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Abstract: The article addresses the challenge of reducing machining errors under tight tolerances, which can negatively affect workpiece
quality. It highlights the need for modelling and compensating individual error types, particularly those caused by tool wear. Traditionally, tool
wear compensation relies on experimentally determined absolute wear values, but nonlinearity in wear introduces discrepancies between
modelled and actual machining processes. To address this, the article introduces a novel tool wear model integrated into an Intelligent Tool
Change System. The model represents changes in tool edge reduction over time, allowing for tool position correction relative to the workpiece
and signalling alarm states. It incorporates a first-order inertial adaptive model, enabling accurate forecasting of tool wear. These predictions
are based on real-time geometric measurements collected during cutting by an Automatic Measurement Unit. The measurements are
analyzed in the time domain to provide current process corrections and determine the tool lifecycle. A key feature of the model is its
self-tuning capability, which adjusts parameters dynamically to handle limited data availability, improving prediction accuracy and reducing
the complexity of parameter settings. The model's predictions were validated by comparing predicted wear values against actual
measurements. Additionally, the integrated model was compared with a linear prediction model, demonstrating superior accuracy.
To evaluate the model's performance, the article uses the normalized root mean square error (NRMSE) as the assessment metric. Results
confirm that the first-order inertial adaptive model not only enhances accuracy over adaptive linear model but also provides reliable wear
predictions, supporting effective tool change strategies in machining processes. This innovative approach offers significant improvements
in managing machining errors and optimizing tool usage.
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1. INTRODUCTION assume that tool degradation follows a specific probability distribu-

1.1. Tool wear and its symptoms

With the development of smart manufacturing technologies,
managing materials, workforce, and equipment in machining pro-
cesses has become crucial to ensure the reliability of key compo-
nents. Tool wear, as the weakest and most damage-prone element
in the OUPN system, affects both product quality and machining
efficiency, and is unavoidable due to thermodynamic interactions
during cutting [1]. Standards such as ISO 3685 [2] provide guide-
lines for tool performance at constant cutting speeds, while Taylor's
equation is essential for predicting tool life and production costs,
particularly for hard-to-machine materials [3]. Since variable cutting
speeds are common in industrial settings, the study presented in
[4] aimed to develop a method for predicting tool life under such
conditions.

Predicting tool wear or damage, along with estimating its re-
maining useful life (RUL), is essential for effective monitoring of the
machining process. This can be done by using reliability function
models based on tool wear behavior, data-driven models utilizing
signals from the process, workpiece, and tool, or hybrid models that
combine both approaches [5].

In reliability function models, wear is described statistically by
establishing a reliability function from empirical data. These models
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tion, with parameters estimated from the full wear dataset. Methods
such as Gaussian process regression, hidden Markov models,
Bayesian models, and adaptive hidden Markov models are com-
monly applied. A key step in these approaches is collecting accu-
rate wear data and choosing a suitable distribution.

In evaluating tool surface degradation and reliability related to
catastrophic failure, it is crucial to identify when a component of the
machining system vector first exceeds a critical level. This is com-
plex due to the system’s multidimensional nature. The time to such
failure is typically treated as a random variable, with its probabilistic
characteristics derived from the system’s statistical properties.

Many methods for tool wear assessment have been developed
[6], with most focusing on identifying critical wear indicators, as
summarized in Tab. 1. The data in Tab. 1 were obtained from re-
search by D&H Innovations Ltd. and D&H Engineering Ltd. be-
tween 2021 and 2023. Certain wear types involve accelerated deg-
radation of the cutting blade beyond technologically justified limits.
However, such occurrences are rare, happening in less than 1% of
all tool changes, a rate even lower than other operational events
like retooling. This low incidence highlights the reliability of existing
wear patterns and supports the feasibility of developing accurate
tool wear models. These models can be confidently implemented
in production to improve monitoring, optimize tool usage, and re-
duce unexpected downtime.
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Tab. 1. Critical value of tool wear symptoms

Tool wear symptom Critical value

VBB = 0.6 mm in case the wear area
is not regular; average wear width
VBB = 0.3 mm for a regular wear
surface in zone B of the cutting tool
flank

notch wear VBN exceeding 1 mm
when it dominates other tool wear
phenomena

maximum width of flank
wear VBB (1SO 3685 [4]);
crater wear on the rake
face

intensive wear on the
major or minor flank VBN

chipping, flaking or excessive chipping, flaking or cracking
cracking of the cutting edge

sudden deterioration of the | Ra of the machined surface exceeds
machined surface quality 0.4 um, 0.8 ym, 1.6 um, 3.2 ym,
caused by destruction of 6.3 um, 12.5 um (ISO 3685 [2]), other
the minor flank roughness or waviness parameters

catastrophic failure defined as sudden
failure of the cutting edge under the
influence of both load and increasing
cutting temperature (1SO 3685 [2]).

cutting edge damage

Tool wear Cutting edge damage
32% 8%
Surface

deterioration G wear
o
20% 24%
Critical
=3 craterwear
Chipping, flaking Z Critical
Other technological aspects or cracking notch wear

a) 68% 41% 5%

Critical flank

Fig. 1. a) Reasons for premature tool replacement, b) forms of tool wear
1.2. Tool wear prediction in Intelligent Tool Change System

Monitoring and prediction of tool wear has been the subject of
many studies, where possible research methods have been indi-
cated. In [7], a literature review is presented on tool wear, its de-
scription, monitoring, and RUL prediction in the context of big data.
The authors proposed research directions in the area of tool wear.
Most often, taking into account the critical value of tool wear, the
reference value model was used, which is shown in Fig. 2.

Sensor data can refer to any measured quantity that shows a
correlation with the amount of wear [8]. For example, in [9] the de-
velopment of a wear measurement system based on the AE sensor
was developed with an appropriate data processing system
adapted to their properties. In works such as [10] and [11], the focus
was mainly on developing signal processing for the tool wear infer-
ence system. In [12], methods for processing data to obtain the best
RUL prediction are discussed in detail. In [13], the authors analyze
changes in tool geometry, focusing on wear, design modifications,
and operational factors, while presenting methods to describe
these changes through measurements and descriptive metrics.

Abrasive wear depends on the physical properties of the inter-
acting material pair — the tool material and the workpiece material,
the stereometric features of the cutting edge, and the dynamic prop-
erties of the machining system. Changes in these factors over time
lead to variations in the wear rate.

By understanding how the wear rate changes over time — that
is, the tool wear intensity I = dVB/dt -itis possible to determine
the tool life at a given time as the inverse of the tool wear intensity
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T =" ——qvB (1)

I(VB)
VB - tool wear indicator,

VB, - critical value of the tool wear indicator.

The relationship between tool wear intensity and the actual tool
life can be modelled using various functions. For constant tool wear
intensity, the simplest and most commonly used approach is a lin-
ear model. It works well under stable cutting conditions with wider
workpiece tolerance limits and effectively captures the linear por-
tion of the wear curve, based on time or the number of workpieces
processed. Tool replacement is then triggered after reaching the
defined threshold.

Until the critical value of the tool wear indicator is reached, the
tool position is continuously adjusted according to the progressive
wear model. However, in cases of accelerated wear — after exceed-
ing the critical value — even corrective measures may fail to keep
up with rapid tool degradation. Therefore, to prevent sudden tool
failure caused by cumulative cutting effects, the prediction range is
intentionally limited to avoid accelerated wear.

The initiation of the tool change process can also occur in the
case of a loss of stability in the manufacturing system. Process sta-
bility is determined based on measurement results and process sta-
bility data. The initiation of the tool change process carried out by
the Intelligent Tool Change System, is based on information pro-
vided by the management computer, which monitor for any process
trends in Statistical Process Control charts. The emergence of such
trends signals a potential loss of process stability, leading to the
application of artificial intelligence techniques to evaluate the state
of the process and tools.

A review of Al integration into CNC systems is provided in [14],
while [15] separates the tool wear process into monitoring and pre-
diction phases. An advanced method using deep learning is de-
scribed in [16].

u(n) —
a) | Process P |— Sensor |, Reference -real-time
process tool wear measurement y(n)
b) ny(n) | Reconstruction | Estimated tool wear §(n)
—
process

Fig. 2. a) Measuring reference data, b) off-line identification of reference
value model

From the analysis conducted, the modelling of wear progres-
sion over time in modern systems takes the form of a recursive
model, determined according to the scheme presented in Fig. 3.
Wear values are predicted recursively based on previous values,
considering the measurement data collected from the process.

In the application for tool wear prediction in the Intelligent Tool
Change System, the model must be supplied with real-time data
from the process. Under these conditions, the recursive model can
predict the wear of a cutting tool over time, as tool wear is a gradual
process that depends on the number of workpieces processed.
Consequently, the model recalculates wear parameters with each
new measurement.

The recursive model prediction relies on the quality of the ac-
quired data, as the model update and tool wear prediction primarily
depend on new data collected during the machining process. The
model evolves with each additional measurement, adapting to real-
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time changes in the tool's wear state.

u(n) Sensor Reference - reak-time

— Process P
process tool wear measured y(n)

Optimization | Estimation error :‘j
feedback -

n Reconstruction
process Estimated tool wear  §(n)

Fig. 3. Recursive model of tool wear

2. STRATEGY FOR DEVELOPING A TOOL WEAR MODEL

The technological problem in machining pertains to the change
in the position of the tool tip. Considering the guidelines on the in-
fluence of cutting edge reduction on workpiece accuracy, it was
found that when the actual reduction of the cutting edge reaches a
critical value, the position of the cutting edge should be adjusted by
introducing a correction into the CNC program. To implement the
strategy and develop the appropriate model, it is essential to create
an analytical structure for prediction, continuous data supplemen-
tation, and decision support systems. Fig. 4 presents a diagram il-
lustrating the development of the integration prediction model.

The model developed within the intelligent tool change system
is subject to integration within the production system. As shown in
Fig. 4, for its operation, the system will require a production cell
management system along with a database system, a communica-
tion and data exchange system, and a measurement system. In the
integrated module with the CNC system, the system will collect
measurement data and save it in the MES system.

On-line 3 —
Dataaquisition | rheasurementof Automatic Measurement Unit with sensor to

the workpiece monitor UCL of measured quantity

Collection of

3 MES system with database
historical data

————— e e o — — o — — -
| Wear prediction / Elaboration of | Analytical model based on tool wear traces from |
| model wear model historical data |
| Prediction of | Developed regression models for RUL estimation |

RUL
| : |
| g | Wearmonitoring | Tracking blade
wear L |
| E Monitoring system
ﬁ Detection of |
| ﬁ excessive wear |
| x Tool change/ Decision to |
E corrections | change the
I (@] toot |
| © Tool position
) correction |
| & . |
@ Intelligent tool | Reaching

| 2 change critical wear |

| g Inference system
c Optimal |

[ scheduling |
| Adaptiation of ¥ Adaptation to |
| wear model new data

Adaptation of |
| the internal |
structure of the

[N R i e e J

Fig. 4. The strategy for developing wear model useful in Intelligent Tool

Change System

The MES data will then be used in the automatic process cor-
rection module to adjust the tool position and in the intelligent tool
change system for tool change prediction. These actions will enable
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both the optimization of tool management and the maintenance of
product quality at the level of specification compliance.

The model undergoes verification in production conditions. Al
points were validated by comparing predicted vs. actual tool wear.
The strategy has been developed to accurately predict tool wear,
optimize tool life, and enhance machining sustainability.

3. MATERIALS AND METHODS

The tests were carried out in industrial conditions, where the
blade shortening during cutting was assessed. The maximum cut-
ting time referred to the number of workpieces processed and
amounted to 250 pieces. The experimental set-up with the meas-
urement system is shown in Fig. 5

Workeell with HarrySoftware with LocalDB
CNC Okuma LT2000EX: Cutting parameters:
automatic CNC turning n=2000 rev/min, (o oy
! f=0.16 mm/rev p L\
. Cutting tool =\
< 2 €
e CNMG120404 Decision on
TPZSOll 04/1 WFF2 tool change
program | Workpiece: C45 steel shaft, ortool
update | with an output diameter of .
70mm and a length of 64 mm pos't'or_'
‘& correction
Measurement System Process data: CNC, tool & workpiece
—!| based on digital 2D height (capabilities & actual)
gauge HC1, Type: 350 Intelligent 1 E‘f\i‘,‘\:“ um
Reference Tool foor . P
measurement of the Change |2
workpiece diameter System 0 50 100 150 200 250 pes.
Tool wedge state & RUL value |
+ Actual tool wear,
Tool del * Predicted tool wear
00l wear mode « NRMSE
Data Signal Model Model Prediction
aquisition pracessing selection parameters | of tool wear

Reference off-line measurement of tool wear:
Alicona GB measuring system with Alicona Edge Master Module 10.5 program

Fig. 5. Schematic diagrams of the cutting experiment and tool wear
measurement setup

During cutting, reference measurements were taken and the
tool position was corrected relative to the workpiece nominal and
measured values. The measurement of the blade geometry in the
worn state was verified by the Alicona G6 measuring system using
the Advance Focus Variation method [17]. In the Alicona Edge Mas-
ter Module 10.5 program, the Ddmax parameter values (maxi-
mum wear depth along the profile determined on the cutting edge)
were determined, which enabled the assessment of the blade
shortening (Fig. 6). These values will be used to verify whether the
measurements of the workpiece and the total corrections in the pro-
cess define the tool wear, as determined by the parameter
Ddmax.

Profile separated from the cutting edge area

Parameter Ddmax -
maximum wear depth along the profile

Fig.6. Determination of the blade shortening K Emax using the Ddmax
parameter
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4, RESULTS AND DISCUSSION
4.1. Assumptions for developing the model

The cutting tool wear model occurs at various levels of the
cyber-physical model. The basis for choosing the modelling method
is the purpose for which the model is to be developed. The cutting
tool wear model is a model of tool deterioration, which consists in
the fact that the condition of a cutting tool becomes increasingly
worse and gradually causes the tool to lose its ability to perform in
line with expectations. However, the wear model is associated with
the possibility of developing an inverse model and indicating the
usefulness of a given tool, how useful it is in removing machining
allowance. The definition of RUL is closely related to the wear
model. On the other hand, the tool usefulness model is the possi-
bility of introducing corrections to the process. It follows from the
considerations that many basic assumptions should be taken into
account when building the model. They are systematically listed in
Tab. 2.

The development of models of blade wear over time and deter-
mination of RUL were carried out using monotonically changing val-
ues of wear indicators, which have a direct impact on the value of
blade shortening and surface precision. Determination of the refer-
ence value of critical wear enabled the model to be adjusted to the
actual values of blade wear in given cutting conditions. The biggest
limitation in the use of models with a reference value is the problem
of the dispersion of wear intensity and tool life. Studies show the
randomness of factors that cause deterioration of cutting properties
of tools, where, apart from abrasive wear, other wear mechanisms,
such as diffusion or chemical wear, begin to dominate. Defining the
tool life in the conditions of randomness of the tool wear process
requires determining the time of its reliable operation until the blade
blunting criterion (reference value) is achieved. Problems related to
determining the time of the first exit of the process from the allowa-
ble area were considered in the theory of stochastic processes. Ef-
fective solutions can be obtained from the equation of the reliability
function, which depends on the physicochemical and strength prop-
erties of the blade material. These in turn depend on the tempera-
ture and machinability of the processed material. Additionally, the
wear of the blade depends on its load and the dynamics of the cut-
ting process.

4.2. Development of the model

The linear wear model of the form as Eq. (2) was analysed

y@) =yt =0)+At (2)

where the parameter A refers to the intensity of tool shortening over
time and the first-order inertial model as expressed in Eq. (2)

y() = y(t = 0)exp (_?t) +K (1 —exp (%)) + G, 3)

The parameter T in equation (3) for T > 0 can be interpreted as
the period where for t=T we reach 63% and for {=3T we reach 95%
of the critical value of the wear. The parameter K can be interpreted
as the gain, the maximum value in the steady state. Knowing the
current value of y(t) and the value of y(t) for t=3T we can estimate
the RUL.

acta mechanica et automatica, vol.19 no.3 (2025)

Tab. 2. Summary of assumptions for building the cutting tool wear model

Assumptions

RUL

Tool position
correction

The model should
represent the change in
tool edge reduction over

time. The output of the
model should be the tool
edge reduction value KE,
and the independent
variable should be cutting
time.

The edge reduction
value over time
allows for summing
values and
comparing them with
the critical value.

The edge reduction
value over time
allows for
determining current
corrections in the
process and
predicting
corrections for
subsequent time
units.

The model should enable
the determination of the
tool infeed, taking into
account the tool edge
reduction. The infeed
value determined on the
basis of the model should
enable the correction of
the position due to the
assumed accuracy of the
workpiece.

The infeed value
determined on the
basis of the model

enables comparison
with the critical
infeed value, above
which it is not
possible to achieve
the assumed
dimensional and
shape accuracy and
surface roughness.

The infeed value
determined on the
basis of the model

makes it possible to
achieve the
assumed accuracy
of the workpiece.

The model should reflect
the progression of tool
wear over time, i.e. a
typical S-shaped profile,
with rapid initial growth,
an almost flat middle
region, and a final rapid
growth. The model is
nonlinear and it should be
taken into account that
the wear pattern changes
with time tA.

The gradient of the
S-shaped function
determines three
areas of wear
changes over time:
the first area with a
decreasing value,
the second area of a
constant value and
the third area of
accelerated wear,
the value of which
increases over time
and which allows for
the estimation of the

The gradient of the
W-shaped function
determines three
areas of wear
changes over time
and thus allows for
estimating the
correction values for
each of the areas.

RUL.
The model should take Model parameters Model parameters
into account tool wear resulting from the resulting from the
mechanisms. Model intensity of intensity of
parameters must be elementary wear elementary wear

interpretable in terms of
tool edge reduction over
time. Parameters must
enable assessment of the
intensity of wear
mechanisms over time for
different cutting
conditions.

processes can be
used to estimate the
RUL value.

processes enable
the determination of
corrections to tool
life based on them.

The model should take
into account the constant
cutting process load as
an input signal. In
principle, the undeformed
chip thickness for each
tool feed has a constant
value, which at a constant
cutting speed allows the
assumption of a constant
load (material removal
rate), described by a unit
stroke function.

The model taking
into account the
constant cutting load
makes it possible to
predict RUL.

Assuming a constant
cutting load allows
the influence of
other factors
influencing the wear
process to be limited
and thus the error in
predicting
corrections in the
process to be
limited.
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The goodness of fit of the models was assessed using the
NRMSE index. The goodness of fit values are within the range
(—o0; 1), where “0” — perfect fit to the reference data (zero errors)
" — 0" — poor fit, “1” — the model values do not fit better than the
fit of the reference value with a linear model. Tab. 3 presents the
results for the average NRMSE values for the goodness of fit of the
reference data for the linear and first-order inertial models for all
experiment points. The results indicate the advantage of the first-
order inertial model over the linear model. The fit was significantly
better, and the average NRMSE value was half as small.

Tab. 3. Summary of assumptions for building the tool wear model

: NRMSE
Cutting edge - . —
reduction KE Linear model First order inertial

model

10% 1.2 0.17

50% 0.86 0.47

75% 0.75 0.39

100% 0.33 0.43

Fig. 7 shows an example of a single cutting process, in which
the collected reference data of the tool wear for 75% of the critical
value. The reference data were modelled with a linear model and a
first-order inertial model. For this specific cutting case, the linear
model seems to be a better fit than the first-order inertial model.
The fit was similar for the linear model and the first-order inertial
model. However, statistically for the entire experiment, the results
for the first-order inertial model indicated its advantage over the lin-
ear model.

0.1

0.08
£0.06
£

w
X 0.04

i—Measuremenls

== ==Linear model

‘— =First order inertial model | |
|

0.02

0 50 100 150 200 .
pes.

Fig. 7. Example of application of linear and first-order inertial models in
the estimation of tool wear

Despite the good fit of the models, it can be observed that the
measured values and the values estimated by the models, when
compared to the reference value under narrow tolerance condi-
tions, do not ensure complete compliance of the items with the
specification. To perform a more comprehensive analysis, Fig. 7
presents the measured value of Ddmax for selected experimental
points (10% of the critical wear value) along with the cumulative
value of tool position corrections. The value of Ddmax and the
cumulative value of the tool position correction, adjusted for the cur-
rent measurement value, remain in high agreement, which was
confirmed by a statistical test for equality of means. The plots in
Fig. 8 have been supplemented with estimated cutting edge reduc-
tion values for the linear model. The linear model was determined
using the least squares method based on all the measured data.

The chart in Fig. 8a indicates that a tool position correction was
made for the fifth and seventh workpieces. The corrections were
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significant, amounting to 10 pm each. Introducing the correction
based on the measured dimension values of the workpiece enabled
the production of subsequent workpieces in compliance with the
specification. Similarly, the situation unfolded in the remaining cut-
ting trials, as shown in Fig. 8b-8d.

In this particular case, all workpieces were measured, and the
correction was made in the subsequent step. This is an ideal situa-
tion, as statistical process control is used in production, and correc-
tions are applied with a certain delay relative to the current meas-
ured value. Therefore, there is a need to predict the tool position
correction values for the production of subsequent workpieces.

If the linear model identified based on multiple repetitions of the
experiment were applied, it would be evident that its use in produc-
tion would not guarantee an accurate reflection of the wear progres-
sion. The corrections calculated from this model might not ensure
the production of workpieces within the specified dimensional toler-
ance. For example, the intensity of tool wear, according to Fig. 8a
and 8c, is much greater than in the case of the experiments shown
in Fig. 8b, where tool position corrections were made only for the
14th workpiece. The linear model suggested an earlier correction;
however, despite the delay, the intensity of tool wear was small
enough that the workpieces remained within the accepted tolerance
range.

a)

Ddmax, um
40 |+ Toolposition corrections, um
Linear model, um

2 0 1 -_ _______ (_)é(/_/./

Ddmax, um
40 + Toolposition corrections, um
Linear model, um

Ddmax, um
40 1 Toolposition corrections, um
Linear model, um

20 | 0od ..
|
|
}
|
|
|
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KE, mm 1 4 |inear model * Measurements
Ddmax, um 0.037 = First-order inertial adaptive model
Tool position / 0.0254
corrections, um :
40 ¢ Linear model, um ik 0.02
ooooooogooaoo 0015—
20 { T ececeesse . " 0.01-
= 0.0054
as F : : : 0 :
0 5 pcs.

Fig. 9. A comparison of tool wear measurements and data generated

Fig. 8. Tool wear cases as a function of the number of workpieces, using the linear model, as well as the adaptive linear model (a)
highlighting the Ddmax values and first-order inertial adaptive model (b), as reference data for

tool position correction for the first 10 pieces

The analysis of cases involving tool position corrections and
wear progression indicates the need to train the models with refer-
ence values during the machining process in order to predict wear KE, mm
values. This, in turn, would enable the effective application of tool 0.03+
position corrections.

“* Linear model * Measurements

¥ Adaptive linear model

4.3. The recursive model with reference value

In the case of the Intelligent Tool Change System, the model is
developed based on historical data of the process trace and tool
wear. The maximum cutting edge reduction and the number of
workpieces machined with the given tool are determined. As indi-
cated in section 4.2, these values do not guarantee achieving the
required workpiece accuracy due to the cutting edge reduction but b)
serve as baseline data for developing the appropriate model selec-
tion strategy. KE, mm 1| 4 Linear model * Measurements

The adaptive linear model and first-order inertial adaptive 0.03+
model were developed in two versions, the results of which are
shown in Fig. 9 and Fig. 10.

The adaptive linear model (Fig. 9a) and first-order inertial adap-
tive model (Fig. 9b) more accurately represent the tool position cor-
rections than the linear model. The smoothing of the curves by av-
eraging predictive tool position data from the current and previous
models allowed for the model to be smoothed. The use of meas-
ured values for model fine-tuning means that the developed recur-
sive model could be applied to predict wear values for subsequent
workpieces.

*® First-order inertial adaptive model

a) Fig. 10. A comparison of tool wear measurements and data generated

KE, mm + Linear model * Measurements qsing the I@nea_r model e_lnd the adaptive linear model (a) and
0.034 o first-order inertial adaptive model (b), as reference data for tool
™ Adaptive linear model position correction, considering a smoothing window for the first
0.025+ 10 pieces
0.02
0.0154 The strategy for determining and fine-tuning the models was
0.014 verified using experimental data from a real production process in
the Intelligent Tool Change System. For the manufacturing process
0.0054 being carried out, based on workpiece measurements taken every
0 5 pieces, corrections were made using the adaptive linear model.

The model was fine-tuned as new measurements were received
and predicted the cutting edge reduction values based on a mono-
tonic function model with an increment of 5 ym. The prediction and
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actual measurements were in high agreement. For the sample data
from Figure 7, the goodness of fitindex NRMSE for the model was

0.2674, and after averaging, it was 0.2187 (Tab. 4).

Tab. 4. Adaptive linear function models with a 50-piece FIFO buffer

Recursive model with
parameter estimation Averaging recursive model
every 5 pieces
017 - 0.1r
g 0.08 0.08
g £ E0.08
0.06
E uEJ uE"-U 04
2 2004 x 0
P 002 Erymer— 002 — Measurements
= - -Model 9 - : J
S 0 ; ; 1 0 50 100 150 200
3 0 50 100 150 200 pes
pcs
NRMSE = 0.1964
NRMSE = 0.2087 S 0.196
2} e R A— 0.1
b=
o 0.08
8 E0.08
O 3
€ 2 Yoo4
D O
f % 0.02 = Measurements
S — 0 — =Model |
% 0 50 100 150 200
o pes
= NRMSE = 0.2350 NRMSE = 0.1884
0.1r - — 0.1 T 1
=
< e 0.08 0.08
» 3
§ © g 006 Eoos
© 2 Yoos Yoos 1
o
£ 2| B 002 ——
S S 0 S0 100 150 200 % e 100 180 200
§ = pas. pes.
Tab. 5. First order inertial adaptive model with a 50-piece FIFO buffer
Recursive model with
parameter estimation every Averaging recursive model
5 pieces
011 - - 01r
= = 0.08 0.08
E 3 E 0.08 E 0.08
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The use of the first-order inertial adaptive model for all experi-
ment points yielded better results than the adaptive linear model.
For the sample data from Fig. 7, the goodness of fit index NRMSE
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for the first-order inertial adaptive model was 0.1890, and after av-
eraging, it was 0.1783 (Tab. 5). The prediction allowed for real-time
tool position correction, ensuring that all workpieces were produced
within the specified dimensional tolerance.

5. CONCLUSIONS

Tool wear during machining negatively affects the dimensional
accuracy of the workpiece. In practice, the shortening of the cutting
edge is compensated for by applying tool position corrections rela-
tive to the workpiece, typically integrated into the production pro-
gram. These correction values are often based on reference meas-
urements or predefined benchmarks. However, models relying
solely on offline-determined parameters often fail to deliver accu-
rate predictions, especially when the tool undergoes rapid wear or
when tight dimensional tolerances must be maintained.

To address this limitation, a wear prediction strategy was de-
veloped using reference values dynamically adjusted during the
machining process. This approach was tested using two model
types: an adaptive linear model and a first-order inertial adaptive
model. The latter demonstrated superior performance in terms of
predictive accuracy and process stability. By fine-tuning model pa-
rameters based on real-time tool wear, inferred from measure-
ments of the machined workpieces, it was possible to achieve reli-
able tool wear prediction. This enabled timely corrections that en-
sured dimensional compliance across all manufactured parts in a
system equipped with the Intelligent Tool Change System.
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