜖

𝑛
 (𝑡𝑎𝑛ℎ(𝑥 − 𝑐𝑡) ∓ 𝑖𝑠𝑒𝑐ℎ(𝑥 − 𝑐𝑡)),             (74) 

𝑣1,25 =
−𝑐

2𝛿
 (tanh (𝑥 − 𝑐𝑡) ∓ 𝑖𝑠𝑒𝑐ℎ(𝑥 − 𝑐𝑡))2.                  (75) 

Regarding  𝑃 =
1

4
, 𝑄 =

−2𝑚2+1

2
, 𝑅 =

1

4
,  and  𝐹 = 𝑚𝑠𝑛 ∓

𝑖𝑑𝑛 from the Table  1,  thus, the solution of Eq. 1 can be expres-
sed as, 

𝑞1,26 = ±
√

𝛼

2𝛿𝜖

𝑛
 (𝑚𝑠𝑛(𝑥 − 𝑐𝑡) ∓ 𝑖𝑑𝑛(𝑥 − 𝑐𝑡)),                 (76) 

𝑣1,26 =
−𝑐

2𝛿
 (𝑚𝑠𝑛(𝑥 − 𝑐𝑡) ∓ 𝑖𝑑𝑛(𝑥 − 𝑐𝑡))2.                       (77) 

For  𝑚 → 1,  the solution obtained as that of 48. 
Considering  

𝑃 =
1

4
, 𝑄 =

1 − 2𝑚2

2
, 𝑅 =

1

4
, 

and  

𝐹 =
𝑠𝑛

1∓𝑐𝑛
 ,  

from Tab. 1, thus, the solution of Eq. 1 can be found as, 

𝑞1,27 = ±
√

𝛼

2𝛿𝜖

𝑛
 

𝑠𝑛(𝑥−𝑐𝑡)

1∓𝑐𝑛(𝑥−𝑐𝑡)
,                                                       (78) 

 𝑣1,27 =
−𝑐

2𝛿
 (

𝑠𝑛(𝑥−𝑐𝑡)

1∓𝑐𝑛(𝑥−𝑐𝑡)
)2.                                                       (79) 

If we take a look at Tab. 2, we can determine the solitary wave 
solution of Eq. 1 for 𝑚 → 1,                                        

𝑞1,28 = ±
√

𝛼

2𝛿𝜖

𝑛
 

𝑡𝑎𝑛ℎ(𝑥−𝑐𝑡)

1∓𝑠𝑒𝑐ℎ(𝑥−𝑐𝑡)
,                                                   (80) 

𝑣1,28 =
−𝑐

2𝛿
 (

tanh(𝑥−𝑐𝑡)

1∓sech(𝑥−𝑐𝑡)
)2.                                                     (81) 

If we take a look at Tab. 2, we can determine the solitary wave 
solution of Eq. 1 for 𝑚 → 0, 

𝑞1,29 = ±
√

𝛼

2𝛿𝜖

𝑛
 

𝑠𝑖𝑛(𝑥−𝑐𝑡)

1∓𝑐𝑜𝑠(𝑥−𝑐𝑡)
.                                                      (82) 

𝑣1,29 =
−𝑐

2𝛿
 (

sin(𝑥−𝑐𝑡)

1∓cos(𝑥−𝑐𝑡)
)2.                                                       (83) 

 

Supposing 𝑃 =
𝑚2

4
, 𝑄 =

𝑚2−2

2
, 𝑅 =

1

4
  it can be concluded 

from Tab. 1  𝐹 =
𝑠𝑛

1∓𝑑𝑛
 , so the solution of Eq. 1 can be found as, 

𝑞1,30 = ±
√𝛼𝑚2

2𝛿𝜖

𝑛
 

𝑠𝑛(𝑥−𝑐𝑡)

1∓𝑑𝑛(𝑥−𝑐𝑡)
,                                                     (84) 

𝑣1,30 = −
𝑐𝑚2

2𝛿
(

𝑠𝑛(𝑥−𝑐𝑡)

1∓𝑑𝑛(𝑥−𝑐𝑡)
)2.                                                  (85) 

When 𝑚 → 1, the solution is determined by the solution in 
equation 52. 

From Tab. 1, allocating 𝑃 =
1−𝑚2

4
, 𝑄 =

𝑚2+1

2
, 𝑅 =

1−𝑚2

4
 

and  

 𝐹 =
𝑐𝑛

1∓𝑠𝑛
,   

thus, 

𝑞1,31 = ±
√𝛼(1−𝑚2)

2𝛿𝜖

𝑛
 

𝑐𝑛(𝑥−𝑐𝑡)

1∓𝑠𝑛(𝑥−𝑐𝑡)
,                                               (86) 
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𝑣1,31 =
−𝑐(1+𝑚2)

2𝛿
 (

𝑐𝑛(𝑥−𝑐𝑡)

1∓𝑠𝑛(𝑥−𝑐𝑡)
)

2

.                                            (87) 

If we take a look at Tab. 2, we can determine the solitary wave 
solution of Eq. 1 for 𝑚 → 0, 

𝑞1,32 = ±
√

𝛼

2𝛿𝜖

𝑛
 

𝑐𝑜𝑠(𝑥−𝑐𝑡)

1∓𝑠𝑖𝑛(𝑥−𝑐𝑡)
,                                                      (88) 

𝑣1,32 =
−𝑐

2𝛿
 (

cos(𝑥−𝑐𝑡)

1∓sin(𝑥−𝑐𝑡)
)

2

.                                                       (89) 

Choosing  𝑃 =
(1−𝑚2)2

4
, 𝑄 =

𝑚2+1

2
, 𝑅 =

1

4
  and  𝐹 =

𝑠𝑛

𝑑𝑛∓𝑐𝑛
,  so that the solution of Eq. 1 can be obtained as,                                

𝑞1,33 = ±
√𝛼(1−𝑚2)2

2𝛿𝜖

𝑛
 

𝑠𝑛(𝑥−𝑐𝑡)

𝑑𝑛(𝑥−𝑐𝑡)∓𝑐𝑛(𝑥−𝑐𝑡)
,                                 (90) 

𝑣1,33 =
−𝑐(1+𝑚2)2

2𝛿
 (

𝑠𝑛(𝑥−𝑐𝑡)

𝑑𝑛(𝑥−𝑐𝑡)∓𝑐𝑛(𝑥−𝑐𝑡)
)

2

.                              (91) 

For 𝑚 → 0,  the solution is obtained as that of 51. 

 
a) 3-D visualization 
 

 
b) contour  visualization 

 

 
c) 2-D  visualization 

 

Fig. 1.  3-D, contour visualization and 2-D propagation of  𝑞1,1 for 

specific values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  

𝛿 = 0.5, 𝑚 = 0.9, 𝑐 = 0.1 

 
a) 3-D visualization 
 

 
b) contour  visualization 
 

 
c) 2-D  visualization 
 

Fig. 2. 3-D, contour visualization and 2-D propagation of  𝑞1,1 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 

𝑚 = 0.9, 𝑐 = 01 
 

 
 

a) 3-D visualization 
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b) contour  visualization 

 

 
c) 2-D  visualization 

 
Fig. 3. 3-D, contour visualization and 2-D propagation of  𝑞1,1 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑚 =
0.9, 𝑐 = 2.5 

 
a) 3-D visualization 
 

 
 
b) contour  visualization 
 
 
 

 
c) 2-D  visualization 
 
Fig. 4. 3-D, contour visualization and 2-D propagation of  𝑣1,1 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑛 =
1.5, 𝑐 = −1.5, 𝑚 = 0.9, 𝑐 = 0.1. 

 
a) 3-D visualization 
 

 
b) contour  visualization 

 

 
c) 2-D  visualization 

 
Fig. 5. 3-D, contour visualization and 2-D propagation of  𝑣1,1 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑛 =
1.5, 𝑐 = −1.5, 𝑚 = 0.9, 𝑐 = 01 



DOI 10.2478/ama-2025-0016                                                                                                                                                          acta mechanica et automatica, vol.19 no.1 (2025)                                                                                                                                                                                                                                                                       

143 

 

 
a) 3-D visualization 
 

 
b) contour  visualization 
 

 
c) 2-D  visualization 
 
Fig. 6. 3-D, contour visualization and 2-D propagation of  𝑣1,1 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑛 =
1.5, 𝑐 = −1.5, 𝑚 = 0.9, 𝑐 = 2.5 

 

 
a) 3-D visualization 
 
 

 
b) contour  visualization 
 

 
c) 2-D  visualization 

 
Fig. 7. 3-D, contour visualization and 2-D propagation of  𝑞1,2 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑚 =
0.5, 𝑐 = 0.1 

 

 
a) 3-D visualization 
 

 
b) contour  visualization 
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c) 2-D  visualization 
 
Fig. 8. 3-D, contour visualization and 2-D propagation of  𝑞1,2 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑚 =
0.5, 𝑐 = 01 

 

 
a) 3-D visualization 
 

 
b) contour  visualization 
 

 
c) 2-D  visualization 

 
Fig. 9. 3-D, contour visualization and 2-D propagation of  𝑞1,2 for specific 

values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 = 0.5, 𝑚 =
0.5, 𝑐 = 2.5 

 

 
a) 3-D visualization 
 

 
b) contour  visualization 
 

 
c) 2-D  visualization 
 
Fig. 10. 3-D, contour visualization and 2-D propagation of  𝑣1,2 for 

specific values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 =
0.5, 𝑛 = 1.5, 𝑐 = −1.5, 𝑚 = 0.5, 𝑐 = 0.1 

 

 
a) 3-D visualization 
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b) contour  visualization 
 

 
 

c) 2-D  visualization 

 
Fig. 11. 3-D, contour visualization and 2-D propagation of  𝑣1,2 for 

specific values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 =
0.5, 𝑛 = 1.5, 𝑐 = −1.5, 𝑚 = 0.5, 𝑐 = 01 

 

 
a) 3-D visualization 

 

 
b) contour  visualization 
 
 
 
 

 
c) 2-D  visualization 
 
Fig. 12. 3-D, contour visualization and 2-D propagation of  𝑣1,2 for 

specific values of the parameters are  𝜖 = 1.2, 𝛼 = 1.3,  𝛿 =
0.5, 𝑛 = 1.5, 𝑐 = −1.5, 𝑚 = 0.5, 𝑐 = 2.5 

4. PHYSICAL EXPLANATIONS  

This section offers physical explanation of Figure [1-12] and 
selection of wave solutions that have been obtained by applying 
the Jacobi elliptic function expansion method to the S-IIAE equa-
tion. In order to create visual representations of different soliton 
wave patterns, we have carefully selected and used certain pa-
rameter values. These patterns are illustrated in the accompany-
ing figures. For every scenario, we have produced surface and 
contour visualization plots in two and three dimensions. These 
visual aids are important because they can verify that the theoreti-
cal conclusions, we came to earlier are accurate. It's important to 
keep in mind that these graphs and figures were produced using 
Mathematica. Consequently, one can notice that, the above-
mentioned graphics are presenting the dark-bright, periodic, com-
posite and bright soliton behavior respectively, under the influence 
of variation of wave number. On the other hand, the influence of 
wave is also discussed and noticed that, researchers and physi-
cists can acquire their required results by controlling the propaga-
tion of soliton with wave number. 

5. CONCLUSION  

In conclusion, this research article explored the application of 
the Jacobi elliptic function expansion method for the Shynaray-IIA 
Equation (S-IIAE). The partial differential model is transformed 
into ordinary differential equation by employing the next travelling 
wave transformation according to considered analytical technique. 
Numerous properties of a particular class of solutions, called the 
Jacobi elliptic functions, make them useful for the analytical solu-
tion of a wide range of nonlinear problems. Using this powerful 
method, we derive a set of exact solutions for the Shynaray-IIA 
(S-IIA) equation, shedding light on its complex dynamics and 
behavior. The proposed method is shown to be highly effective in 
obtaining exact solutions in terms of Jacobi elliptic functions, such 
as dark, bright, periodic, dark-bright, dark-periodic, bright periodic, 
singular, and other various types of solitons. Additionally, a thor-
ough examination of the accuracy and convergence of the ob-
tained solutions is carried out. Overall, this research enriches the 
theoretical framework for the S-IIAE and presents a valuable tool 
for researchers and practitioners working in the field of nonlinear 
differential equations and mathematical physics. 
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