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Abstract: In this study, a hybrid genetic-geometrical path finding method is presented. Its main feature is the division of the path-finding
process into global and local path-finding to achieve a trajectory optimized under the shortest travel time condition in an environment filled
with obstacles. To improve the reliability of the algorithm, a safety zone around obstacles is included. In this zone, the maximum velocity
allowed for a robot is additionally limited to decrease the probability of collision due to noise in obstacle mapping, distraction from terrain
irregularities or malfunction of the steering system. The simulation and real world experiment results are presented in another paper.
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1. INTRODUCTION

Nowadays, the usage of robots in production services is con-
stantly increasing. This trend extends even to domestic applica-
tions, such as vacuum cleaners and lawnmowers. The expanding
range of fields where autonomous robots can be employed pre-
sents us with new challenges. Widely known are autonomous
cars, which are specifically adapted to road environments. How-
ever, off-road areas are much more prevalent on Earth. Tasks
such as rescue actions, emergency transportation, patrol, and
exploration in natural disaster areas often occur in regions with
limited or nonexistent transportation infrastructure. Therefore,
robust navigation methods that consider travel time constraints
are crucial for further development in these types of terrains. Path
planning and obstacle avoidance methods are often based on
graph algorithms such as A* [22, 1], Dijkstra [14], or D* [20]. The
path obtained by those methods has to be smoothed before ap-
plying it to a controller [5]. Another approach is to use artificial
neural networks (ANN) [3, 19, 21, 25]. An alternative way is to use
optimization methods. Biology-inspired genetic algorithms [10, 7,
9, 14], ant colony optimization [22], particle swarm optimization
[24], chicken swarm optimization [6], cuckoo search optimization
[2], grey wolf algorithm [16], whale optimization algorithm [17].
Other noteworthy approaches are potential fields [11] and fuzzy-
based potential fields [4]. An interesting field of path planning are
methods based on the Dubins path. Worth mentioning are espe-
cially methods using the coverage path planning approach, which
can be used for both a priori known [12] and unknown [13] envi-
ronments.

2. 3K METHOD OVERVIEW

When it comes to avoiding an obstacle, the solution is trivial.
The robot can ride on its left or right side. The problem becomes
more complex when there are multiple obstacles. But if we want to
go from point A to point B as fast as possible, the task becomes

172

very complex. When a robot knows only about obstacles in its
surroundings it does not have enough knowledge to choose the
best path in the general context. On the other hand, if it follows a
path, that was found using only previously mapped obstacles, it
cannot omit a new object in the working area. The 3K method
combines two strategies: it finds a global path using a priori known
obstacles from maps and optimizes it under the travel time criteri-
on; then, during the ride, it uses the global path as a set of way-
points and corrects the trajectory by finding a local obstacle-free
path. These local obstacles are detected autonomously by the
robot. The local path is also selected under the shortest travel
time condition.

The characteristic features of the 3K method in comparison to
the other ones are obstacles modeled as circles, division of the
problem to the local and the global scales and introduction of the
velocity reduction area around obstacles for more precise naviga-
tion in the immediate vicinity of obstacles, especially those not
known a priori, for safety reasons.

The main algorithm is presented in Fig. 1. The current robot
position is considered a start position, while the ordered travel
point is considered a destination point. At first, the map of a priori
known obstacles is loaded. Then the global path is found, and the
travel begins. The robot moves along the sequence of the global
path waypoints. If at least one obstacle is detected, the local path
between the current robot position and one of the more distant
global waypoints is determined, and the robot starts following the
local path. The local path computation is repeated as long as at
least one local obstacle is in the robot's view range. When the
robot has avoided all the obstacles, it continues following the
global waypoints. The 3K method ends when the last global way-
point, the destination point, is reached.

2.1. Map and obstacle models

The map is modeled in a 2D Cartesian coordinate system.
This simplification, in relation to the real form of Earth, facilitates
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its mathematical description and is a good approximation on short
distances on the planet surface. The map is stored as a list of
obstacles. It is shown in Fig. 2.

All obstacles are modeled as circles. In the case of bigger ob-
stacles or those of complex shape, they can be either circum-
scribed by a large circle or covered by multiple smaller ones. Each
i-th circle O; is described by two values: radius O,.; [m] and
center point O¢ ; [m, m] where O ; € C. The axis of the real part
is identical to the X axis of the robot-centered coordinate system
and, similarly, the imaginary part to the Y axis of the robot-
centered coordinate system. The advantage of this model is its
mathematical simplicity, which allows for easy collision detection.

Around each obstacle, the velocity reduction area is applied. It
is the additional circle, in which the velocity of the robot has to be
reduced to provide better precision of steering when the robot
moves close to the obstacle. This approach reduces the probabil-
ity of a collision in the case of an error in the obstacle position
estimation.

Load the map

Find the glabal path

!

Begin the run

"Any obstacle
detected?

Set the course for the Find the local path to
next waypoint the further waypoint

Caontinue on the set
course

Stop the robot

Fig. 1. Flowchart of 3K method
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Fig. 2. Example of map model
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2.2. Path model

The path of the global path method is modeled using a B-
spline curve, which is a special case of a NURBS curve (Non-
Uniform Rational B-Spline) [18]. The B-spline has uniformly dis-
tributed knots, unlike the NURBS, in which the knots can be dis-
tributed non-uniformly. The shape of the B-spline is defined by a
vector of control points and a degree of the curve. The number of
control points has to be at least greater by one than the curve
degree. In curves of a higher degree, more control points are
considered when particular points of the curve are computed. The
main advantage of the B-spline is its property, that translation of a
control point of a curve modifies it only to a limited distance from
the control point (depending on the curve degree). The size of the
shape modification depends on the distance of the translation. It
makes the B-spline very well suited to be a model of a path that
undergoes operations of an optimization algorithm.

2.3. Collision detection

A collision between the B-spline and a circle can be detected
by computing a set of equidistant curve points S and testing, if any
of them lies inside the currently considered circle (Fig. 3). In the
case of obstacle avoidance, however, where an optimization
algorithm is used, the binary information is not enough. A smooth-
er solution is required. Hence, the collision depth is adopted in-
stead. It is computed as follows. Firstly, the closest point p,. of the
S set to the obstacle center O is selected. Then the collision
depth is the difference between the obstacle radius 0O, and the
distance between the obstacle center O and the p,. point, divided
by the radius O,.. Then the collision depth value is always in the
range [0; 1]. It is shown in Fig. 4 and given by the formula (1).

O0r—|0cpc
my = 2204 |0cpe| < 0,,0, # 0 (1)

0 2 4 3 [ 10
X[m]

Fig. 3. Example of collision detection between B-spline and circle-
shaped obstacles

Fig. 4. Visualization of the collision depth
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3. VELOCITY PROFILER

To find a path of the shortest travel time, it is necessary to
know the path travel time itself. To estimate it, the velocity profile
of a path is needed. The travel, however, has to fulfill certain
constraints:

— the robot must not exceed the given maximum velocity,

— the robot must not exceed the maximum velocity of consid-
ered segment of the path, to secure the robot against skid-
ding,

— the acceleration must not exceed the maximal acceleration
value, either set or achievable by the robot,

— the deceleration, as in the case of the acceleration, must not
exceed the maximal acceleration value, either set or achieva-
ble by the robot.

The acceleration and deceleration rate in the 3K method are
considered as constant in time. The difference between the con-
stant rates and the real ones is negligible because of many other
factors present in a real environment, which can greatly affect the
robot during the journey.

The computation of the velocity profile consists of the follow-
ing steps:

1. computation of the maximum permissible velocities on all the
segments of the path (between waypoints) — the maximum ve-
locities profile,

2. reduction of velocities from the maximum velocities profile in
such a way that the given acceleration value is maintained,

3. reduction of velocities from the reduced velocities profile in
such a way that the given deceleration value is maintained,

4. computation of the travel time of the individual path segments
and the total travel time.

The main factor limiting the robot's velocity is the friction be-
tween the robot wheels and the ground. The speed must be low
enough to prevent the robot from getting out of a track due to the
centrifugal force. The formula for the maximum velocity v,,,,, on
the particular path segment (4) is derived from the formulae for
the friction T (2) and the centrifugal F, (3) forces. The maximum
velocity is a velocity of the state where both forces are equal, i.e.
T=F,.

T =puN = umg @)
mvz

Fo == (3)

Umax = + #GT (4)

where m is the mass of the robot [kg], g is standard gravity ac-
celeration [m/s?], v - velocity [m/s], r - radius of the path segment
[m]. In the case of a straight segment the maximum velocity is
infinite, which is in fact the maximum velocity allowed for the robot
to reach.

In the velocity reduction steps, the new velocity for the i + 1-
th waypoint is computed from the formula (5). The start and the
end point velocities are set at the beginning of the algorithm and
are equal to 0. They remain intact during the whole process.

Vi =+/2ad; + v} i€[0,n—2],a<0 (5)

where a - a set acceleration or deceleration [m/s?], d; - Euclidean
distance between i-th and i + 1-th waypoint, n - number of way-
points. This formula is derived from the equation (6) [8].

v? = v2 + 2a(x — x,) (6)
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The acceleration and deceleration steps are computed in the
same manner, although as the deceleration is a reverse operation
to the acceleration, the reduction process has to proceed from the
last waypoint to the first one.

The partial travel times, which mean times between each pair
of the following waypoints, is computed by formula (8) which is
derived from (7) [8].

(x = x0) = 5 (v + )t (7)
ti= o i€[0n—2] 8)

where in (7): x - current distance, x, - initial distance, v, - initial
velocity, v - current velocity, t - travel time; in (8): ¢t; - travel time
between i-th and i + 1-th waypoints, d; - distance between i-th
and i + 1-th waypoints, v; velocity at i-th waypoint, v;,; velocity
at i + 1-th waypoint, n — number of waypoints.

Total travel time t,. [s] is a sum of all the partial times (9).

te =215t ©)
4. GLOBAL PATH METHOD

The global path method is based on a genetic algorithm (GA).
It is used for finding a collision free path, whose shape is opti-
mized to minimize the travel time. The features of the used GA
are:

— roulette parents selection operator,

— arithmetical non-symmetric crossing operator,

— population size of 100 individuals,

— elitism: the best individual of a current generation is trans-
ferred into a next one,

— mutation operator of low probability and a narrow range of a
gene value change,

— a chromosome is a sequence of following B-spline control
points,

— control points are defined as complex numbers,

— optimization takes place under two criteria: collision (obstacle
avoidance) and travel time.

The collision criterion is measured with a collision depth value
which is introduced by the formula (1). It is a sum of the collision
depths between the considered path and all the obstacles. The
travel time is computed for the considered path by the velocity
profiler. Sets of the fitness values, that mean the collision and the
travel time, of the all individuals are then remapped to a new
domain [0; 1] separately. Then they are weighted and summed. It
is shown by the equation (10).

F =Mgcy +Tcpcm+ ¢y =106 >0 (10)

where F is a vector of the fitness values of the whole population,
M, is a vector of the remapped collision criteria, T is a vector of
the remapped travel times, c,, and c, are coefficients of the
collision criterion and the travel time respectively.

The initial population is generated by random modifications of
the curve, that is built of equidistant control points, which are
located on the straight line between the first and the last control
point. The first point is equal to the robot start position and the last
point is equal to the destination point. The robot start position and
the destination point are converted from the ECEF coordinates
system to the local coordinates system of the robot. The initial



§ sciendo

DOI 10.2478/ama-2025-0020

straight line variant of the curve is always included in the initial
population. The modification range is limited to the area around
known obstacles. The algorithm stops when the differences be-
tween the individuals become smaller than a set threshold.

When the algorithm stops, the result path is returned, that
means the path with the lowest fitness value in the last generation
of the individuals. Before use, it is converted to a set of the follow-
ing waypoints.

5. LOCAL PATH METHOD

The local path is computed in a geometrical way. The general
idea of the method is presented in the Fig. 5. The map and obsta-
cle models are the same as described in section 2. The method
looks for a path constructed with two straight line segments be-
tween the local start Ps and the local destination Py points. At
first, rays, Iy ; from Pg and I, ; from Py , tangent to each obstacle
are computed. It gives two pairs of the rays for each obstacle. To
this set, a straight path between P and Py points is added. Next,
the intersection points D; between the rays are calculated. This
process is shown in the Fig. 6. The paths are created from seg-
ments of intersecting rays from the points Pg and Py , which ends
at their intersection point. Each path is then tested for a collision.
If it is detected for at least one obstacle, the path is removed from

the set.

Compute lines
tangent to obstacles
and to intersection
points

Add a path leading
straight to the
destination point to
the path set

Remove colliding
paths

!

Compute simple
travel time
approximation for the
paths of the path set

!

Select the path of the
shortest travel time

Fig. 5. Flowchart of the local path finding method

The same process is done for the velocity reduction areas in-
stead of the obstacles. Collisions, however, still are computed for
the obstacles.

For the remaining paths, approximate travel times are com-
puted. The approximate travel time t; for the j-th path is de-
scribed by the formula (11).
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tj = % + % (1 1)
where [; is the length of the j-th path, ¢; is the sum of the chord
lengths in the velocity reduction areas i.e. these parts of the path,
that lie in the circles of the velocity reduction areas, v,,,4, is the
maximum allowed velocity for the robot, v,,;, is the maximum
allowed velocity in the velocity reduction areas.

When the approximated travel times of every path are known,
then the path of the shortest time is selected from the set as a
result path and the local path algorithm ends.

Fig. 6. Visualization of local path computation

6. ROBOT NAVIGATION METHOD

The robot navigation method joins the results of the global
path method (sec. 4) and the local path method (sec. 5). It con-
sists of three layers: movement along the global path, deviation
from the global path to avoid local obstacles (movement along the
local path), return to the global path.

6.1. Movement along the global path

The global path is set for the algorithm as a sequence of the
waypoints. The robot sets the course to the following waypoints.
The current waypoint is changed to the next one, when the dis-
tance between the current waypoint and the robot is shorter than
the given one. This distance is named point change distance. It is
often set up to several meters. A shorter distance forces the robot
to follow the path more strictly, a longer one is less prone to errors
of losing the path.

Before beginning, the velocity profile for the global path is
computed. During the ride, the robot velocity is set to the value
from the profile that corresponds to the currently selected way-
point.

6.2. Movement along the local path

If at least one obstacle is detected, then the local path method
is used to create a path. The local destination point is set to a
distant point from the set of not yet reached waypoints. The mini-
mal distance for the selection is set by the robot operator. The
result is a navigation point, which the robot sets the course to. The
algorithm is frequently repeated while any obstacles are in sight.
The robot velocity is set dependently on the local path - if it goes
through the velocity reduction area (v;,4, (11)) or not (v, (11)).
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6.3. Return to the global path

When again no obstacle is detected, the closest global way-
point to the robot is set as the navigation point. The point change
distance smooths the return to the global path, because of the
navigation point changing to the next waypoints as the robot
comes closer to them.

6.4. Termination

The algorithm stops along with the robot, when the global des-
tination point is reached within the given accuracy.

7. SUMMARY

The 3K method described in the paper divides the path plan-
ning problem into two cases: the global context and the local
context. Two distinct methods to both global and local path finding
were developed in order to achieve necessary performance for
successfully controlling the robot.

The global method is based on a genetic algorithm, and it us-
es the map of a priori known obstacles to produce a path. The
local method is based on the geometrical path planning approach
with numerous simplifications of the problem model. It uses the
data about the obstacles that are detected during the run.

The third method was designed to control the robot using data
obtained from the global and the local path finding methods. It
leads the robot along the global path, but when an unknown ob-
stacle is found, the local path is used to avoid it.

The main purpose of the 3K method is to minimize travel time
of the robot in partially unknown environments. The results of the
experiments in simulations and in the real world are described in a
following paper.
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