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Abstract: In this study, a hybrid genetic-geometrical path finding method is presented. Its main feature is the division of the path-finding 
process into global and local path-finding to achieve a trajectory optimized under the shortest travel time condition in an environment filled 
with obstacles. To improve the reliability of the algorithm, a safety zone around obstacles is included. In this zone, the maximum velocity 
allowed for a robot is additionally limited to decrease the probability of collision due to noise in obstacle mapping, distraction from terrain  
irregularities or malfunction of the steering system. The simulation and real world experiment results are presented in another paper. 
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1. INTRODUCTION 

Nowadays, the usage of robots in production services is con-
stantly increasing. This trend extends even to domestic applica-
tions, such as vacuum cleaners and lawnmowers. The expanding 
range of fields where autonomous robots can be employed pre-
sents us with new challenges. Widely known are autonomous 
cars, which are specifically adapted to road environments. How-
ever, off-road areas are much more prevalent on Earth. Tasks 
such as rescue actions, emergency transportation, patrol, and 
exploration in natural disaster areas often occur in regions with 
limited or nonexistent transportation infrastructure. Therefore, 
robust navigation methods that consider travel time constraints 
are crucial for further development in these types of terrains. Path 
planning and obstacle avoidance methods are often based on 
graph algorithms such as A* [22, 1], Dijkstra [14], or D* [20]. The 
path obtained by those methods has to be smoothed before ap-
plying it to a controller [5]. Another approach is to use artificial 
neural networks (ANN) [3, 19, 21, 25]. An alternative way is to use 
optimization methods. Biology-inspired genetic algorithms [10, 7, 
9, 14], ant colony optimization [22], particle swarm optimization 
[24], chicken swarm optimization [6], cuckoo search optimization 
[2], grey wolf algorithm [16], whale optimization algorithm [17]. 
Other noteworthy approaches are potential fields [11] and fuzzy-
based potential fields [4]. An interesting field of path planning are 
methods based on the Dubins path. Worth mentioning are espe-
cially methods using the coverage path planning approach, which 
can be used for both a priori known [12] and unknown [13] envi-
ronments. 

2. 3K METHOD OVERVIEW 

When it comes to avoiding an obstacle, the solution is trivial. 
The robot can ride on its left or right side. The problem becomes 
more complex when there are multiple obstacles. But if we want to 
go from point A to point B as fast as possible, the task becomes 

very complex. When a robot knows only about obstacles in its 
surroundings it does not have enough knowledge to choose the 
best path in the general context. On the other hand, if it follows a 
path, that was found using only previously mapped obstacles, it 
cannot omit a new object in the working area. The 3K method 
combines two strategies: it finds a global path using a priori known 
obstacles from maps and optimizes it under the travel time criteri-
on; then, during the ride, it uses the global path as a set of way-
points and corrects the trajectory by finding a local obstacle-free 
path. These local obstacles are detected autonomously by the 
robot. The local path is also selected under the shortest travel 
time condition. 

The characteristic features of the 3K method in comparison to 
the other ones are obstacles modeled as circles, division of the 
problem to the local and the global scales and introduction of the 
velocity reduction area around obstacles for more precise naviga-
tion in the immediate vicinity of obstacles, especially those not 
known a priori, for safety reasons. 

The main algorithm is presented in Fig. 1. The current robot 
position is considered a start position, while the ordered travel 
point is considered a destination point. At first, the map of a priori 
known obstacles is loaded. Then the global path is found, and the 
travel begins. The robot moves along the sequence of the global 
path waypoints. If at least one obstacle is detected, the local path 
between the current robot position and one of the more distant 
global waypoints is determined, and the robot starts following the 
local path. The local path computation is repeated as long as at 
least one local obstacle is in the robot’s view range. When the 
robot has avoided all the obstacles, it continues following the 
global waypoints. The 3K method ends when the last global way-
point, the destination point, is reached. 

2.1. Map and obstacle models 

The map is modeled in a 2D Cartesian coordinate system. 
This simplification, in relation to the real form of Earth, facilitates 
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its mathematical description and is a good approximation on short 
distances on the planet surface. The map is stored as a list of 
obstacles. It is shown in Fig. 2. 

All obstacles are modeled as circles. In the case of bigger ob-
stacles or those of complex shape, they can be either circum-
scribed by a large circle or covered by multiple smaller ones. Each 
𝑖-th circle 𝑂𝑖 is described by two values: radius 𝑂𝑟,𝑖 [m] and 

center point 𝑂𝐶,𝑖 [m, m] where 𝑂𝐶,𝑖 ∈ 𝐶. The axis of the real part 

is identical to the X axis of the robot-centered coordinate system 
and, similarly, the imaginary part to the Y axis of the robot-
centered coordinate system. The advantage of this model is its 
mathematical simplicity, which allows for easy collision detection.  

Around each obstacle, the velocity reduction area is applied. It 
is the additional circle, in which the velocity of the robot has to be 
reduced to provide better precision of steering when the robot 
moves close to the obstacle. This approach reduces the probabil-
ity of a collision in the case of an error in the obstacle position 
estimation. 

 
Fig. 1. Flowchart of 3K method 

 
Fig. 2. Example of map model 

2.2. Path model 

The path of the global path method is modeled using a B-
spline curve, which is a special case of a NURBS curve (Non-
Uniform Rational B-Spline) [18]. The B-spline has uniformly dis-
tributed knots, unlike the NURBS, in which the knots can be dis-
tributed non-uniformly. The shape of the B-spline is defined by a 
vector of control points and a degree of the curve. The number of 
control points has to be at least greater by one than the curve 
degree. In curves of a higher degree, more control points are 
considered when particular points of the curve are computed. The 
main advantage of the B-spline is its property, that translation of a 
control point of a curve modifies it only to a limited distance from 
the control point (depending on the curve degree). The size of the 
shape modification depends on the distance of the translation. It 
makes the B-spline very well suited to be a model of a path that 
undergoes operations of an optimization algorithm. 

2.3. Collision detection 

A collision between the B-spline and a circle can be detected 
by computing a set of equidistant curve points S and testing, if any 
of them lies inside the currently considered circle (Fig. 3). In the 
case of obstacle avoidance, however, where an optimization 
algorithm is used, the binary information is not enough. A smooth-
er solution is required. Hence, the collision depth is adopted in-
stead. It is computed as follows. Firstly, the closest point 𝑝𝑐 of the 
S set to the obstacle center 𝑂𝐶 is selected. Then the collision 
depth is the difference between the obstacle radius 𝑂𝑟 and the 

distance between the obstacle center 𝑂𝐶 and the 𝑝𝑐 point, divided 
by the radius 𝑂𝑟. Then the collision depth value is always in the 
range [0; 1]. It is shown in Fig. 4 and given by the formula (1). 

𝑚𝑘 =
𝑂𝑟−|𝑂𝑐𝑝𝑐|

𝑂𝑟
, |𝑂𝐶𝑝𝐶| ≤ 𝑂𝑟 , 𝑂𝑟 ≠ 0   (1) 

 
Fig. 3.   Example of collision detection between B-spline and circle-

shaped obstacles 

 
Fig. 4. Visualization of the collision depth 
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3. VELOCITY PROFILER 

To find a path of the shortest travel time, it is necessary to 
know the path travel time itself. To estimate it, the velocity profile 
of a path is needed. The travel, however, has to fulfill certain 
constraints: 

− the robot must not exceed the given maximum velocity, 

− the robot must not exceed the maximum velocity of consid-
ered segment of the path, to secure the robot against skid-
ding, 

− the acceleration must not exceed the maximal acceleration 
value, either set or achievable by the robot, 

− the deceleration, as in the case of the acceleration, must not 
exceed the maximal acceleration value, either set or achieva-
ble by the robot. 
The acceleration and deceleration rate in the 3K method are 

considered as constant in time. The difference between the con-
stant rates and the real ones is negligible because of many other 
factors present in a real environment, which can greatly affect the 
robot during the journey. 

The computation of the velocity profile consists of the follow-
ing steps: 
1. computation of the maximum permissible velocities on all the 

segments of the path (between waypoints) – the maximum ve-
locities profile, 

2. reduction of velocities from the maximum velocities profile in 
such a way that the given acceleration value is maintained, 

3. reduction of velocities from the reduced velocities profile in 
such a way that the given deceleration value is maintained, 

4. computation of the travel time of the individual path segments 
and the total travel time. 
The main factor limiting the robot’s velocity is the friction be-

tween the robot wheels and the ground. The speed must be low 
enough to prevent the robot from getting out of a track due to the 
centrifugal force. The formula for the maximum velocity 𝑣𝑚𝑎𝑥 on 
the particular path segment (4) is derived from the formulae for 
the friction 𝑇 (2) and the centrifugal 𝐹𝑐 (3) forces. The maximum 
velocity is a velocity of the state where both forces are equal, i.e. 
𝑇 = 𝐹𝑐. 

𝑇 = 𝜇𝑁 = 𝜇𝑚𝑔   (2) 

𝐹𝑐 =
𝑚𝑣2

𝑟
   (3) 

𝑣𝑚𝑎𝑥 = √𝜇𝑔𝑟   (4) 

where 𝑚 is the mass of the robot [kg], 𝑔 is standard gravity ac-
celeration [m/s2], 𝑣 - velocity [m/s], 𝑟 - radius of the path segment 
[m]. In the case of a straight segment the maximum velocity is 
infinite, which is in fact the maximum velocity allowed for the robot 
to reach. 

In the velocity reduction steps, the new velocity for the 𝑖 + 1-
th waypoint is computed from the formula (5). The start and the 
end point velocities are set at the beginning of the algorithm and 
are equal to 0. They remain intact during the whole process. 

𝑣𝑖+1 = √2𝑎𝑑𝑖 + 𝑣𝑖
2, 𝑖 ∈ [0, 𝑛 − 2], 𝑎 ≤ 0   (5) 

where 𝑎 - a set acceleration or deceleration [m/s2], 𝑑𝑖 - Euclidean 
distance between 𝑖-th and 𝑖 + 1-th waypoint, 𝑛 - number of way-
points. This formula is derived from the equation (6) [8]. 

𝑣2 = 𝑣0
2 + 2𝑎(𝑥 − 𝑥0)   (6) 

The acceleration and deceleration steps are computed in the 
same manner, although as the deceleration is a reverse operation 
to the acceleration, the reduction process has to proceed from the 
last waypoint to the first one. 

The partial travel times, which mean times between each pair 
of the following waypoints, is computed by formula (8) which is 
derived from (7) [8]. 

(𝑥 − 𝑥0) =
1

2
(𝑣0 + 𝑣)𝑡   (7) 

𝑡𝑖 =
2𝑑𝑖

𝑣𝑖+𝑣𝑖+1
, 𝑖 ∈ [0, 𝑛 − 2]   (8) 

where in (7): 𝑥 - current distance, 𝑥0 - initial distance, 𝑣0 - initial 

velocity, 𝑣 - current velocity, 𝑡 - travel time; in (8): 𝑡𝑖 - travel time 
between 𝑖-th and 𝑖 + 1-th waypoints, 𝑑𝑖 - distance between 𝑖-th 
and 𝑖 + 1-th waypoints, 𝑣𝑖 velocity at 𝑖-th waypoint, 𝑣𝑖+1 velocity 

at 𝑖 + 1-th waypoint, 𝑛 – number of waypoints. 
Total travel time 𝑡𝑐 [s] is a sum of all the partial times (9). 

𝑡𝑐 = ∑ 𝑡𝑖
𝑛−2
𝑖=0    (9) 

4. GLOBAL PATH METHOD 

The global path method is based on a genetic algorithm (GA). 
It is used for finding a collision free path, whose shape is opti-
mized to minimize the travel time. The features of the used GA 
are: 

− roulette parents selection operator, 

− arithmetical non-symmetric crossing operator, 

− population size of 100 individuals, 

− elitism: the best individual of a current generation is trans-
ferred into a next one, 

− mutation operator of low probability and a narrow range of a 
gene value change, 

− a chromosome is a sequence of following B-spline control 
points, 

− control points are defined as complex numbers, 

− optimization takes place under two criteria: collision (obstacle 
avoidance) and travel time. 
The collision criterion is measured with a collision depth value 

which is introduced by the formula (1). It is a sum of the collision 
depths between the considered path and all the obstacles. The 
travel time is computed for the considered path by the velocity 
profiler. Sets of the fitness values, that mean the collision and the 
travel time, of the all individuals are then remapped to a new 
domain [0; 1] separately. Then they are weighted and summed. It 
is shown by the equation (10). 

𝐹 = 𝑀𝑘𝑐𝑚 + 𝑇𝑐𝑝; 𝑐𝑚 + 𝑐𝑝 = 1; 𝑐𝑚, 𝑐𝑝 > 0    (10) 

where F is a vector of the fitness values of the whole population, 
𝑀𝑘 is a vector of the remapped collision criteria, 𝑇 is a vector of 
the remapped travel times, 𝑐𝑚 and 𝑐𝑝 are coefficients of the 

collision criterion and the travel time respectively. 
The initial population is generated by random modifications of 

the curve, that is built of equidistant control points, which are 
located on the straight line between the first and the last control 
point. The first point is equal to the robot start position and the last 
point is equal to the destination point. The robot start position and 
the destination point are converted from the ECEF coordinates 
system to the local coordinates system of the robot. The initial 
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straight line variant of the curve is always included in the initial 
population. The modification range is limited to the area around 
known obstacles. The algorithm stops when the differences be-
tween the individuals become smaller than a set threshold. 

When the algorithm stops, the result path is returned, that 
means the path with the lowest fitness value in the last generation 
of the individuals. Before use, it is converted to a set of the follow-
ing waypoints. 

5. LOCAL PATH METHOD 

The local path is computed in a geometrical way. The general 
idea of the method is presented in the Fig. 5. The map and obsta-
cle models are the same as described in section 2. The method 
looks for a path constructed with two straight line segments be-
tween the local start 𝑃𝑆 and the local destination 𝑃𝐾 points. At 
first, rays, 𝑙𝑠,𝑖 from 𝑃𝑆 and 𝑙𝑘,𝑖 from 𝑃𝐾 , tangent to each obstacle 

are computed. It gives two pairs of the rays for each obstacle. To 
this set, a straight path between 𝑃𝑆 and 𝑃𝐾 points is added. Next, 
the intersection points 𝐷𝑖 between the rays are calculated. This 
process is shown in the Fig. 6. The paths are created from seg-
ments of intersecting rays from the points 𝑃𝑆 and 𝑃𝐾 , which ends 
at their intersection point. Each path is then tested for a collision. 
If it is detected for at least one obstacle, the path is removed from 
the set. 

 
Fig. 5. Flowchart of the local path finding method 

The same process is done for the velocity reduction areas in-
stead of the obstacles. Collisions, however, still are computed for 
the obstacles. 

For the remaining paths, approximate travel times are com-
puted. The approximate travel time 𝑡𝑗 for the 𝑗-th path is de-

scribed by the formula (11). 

𝑡𝑗 =
𝑙𝑗−𝑐𝑗

𝑣𝑚𝑎𝑥
+

𝑐𝑗

𝑣𝑚𝑖𝑛
    (11) 

where 𝑙𝑗 is the length of the 𝑗-th path, 𝑐𝑗 is the sum of the chord 

lengths in the velocity reduction areas i.e. these parts of the path, 
that lie in the circles of the velocity reduction areas, 𝑣𝑚𝑎𝑥 is the 
maximum allowed velocity for the robot, 𝑣𝑚𝑖𝑛 is the maximum 
allowed velocity in the velocity reduction areas. 

When the approximated travel times of every path are known, 
then the path of the shortest time is selected from the set as a 
result path and the local path algorithm ends. 

 
Fig. 6. Visualization of local path computation 

6. ROBOT NAVIGATION METHOD 

The robot navigation method joins the results of the global 
path method (sec. 4) and the local path method (sec. 5). It con-
sists of three layers: movement along the global path, deviation 
from the global path to avoid local obstacles (movement along the 
local path), return to the global path. 

6.1. Movement along the global path 

The global path is set for the algorithm as a sequence of the 
waypoints. The robot sets the course to the following waypoints. 
The current waypoint is changed to the next one, when the dis-
tance between the current waypoint and the robot is shorter than 
the given one. This distance is named point change distance. It is 
often set up to several meters. A shorter distance forces the robot 
to follow the path more strictly, a longer one is less prone to errors 
of losing the path. 

Before beginning, the velocity profile for the global path is 
computed. During the ride, the robot velocity is set to the value 
from the profile that corresponds to the currently selected way-
point. 

6.2. Movement along the local path 

If at least one obstacle is detected, then the local path method 
is used to create a path. The local destination point is set to a 
distant point from the set of not yet reached waypoints. The mini-
mal distance for the selection is set by the robot operator. The 
result is a navigation point, which the robot sets the course to. The 
algorithm is frequently repeated while any obstacles are in sight. 
The robot velocity is set dependently on the local path - if it goes 
through the velocity reduction area (𝑣𝑚𝑎𝑥 (11)) or not (𝑣𝑚𝑖𝑛 (11)). 
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6.3. Return to the global path 

When again no obstacle is detected, the closest global way-
point to the robot is set as the navigation point. The point change 
distance smooths the return to the global path, because of the 
navigation point changing to the next waypoints as the robot 
comes closer to them. 

6.4. Termination 

The algorithm stops along with the robot, when the global des-
tination point is reached within the given accuracy. 

7. SUMMARY 

The 3K method described in the paper divides the path plan-
ning problem into two cases: the global context and the local 
context. Two distinct methods to both global and local path finding 
were developed in order to achieve necessary performance for 
successfully controlling the robot. 

The global method is based on a genetic algorithm, and it us-
es the map of a priori known obstacles to produce a path. The 
local method is based on the geometrical path planning approach 
with numerous simplifications of the problem model. It uses the 
data about the obstacles that are detected during the run. 

The third method was designed to control the robot using data 
obtained from the global and the local path finding methods. It 
leads the robot along the global path, but when an unknown ob-
stacle is found, the local path is used to avoid it. 

The main purpose of the 3K method is to minimize travel time 
of the robot in partially unknown environments. The results of the 
experiments in simulations and in the real world are described in a 
following paper. 
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