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Abstract: This study examines a novel use of the Jacobi elliptic function expansion method to solve the Shynaray-lIA equation,
a significant nonlinear partial differential equation that arises in optical fiber, plasma physics, surface symmetry geometry, and many other
mathematical physics domains. This kind of solution has never been attained in research prior to this study. Numerous properties
of a particular class of solutions, called the Jacobi elliptic functions, make them useful for the analytical solution of a wide range
of nonlinear problems. Using this powerful method, we derive a set of exact solutions for the Shynaray-IIA equation, shedding light on its
complex dynamics and behaviour. The proposed method is shown to be highly effective in obtaining exact solutions in terms of Jacobi
elliptic functions, such as dark, bright, periodic, dark-bright, dark-periodic, bright periodic, singular, and other various types of solitons.
Furthermore, a detailed analysis is conducted on the convergence and accuracy of the obtained solutions. The outcomes of this study
extend the applicability of the Jacobi elliptic function approach to a novel class of non-linear models and provide valuable insights into the
dynamics of Shynaray-IIA equation. This study advances the creation of efficient mathematical instruments for resolving intricate nonlinear

phenomena across a range of scientific fields.
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1. INTRODUCTION

The Shynaray-IlA is a coupled partial differential equation,
a significant nonlinear partial differential equation (PDE), arises
in numerous branches of physical and mathematical sciences, like
as fluid mechanics, quantum physics and plasma physics.
Its complex nonlinear nature presents a substantial challenge
in finding exact analytical solutions, leading researchers to explore
innovative and efficient methods for resolution such as tanh meth-
od [1], extended auxiliary equation method [2 — 4], variational
method [5], modified and extended simple equation method [6 —
8], direct algebraic method [9], generalized exponential rational
function technique [10], extended F-expansion scheme
[11,12], G/G, — expansion algorithm [13], sine-Gordon ex-
pansion method [14], modified sub-equation method [15], dar-
boux method [16], homogeneous balance [17], and so on
[18 — 33]. Among the abundance of mathematical tools availa-
ble, the Jacobi elliptic function approach has emerged as a prom-
ising scheme for solving the non-linear partial differential equa-
tions (PDEs). This technique is particularly valuable in handling
nonlinear equations with high nonlinearity, as it enables research-
ers to obtain exact solutions by transforming the original equation
into a more manageable elliptic equation. In this research article,
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we focus on investigating the application of the Jacobi elliptic

function approach to handle the Shynaray-IIA equation. The con-

sidered model is given as,

iqe + qxe — i(vq)x = 0,

iry — 1y —i(vr), =0, (1
nZ

Uy — ?(rq)t =0.

We aimed to construct exact analytical solutions that shed
light on the intricate dynamics described by the equation. The
obtained solutions not only contribute to a deeper understanding
of underlying physical processes but also offer a valuable stand-
ard for validating numerical and approximate method in solving
this challenging PDE. The Jacobi elliptic function expansion
method serves as a powerful mathematical tool to solve the
Shynaray-IIA (S-11A) equation, allowing us to gain deeper insight
into the behavior of complex physical systems. The exact analyti-
cal solutions obtained through this research contribute to the
existing body of knowledge, paving the way for further advance-
ment in the study of nonlinear Partial differential equations (PDEs)
and their implications in diverse scientific disciplines. Sachin et al.
[34 — 38] have examined the Konopelchenko-Dubrovsky (KD)
equation, generalized complex coupled Schrodinger-Boussinesq
equations, Sakovich equation, Zakharov—Kuznetsov-Benjamin—
Bona-Mahony (ZK-BBM) equation and Vakhnenko-Parkes equa-
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tion to develop the solitary wave solution and visualized their
propagation by utilizing the distinct analytical techniques. Rani et
al. [39] constructed exact analytical solutions for complex modified
Kortewegde-Vries. Nonlaopon et al. [40] performed Painlevé
analysis to form the exact soliton solutions.

The remainder of this article is presented in the following
structure: Section 1, provides a brief overview of the Shynaray-II1A
equation and its relevance in various scientific fields. Section I
outlines the theoretical basis of considered method. In Section Il
we present the step-by-step implementation of the method to
obtain exact solutions for the Shynaray-IIA equation. In section IV,
provide the analysis of graphs for direct study. Section V, dis-
cusses the conclusion and applicability of the proposed approach.

2. DESCRIPTION OF ANALYTICAL TECHNIQUE

An overview of the Jacobi elliptic function methodology is
given in this section. We will use nonlinear partial differential
equations, which typically have the following mathematical
conclusion,

du du 9%u 9%u

Nw oo o-om520--) =0 )

Utilizing the following wave transformation to convert Eq. (1)
into an ordinary differential equation,

u=u(§),§=k(x—ct), ()

where the symbols for frequency and wave number, respectively,
are ¢ and k. Equation (1) has been successfully transformed into
an ordinary differential equation (ODE) by the procedure descri-
bed in Equation (2).

900 _ _ %0 90 _ 440
o = ¢k ag’ ox =k ag’ )
N@',u'u'",....)=0. (5)

Tab. 1. The chosen value of P, Q and R
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N

15 m sn
— — sn
4 2 4 Ficn, —
16 1 1 —2m? 1 mcn
4 2 4 ¥ idn, in
1+cn
17 m? m?—2 1 sn
T 2 Z 1F+dn
18 |m?—-1| m?+1 m?—1 dn
4 2 4 1+ msn
19 |[1-m?| m?2+1 -m? +1 n
4 2 4 1+sn
20 | a-m» | m241 1 sn
4 2 4 dnFcn
21 m* m?—2 1 cn
4 2 4 Vi—m?Fdn

In conjunction with utilizing this advanced directed technique,
the underlying principle entails augmenting the likelihood of
resolving an auxiliary ODE, namely first-order Jacobian problem
with the three parameters. This method aimsto produce a
multitude of Jacobian elliptic solutions for the given issue.
Visualizing the auxiliary equation is a feasible step in
understanding this process.

(F)2(§) = PF*(§) + QF*(H) + R. (6)

Let F' = Z—g, where & = &(x, t), and the constants P, Q and

R are involved. The solution for equation (5) is provided in Tab. 1.
It is important to note that i2 = —1. Additionally, the Jacobi ellip-
tic functons are denoted as sné =sn(é,m),cné =
cn(&,m), and dné = dn(&, m), where m lies in the range
0 < m < 1 and represents the modulus.

Tab. 2. Analysis of Jacobi elliptic functions in the limit of m —
0Oandm - 1.

P Q R F
1 m? -1 1 sn,cd
+ m?)

2 —m? 2m? —1 1—m? cn

3 -1 2 —m? m?—1 dn

4 1 -(1 m? ns,dc

+m?)

5 |1-m?| 2m? -1 -m? nc

6 | m>2—-1 2 —m? -1 nd

7 | 1-m? 2 —m? 1 sc

8 | -m?(1 | 2m?—-1 sd

— mZ)
9 1 2—m? 1-—m? cs
10 1 2m? —1 -m2(1 - ds
m?)

11 -1 m2+1 | —(1—-m?)? men F dn
4 2 4

12 1 -2m? +1 1 ns ¥ cs
4 2 4

13 |1-m?2| m?+1 1—m? nc F sc
4 2 4

14 1 m?—2 m* ns ¥ ds
4 2 4

m- m-0 m-1 m-0

1
1| snu | tanhu sinu 7 dcu 1 secu
2 | cnu | sechu cosu 8 ncu | coshu secu
3 | dnu | sechu 1 9 scu | sinhu tanu
4 | cdu 1 cosu 10 | nsu | cothu cscu
5| sdu | sinhu sinu 11 | dsu | cschu cscu
6 | ndu | coshu 1 12 | csu | cschu cotu

The elliptic functions exhibit a distinctive double periodic, pro-
cessing distinct properties as outline below:

sn?é + cn?& =1,
dn?¢é + m?sn?¢& =1,

d
—sné = cnédné,

'3

d

d—fan = —snédné,
idnf = —m?snécné.
ag
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With reference to Tab. 2, this reduction makes it possible to
derive the solutions for the given problem using the trigonometric
function and solitons. The Jacobi elliptic function expansion met-
hod can be used to describe the function as a finite series of
Jacobi elliptic functions.

u(§) = Lo a:iF' (). (7)

Here the function F (&) represents solution to the non-linear
ordinary equation denoted as Eq. 5. The constants n and a; (whe-
rei = 0,1,2,...,n) are parameters that have to be found. The
determination of the integer n in Eq. 6 involves an analysis of the

highest order linear term.

dpP
0 (?Z) =n+p p=0123 ..., ®)

thus, the most significant nonlinear terms at the highest order are
0w L) =(@@+Dn+p, p=0123,...,

daep
q=123,.., 9)
in Eq. 4.

Utilizing Eq. 6 and setting all coefficients of powers F to zero,
we derive a set of nonlinear algebraic equations for the varia-
blesa;, (where i =0,1,2,3,...). Employing Mathematica, we
proceed to solve this system of algebraic equations and put all the
values for P, Q, and R as per Eq. 5 in Tab. 1. This approach,
integrating the information from Eq. 6 with the selected auxiliary
equation, allows for the determination of exact solutions for Eq. 1.

3. THE CONSTRUCTION OF SOLITONS OF SHYNARAY-IIA
EQUATION (S-lIAE)

The precise solutions to Shynaray-IlA Eq. 1 using the Jacobi
elliptic function expansion approach are shown in this section,

iqe + qxe — i(v@)x = 0,
ir, — 1y —i(vr), =0,
2

n
vy = (rQ) = 0.

In case when = €gq (¢ = 1), the S-lIAE takes the following
form:

iq; + Gyt — i(UCI)x =0,
nze
Vy —T(|Q|2)t =0. (10)

In the above equation m, n and € are constants. By using the
traveling wave transformation Eq. 11 is reduced into the following
ODE:

q(x,t) = Ume“™D, v(x,t) = G(n),

E(x,t) = —8x+ wt+6,n =x—ct, (11)
where v, 8, w, & characterize the frequency, the phase constant,
the wave number and the velocity, respectively. The Eq. 27 is
plugging into the first part of Eq. 26 and getting the real and
imaginary parts,

cU'"M+w@—=8UMm) +66(nMUM) + i(w -
c(L=&)U'm —GmU' () - 6" MU =0,
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2
G'(m) +=Z=UU' () = 0. (12)
The second Eq. 28 is integrated, and we get
2
G = —==U2(). (13)

a

Substitute the Eq. 13 into the first part of 12 and separating
the real and imaginary parts as

cU"(m +w(@—=8)UMm) - U3(n) =0. (14)
And we have the imaginary part as,

Scen?

3cen?

(@ —c(1=8))U' () +=—U"mU'(m) = 0. (1)

By using the homogeneous balancing procedure, we obtained
n =1, the determine value of n is substituted in Eg. 7 we
obtained the simple form of the solution as:

Um) =ag+a, F(m), (16)
U3(n) = aj + aiF3*() + 3a,afF*(n) + 3aja,F  (17)
and
U" () = a,(2PF3(n) + QF (). (18)
Substitute Eq. 16-18 into Eq. 15, we get,
cal(ZPF3 m + QF(n)) +w(l- 6)(a0 + alF(n)) —
2
Scen (ag +ad3F3(m) + 3a,a?F?*(n) + 3a(2,a1F(n)) = 0.
(19)

By collecting the various coefficients of Fi(n), we get the
system of equations,

a

Scen?

U (w(1-08)- p a?) a, =0, (20)
U (cQ + w(1 - ) - 3a3 X a, = 0, 21)
U?: —3agai X =, (22)
U3 = (2Pc — a2 2™yq, = 0. (23)

a

Upon solving the aforementioned system by using Maple
software, we obtain the coefficients pertaining to the series 16,

‘/j‘fz:. (24)

The obtained solution is of the form,

a():O, a1=i

U=i£%FM) (29

When the values P = m?, Q = —(1 + m?),and R = 1 are
chosen, table 1 provides the corresponding values of F = sn.
Therefore, the periodic solution of Equation 1 can be represented
as,

2am?

qi11 = i% sn(x — ct), (26)
2em? 5

Vg = ——5—sn (x —ct). (27)

Supposing m — 1, hence, by referring to table 2, one may
derive the solitary wave solution of Eq. 1.

Q2 =%~ tanh(x — ct), (28)
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Vi, = — Zt‘j—ctanh2 (x — ct). (29)

Choosing P = —m?,Q = 2m? —1,R = 1 — m?, based
on the data supplied in Table 1, it can be inferred that the variable
F can be mathematically expressed as F = cn. Consequently,
the periodic solution of Equation (1) can be derived as follows:

- cn(x — ct),

13 =%
2
V3 = 2CTmcnz(x — ct). (31)

Considering m — 1 the solitary wave solution of Eq. 1 can be
expressed as per the information provided in Tab. 2.

-2

Se
n

Vi = %sech2 (x — ct). (33)

]

Qia =1 sech(x — ct), (32)

Setting P = —1, Q =2-—m? R =m?—1, based on
the data shown in Tab. 1, it can be inferred that the periodic solu-
tion of Eq. 1 can be mathematically represented as follows:

-2a
qi5 = i‘/:t dn(x — ct), (34)
Vs = %dn2 (x — ct). (35)

In the context of m — 1 from Tab. 2, the similarity between
the solution shown and the solution derived in Eq. 27 is clearly
demonstrated.

While P =1,Q = —(1+m?),R =m? F =ns, accor-
ding to the data presented in Tab. 1, the answer to Eq. 1 can be
represented as follows:

i (36)

Gi6 = i% ns(x — ct),

Vig = — %Cnsz(x — ct). (37)

Additionally, when m — 1 the solitary wave solution of Eq. 1
is presented in Tab. 2.

2a
qi,7 = i% coth(x — ct), (38)
Vi, =— zl‘i—ccoth2 (x — ct). (39)

Using Tab. 2, the periodic solution of Eq. 1 can be stated as
follows if m—0:

i (40)

Qi = iTa_E csc(x — ct),
_ _ 2% 2
Vig = — 5 CSC (x — ct). 41)

Supposing P = 1,Q = —(1 + m?),R = m?.
Thus, F = dc,

2a
18 = ig dC(x — Ct), (42)
Vg = —%dcz(x —ct). (43)

Using Tab. 2, the periodic solution of Eq. 1 can be stated as
follows if m—0:

acta mechanica et automatica, vol.19 no.1 (2025)

2

Gr10 = 3= sec(x — ct), (44)

n

]

V110 = — %sccz(x — ct). (45)
WhenP =1 —m? Q =2m? — 1,R = —m®. Thus,F =
nc and the solution of periodic nature of Eq. 1 as:

2a(1-m?2)
Se
n

_ 2c(1-m)?
hwua=—"—%

G111 =1 nc(x — ct), (46)

nc?(x — ct). (47)

As m — 0 from Tab. 2, it is shown that the solution found as
that of 33.

Alsoregarding P =1—-m? Q=2-m%R=1.

Thus, F = sc:

2a(1-m?2)
+ sc(x — ct), (48)

_ 2c(1-m)?

G112 =1

Vi1 = sc?(x — ct). (49)

Furthermore, we find the periodic solution of Eq. 1 as follows
for m—0, as shown in Tab. 2:

2a
113 = i@ tan(x — ct), (50)
V113 = _%Ctanz (x —ct). (51)

ConsideringP =1, Q =2—-m?R=1—m? and F =
cs, thus:

2a
G114 = i% cs(x — ct), (52)
Vy1g = — %csz(x — ct). (53)

The solitary wave solution Eq. (1) is given as follows as m—1,
per Tab. 2:

Jﬁ (54)

G115 = iT&_e csch(x — ct),
V115 = —%Ccsch2 (x — ct). (55)

The solitary wave solution Eq. 1 is given as follows as m—0,
per Tab. 2,

Jﬁ (56)

G116 = i% cot(x — ct),
2c 2
Vi = — 5 COt (x — ct). (57)

Also assigning P=1, Q=2m?-1, R=m*—-m?
and F = ds. Thus,

2a
1,17 = i% ds(x — ct), (58)
vi17 = =5 dc?(x — ct). (59)

In this family, the soliton solution is the similar to Eq. 30. If the
limit of m — 0, the solution can be articulated as per Eq. 38 with
reference to Tab. 2.
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- 2 —(1—m?
Assuming P, Q, R as P =71,Q =m2+1'R _ (14m)

according to Tab. 1, F formulated as F = mcn + dn, the solu-
tion is determined as,

-
28e

qiag =+ men(x — ct) ¥ dn(x — ct), (60)

’

Vi1 = % (men(x — ct) F dn(x — ct))% (61)

Additionally, when m — 1, the obtained solution is similar the
solution found in Eq. (25).
If we select P,Q,R as P =% Q =22+t p —1 , and

evaluate F from table 1 where = ns + cs thus solution of Eq.
(1) can be indicated as,

a
28€

G110 =% n

(ns(x —ct) Fes(x — ct)), (62)
Vi19 = — % (ns(x — ct) F cs(x — ct))?. (63)

The solitary wave solution for m — 1 in Eq. 1 is identified as,

Vigo = — E (coth (x — ct) F csch (x — ct))?. (65)

G120 = % coth(x —ct) F csch(x — ct), (64)

Additionally, in the case where m — 0, based on Tab. 2, ob-
taining a periodic solution is evident.

Gr21 = i% csc(x — ct) F cot(x — ct), (66)
Vigy = — % (csc (x — ct) F cot (x — ct))?. (67)

1-m?

a2 2 p—
If P=1:1,Q=m2+1,R= and F = nc + sc,

the solution of Eq. (1) can be found as,

a(1-m?2)
Q22 = £ 122 (nc(x — ct) F sc(x — ct)), (68)
Vygy = _C(Hm ) (nc(x — ct) F sc(x — ct))? (69)

The solltary wave solution for m — 0 in Eq. 1 is identified as,
G123 = F (sec(x — ct) F tan(x — ct)), (70)
(sec (X - ct) + tan (x — ct))2. (7)
-2

V123 = —

Settlng P=—,0= ,R = mTZ as per Table 1, F =

sn ¥ icn, due to th|s setting the solution of Eg. 1 can be found
as:

am?
28€

Q124 = == (sn(x —ct) F icn(x — ct)), (72)
Vygg = — % (sn(x — ct) F icn(x — ct))2. (73)

The solitary wave solution for m — 1 in Eq. (1) is identified
as,

Q125 = ‘/_ (tanh(x —ct) F isech(x — ct)) (74)

V195 = E (tanh (x — ct) F isech(x — ct))?. (75)
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Regarding P = %,Q = _2";2+1,R = i, and F =msn+
idn from the Table 1, thus, the solution of Eq. 1 can be expres-
sed as,

Q126 = +— ‘/7 (msn(x — ct) F idn(x — ct)), (76)
V126 = ;—6 (msn(x — ct) F idn(x — ct))?. 7

For m — 1, the solution obtained as that of 48.
Considering

1 1 —2m? 1
Pepl=—" =y
and

__ sn
1Fcen’

from Tab. 1, thus, the solution of Eq. 1 can be found as,

\/2;;6 sn(x—ct) (78)

Q127 =% n  1Fcen(x—ct)
- sn(x—ct) 2
V127 = 26 1¢cn(x—ct)) (79)

If we take a look at Tab. 2, we can determine the solitary wave
solution of Eq. 1 form — 1,

a
_ \/; _tanhGx=ct)_
G128 = % n  1Fsech(x—ct)’ o
= =¢ (tanh&x=ch) 7
V128 = 28 (1$sech(x—ct)) ’ (81)

If we take a look at Tab. 2, we can determine the solitary wave
solution of Eq. 1 form — 0,

Z_%Ste sin(x—ct) (82)

d120 = T n  1Fcos(x—ct)’

v - ( sin(x—ct) )2
129 = 26 1Fcos(x—ct)

(83)

Supposing P = mTZ, Q="o = i it can be concluded

fromTab.1 F = % , 50 the solution of Eq. 1 can be found as,

am? ( 9
_ 26 sn(x—c
q130 = T n  1Fdn(x—ct) (84)
_ ﬂ sn(x—ct) o
V130 = 26 1¢dn(x—ct)) (85)

When m — 1, the solution is determined by the solution in
equation 52.

) 2 )
From Tab. 1, allocating P = 2% @ = 2*% p =11
4 2 4
and
_ cn
T 1Fsn’
thus,
a(1-m?2) ( )
_ 20¢€ cn(x—ct
Tz == n 1Fsn(x—ct)’ (86)
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_ —c(1+m?) ( cn(x—ct) )2 87
V131 = 755 1Fsn(x—ct)) * (87) Fig. 1. 3-D, contour visualization and 2-D propagation of g, ; for

. . specific values of the parameters are € = 1.2, a = 1.3,
If we take a look at Tab. 2, we can determine the solitary wave §=05m=09, c=01

solution of Eq. 1 form — 0,

a
_ é cos(x—ct)
q132 = + n  1Fsin(x—ct) (88)
_ = cos(x—ct) 2
V132 = 28 (1¢sin(x—ct)) ’ (89)
—m2)2 2
Choosing =4 Zl) ,Q:mzﬂ,R:% and F =
™ 50 that the solution of Eq. 1 can be obtained as,
dn+cn
a(1-m?2)2 (e=ct)
_ \] 25¢ sn(x—c
Q33 = & n dn(x—ct)Fen(x—ct) (%0)
_ —c(1+m?)? sn(x—ct) 2 . L
V133 = 735 (dn(x-ct)icn(x-ct)) : (91) a) 3-D visualization

Form — 0, the solution is obtained as that of 51.

b) contour visualization

c) 2-D visualization

Fig. 2. 3-D, contour visualization and 2-D propagation of g , for specific
values of the parameters are € =1.2, a =13, § =0.5,
m=0.9,c=01

a) 3-D visualization

c) 2-D visualization
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b) contour visualization c) 2-D visualization

Fig. 4. 3-D, contour visualization and 2-D propagation of v, ; for specific
values of the parameters are e = 1.2, a =13, § =0.5,n =
1.5,¢c=-15m=09,¢c=0.1.

c) 2-D visualization

Fig. 3. 3-D, contour visualization and 2-D propagation of g , for specific
values of the parameters are e = 1.2, a =13, § = 0.5, m =
09,c=25

a) 3-D visualization

b) contour visualization

a) 3-D visualization

—|z1
- - |zl

w1510

b) contour visualization ¢) 2-D visualization
Fig. 5. 3-D, contour visualization and 2-D propagation of v, , for specific

values of the parameters are e = 1.2, a =13, § =0.5,n =
1.5,¢c=-15m=09,c=01
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!
'lu . i

b) contour visualization

20
1
i
.

(n\ x
10

a) 3-D visualization

—
- b

— il

c¢) 2-D visualization

Fig. 7. 3-D, contour visualization and 2-D propagation of g , for specific

b) contour visualization values of the parameters are e = 1.2, a =13, § = 0.5, m =
X 05c¢=01
'

— 151

-l

— :.wf

' ™

¢) 2-D visualization o
Fig. 6. 3-D, contour visualization and 2-D propagation of v, ; for specific a) 3-D visualization

values of the parameters are e = 1.2, a =13, § =0.5,n =
1.5,c=-15m=09,c =25

b) contour visualization
a) 3-D visualization
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Fig. 8. 3-D, contour visualization and 2-D propagation of g , for specific
values of the parameters are ¢ = 1.2, a =13, § = 0.5, m = '
0.5,c =01 ‘
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Fig. 10. 3-D, contour visualization and 2-D propagation of wv,, for
specific values of the parameters are € = 1.2, a =13, § =
05n=15,c=-15m=0.5,c=0.1
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Fig. 9. 3-D, contour visualization and 2-D propagation of g , for specific a) 3-D visualization
values of the parameters are ¢ = 1.2, a =13, § = 0.5, m =

0.5,c =25
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b) contour visualization

¢) 2-D visualization

Fig. 11. 3-D, contour visualization and 2-D propagation of wv,, for
specific values of the parameters are € = 1.2, a =13, § =
0.5, n=15,c=-15m=0.5c¢c=01

a) 3-D visualization

b) contour visualization
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Fig. 12. 3-D, contour visualization and 2-D propagation of wv,, for
specific values of the parameters are € = 1.2, a =13, § =
05,n=15c¢c=-15m=0.5,c=25

4. PHYSICAL EXPLANATIONS

This section offers physical explanation of Figure [1-12] and
selection of wave solutions that have been obtained by applying
the Jacobi elliptic function expansion method to the S-IIAE equa-
tion. In order to create visual representations of different soliton
wave patterns, we have carefully selected and used certain pa-
rameter values. These patterns are illustrated in the accompany-
ing figures. For every scenario, we have produced surface and
contour visualization plots in two and three dimensions. These
visual aids are important because they can verify that the theoreti-
cal conclusions, we came to earlier are accurate. It's important to
keep in mind that these graphs and figures were produced using
Mathematica. Consequently, one can notice that, the above-
mentioned graphics are presenting the dark-bright, periodic, com-
posite and bright soliton behavior respectively, under the influence
of variation of wave number. On the other hand, the influence of
wave is also discussed and noticed that, researchers and physi-
cists can acquire their required results by controlling the propaga-
tion of soliton with wave number.

5.  CONCLUSION

In conclusion, this research article explored the application of
the Jacobi elliptic function expansion method for the Shynaray-IIA
Equation (S-IIAE). The partial differential model is transformed
into ordinary differential equation by employing the next travelling
wave transformation according to considered analytical technique.
Numerous properties of a particular class of solutions, called the
Jacobi elliptic functions, make them useful for the analytical solu-
tion of a wide range of nonlinear problems. Using this powerful
method, we derive a set of exact solutions for the Shynaray-lIA
(S-I1A) equation, shedding light on its complex dynamics and
behavior. The proposed method is shown to be highly effective in
obtaining exact solutions in terms of Jacobi elliptic functions, such
as dark, bright, periodic, dark-bright, dark-periodic, bright periodic,
singular, and other various types of solitons. Additionally, a thor-
ough examination of the accuracy and convergence of the ob-
tained solutions is carried out. Overall, this research enriches the
theoretical framework for the S-1IAE and presents a valuable tool
for researchers and practitioners working in the field of nonlinear
differential equations and mathematical physics.
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