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Abstract: The article addresses the challenge of reducing machining errors under tight tolerances, which can negatively affect workpiece 
quality. It highlights the need for modelling and compensating individual error types, particularly those caused by tool wear. Traditionally, tool 
wear compensation relies on experimentally determined absolute wear values, but nonlinearity in wear introduces discrepancies between 
modelled and actual machining processes. To address this, the article introduces a novel tool wear model integrated into an Intelligent Tool 
Change System. The model represents changes in tool edge reduction over time, allowing for tool position correction relative to the workpiece 
and signalling alarm states. It incorporates a first-order inertial adaptive model, enabling accurate forecasting of tool wear. These predictions 
are based on real-time geometric measurements collected during cutting by an Automatic Measurement Unit. The measurements are  
analyzed in the time domain to provide current process corrections and determine the tool lifecycle. A key feature of the model is its  
self-tuning capability, which adjusts parameters dynamically to handle limited data availability, improving prediction accuracy and reducing 
the complexity of parameter settings. The model's predictions were validated by comparing predicted wear values against actual  
measurements. Additionally, the integrated model was compared with a linear prediction model, demonstrating superior accuracy.  
To evaluate the model's performance, the article uses the normalized root mean square error (NRMSE) as the assessment metric. Results 
confirm that the first-order inertial adaptive model not only enhances accuracy over adaptive linear model but also provides reliable wear 
predictions, supporting effective tool change strategies in machining processes. This innovative approach offers significant improvements  
in managing machining errors and optimizing tool usage. 
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1. INTRODUCTION 

1.1. Tool wear and its symptoms  

With the development of smart manufacturing technologies, 
managing materials, workforce, and equipment in machining pro-
cesses has become crucial to ensure the reliability of key compo-
nents. Tool wear, as the weakest and most damage-prone element 
in the OUPN system, affects both product quality and machining 
efficiency, and is unavoidable due to thermodynamic interactions 
during cutting [1]. Standards such as ISO 3685 [2] provide guide-
lines for tool performance at constant cutting speeds, while Taylor’s 
equation is essential for predicting tool life and production costs, 
particularly for hard-to-machine materials [3]. Since variable cutting 
speeds are common in industrial settings, the study presented in 
[4] aimed to develop a method for predicting tool life under such 
conditions. 

Predicting tool wear or damage, along with estimating its re-
maining useful life (RUL), is essential for effective monitoring of the 
machining process. This can be done by using reliability function 
models based on tool wear behavior, data-driven models utilizing 
signals from the process, workpiece, and tool, or hybrid models that 
combine both approaches [5]. 

In reliability function models, wear is described statistically by 
establishing a reliability function from empirical data. These models 

assume that tool degradation follows a specific probability distribu-
tion, with parameters estimated from the full wear dataset. Methods 
such as Gaussian process regression, hidden Markov models, 
Bayesian models, and adaptive hidden Markov models are com-
monly applied. A key step in these approaches is collecting accu-
rate wear data and choosing a suitable distribution. 

In evaluating tool surface degradation and reliability related to 
catastrophic failure, it is crucial to identify when a component of the 
machining system vector first exceeds a critical level. This is com-
plex due to the system’s multidimensional nature. The time to such 
failure is typically treated as a random variable, with its probabilistic 
characteristics derived from the system’s statistical properties. 

Many methods for tool wear assessment have been developed 
[6], with most focusing on identifying critical wear indicators, as 
summarized in Tab. 1. The data in Tab. 1 were obtained from re-
search by D&H Innovations Ltd. and D&H Engineering Ltd. be-
tween 2021 and 2023. Certain wear types involve accelerated deg-
radation of the cutting blade beyond technologically justified limits. 
However, such occurrences are rare, happening in less than 1% of 
all tool changes, a rate even lower than other operational events 
like retooling. This low incidence highlights the reliability of existing 
wear patterns and supports the feasibility of developing accurate 
tool wear models. These models can be confidently implemented 
in production to improve monitoring, optimize tool usage, and re-
duce unexpected downtime. 
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Tab. 1. Critical value of tool wear symptoms 

Tool wear symptom Critical value 

maximum width of flank 
wear 𝑉𝐵𝐵 (ISO 3685 [4]); 
crater wear on the rake 
face 

𝑉𝐵𝐵 = 0.6 mm in case the wear area 
is not regular; average wear width 
𝑉𝐵𝐵 = 0.3 mm for a regular wear 
surface in zone B of the cutting tool 
flank 

intensive wear on the 
major or minor flank 𝑉𝐵𝑁 

notch wear 𝑉𝐵𝑁 exceeding 1 mm 
when it dominates other tool wear 
phenomena 

chipping, flaking or 
cracking 

excessive chipping, flaking or cracking 
of the cutting edge 

sudden deterioration of the 
machined surface quality 
caused by destruction of 
the minor flank 

𝑅𝑎 of the machined surface exceeds  
0.4 µm, 0.8 µm, 1.6 µm, 3.2 µm,  
6.3 µm, 12.5 µm (ISO 3685 [2]), other 
roughness or waviness parameters 

cutting edge damage 

catastrophic failure defined as sudden 
failure of the cutting edge under the 
influence of both load and increasing 
cutting temperature (ISO 3685 [2]). 

 
Fig. 1. a) Reasons for premature tool replacement, b) forms of tool wear 

1.2. Tool wear prediction in Intelligent Tool Change System 

Monitoring and prediction of tool wear has been the subject of 
many studies, where possible research methods have been indi-
cated. In [7], a literature review is presented on tool wear, its de-
scription, monitoring, and RUL prediction in the context of big data. 
The authors proposed research directions in the area of tool wear. 
Most often, taking into account the critical value of tool wear, the 
reference value model was used, which is shown in Fig. 2.  

Sensor data can refer to any measured quantity that shows a 
correlation with the amount of wear [8]. For example, in [9] the de-
velopment of a wear measurement system based on the AE sensor 
was developed with an appropriate data processing system 
adapted to their properties. In works such as [10] and [11], the focus 
was mainly on developing signal processing for the tool wear infer-
ence system. In [12], methods for processing data to obtain the best 
RUL prediction are discussed in detail. In [13], the authors analyze 
changes in tool geometry, focusing on wear, design modifications, 
and operational factors, while presenting methods to describe 
these changes through measurements and descriptive metrics.  

Abrasive wear depends on the physical properties of the inter-
acting material pair – the tool material and the workpiece material, 
the stereometric features of the cutting edge, and the dynamic prop-
erties of the machining system. Changes in these factors over time 
lead to variations in the wear rate.  

By understanding how the wear rate changes over time – that 
is, the tool wear intensity 𝐼 = 𝑑𝑉𝐵 𝑑𝑡⁄   – it is possible to determine 
the tool life at a given time as the inverse of the tool wear intensity 

𝑇 = ∫
1

𝐼(𝑉𝐵)
𝑑𝑉𝐵

𝑉𝐵𝑐𝑟𝑖𝑡

0
 (1) 

𝑉𝐵 – tool wear indicator, 

𝑉𝐵𝑐𝑟𝑖𝑡 – critical value of the tool wear indicator. 
The relationship between tool wear intensity and the actual tool 

life can be modelled using various functions. For constant tool wear 
intensity, the simplest and most commonly used approach is a lin-
ear model. It works well under stable cutting conditions with wider 
workpiece tolerance limits and effectively captures the linear por-
tion of the wear curve, based on time or the number of workpieces 
processed. Tool replacement is then triggered after reaching the 
defined threshold. 

Until the critical value of the tool wear indicator is reached, the 
tool position is continuously adjusted according to the progressive 
wear model. However, in cases of accelerated wear – after exceed-
ing the critical value – even corrective measures may fail to keep 
up with rapid tool degradation. Therefore, to prevent sudden tool 
failure caused by cumulative cutting effects, the prediction range is 
intentionally limited to avoid accelerated wear. 

The initiation of the tool change process can also occur in the 
case of a loss of stability in the manufacturing system. Process sta-
bility is determined based on measurement results and process sta-
bility data. The initiation of the tool change process carried out by 
the Intelligent Tool Change System, is based on information pro-
vided by the management computer, which monitor for any process 
trends in Statistical Process Control charts. The emergence of such 
trends signals a potential loss of process stability, leading to the 
application of artificial intelligence techniques to evaluate the state 
of the process and tools.  

A review of AI integration into CNC systems is provided in [14], 
while [15] separates the tool wear process into monitoring and pre-
diction phases. An advanced method using deep learning is de-
scribed in [16]. 

 
 

 
 

Fig. 2.   a) Measuring reference data, b) off-line identification of reference   
value model 

From the analysis conducted, the modelling of wear progres-
sion over time in modern systems takes the form of a recursive 
model, determined according to the scheme presented in Fig. 3. 
Wear values are predicted recursively based on previous values, 
considering the measurement data collected from the process.  

In the application for tool wear prediction in the Intelligent Tool 
Change System, the model must be supplied with real-time data 
from the process. Under these conditions, the recursive model can 
predict the wear of a cutting tool over time, as tool wear is a gradual 
process that depends on the number of workpieces processed. 
Consequently, the model recalculates wear parameters with each 
new measurement. 

The recursive model prediction relies on the quality of the ac-
quired data, as the model update and tool wear prediction primarily 
depend on new data collected during the machining process. The 
model evolves with each additional measurement, adapting to real-
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time changes in the tool's wear state. 
 
 

 
 

Fig. 3.  Recursive model of tool wear 

2. STRATEGY FOR DEVELOPING A TOOL WEAR MODEL 

The technological problem in machining pertains to the change 
in the position of the tool tip. Considering the guidelines on the in-
fluence of cutting edge reduction on workpiece accuracy, it was 
found that when the actual reduction of the cutting edge reaches a 
critical value, the position of the cutting edge should be adjusted by 
introducing a correction into the CNC program. To implement the 
strategy and develop the appropriate model, it is essential to create 
an analytical structure for prediction, continuous data supplemen-
tation, and decision support systems. Fig. 4 presents a diagram il-
lustrating the development of the integration prediction model. 

The model developed within the intelligent tool change system 
is subject to integration within the production system. As shown in 
Fig. 4, for its operation, the system will require a production cell 
management system along with a database system, a communica-
tion and data exchange system, and a measurement system. In the 
integrated module with the CNC system, the system will collect 
measurement data and save it in the MES system. 

 

 
Fig. 4. The strategy for developing wear model useful in Intelligent Tool 

Change System 

The MES data will then be used in the automatic process cor-
rection module to adjust the tool position and in the intelligent tool 
change system for tool change prediction. These actions will enable 

both the optimization of tool management and the maintenance of 
product quality at the level of specification compliance. 

The model undergoes verification in production conditions. All 
points were validated by comparing predicted vs. actual tool wear. 
The strategy has been developed to accurately predict tool wear, 
optimize tool life, and enhance machining sustainability. 

3. MATERIALS AND METHODS 

The tests were carried out in industrial conditions, where the 
blade shortening during cutting was assessed. The maximum cut-
ting time referred to the number of workpieces processed and 
amounted to 250 pieces. The experimental set-up with the meas-
urement system is shown in Fig. 5 

 

 
Fig. 5. Schematic diagrams of the cutting experiment and tool wear 

measurement setup 

During cutting, reference measurements were taken and the 
tool position was corrected relative to the workpiece nominal and 
measured values. The measurement of the blade geometry in the 
worn state was verified by the Alicona G6 measuring system using 
the Advance Focus Variation method [17]. In the Alicona Edge Mas-
ter Module 10.5 program, the 𝐷𝑑𝑚𝑎𝑥 parameter values (maxi-
mum wear depth along the profile determined on the cutting edge) 
were determined, which enabled the assessment of the blade 
shortening (Fig. 6). These values will be used to verify whether the 
measurements of the workpiece and the total corrections in the pro-
cess define the tool wear, as determined by the parameter 
𝐷𝑑𝑚𝑎𝑥. 

 

 
Fig.6. Determination of the blade shortening 𝐾𝐸𝑚𝑎𝑥 using the 𝐷𝑑𝑚𝑎𝑥 

parameter 
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4. RESULTS AND DISCUSSION 

4.1. Assumptions for developing the model  

The cutting tool wear model occurs at various levels of the 
cyber-physical model. The basis for choosing the modelling method 
is the purpose for which the model is to be developed. The cutting 
tool wear model is a model of tool deterioration, which consists in 
the fact that the condition of a cutting tool becomes increasingly 
worse and gradually causes the tool to lose its ability to perform in 
line with expectations. However, the wear model is associated with 
the possibility of developing an inverse model and indicating the 
usefulness of a given tool, how useful it is in removing machining 
allowance. The definition of RUL is closely related to the wear 
model. On the other hand, the tool usefulness model is the possi-
bility of introducing corrections to the process. It follows from the 
considerations that many basic assumptions should be taken into 
account when building the model. They are systematically listed in 
Tab. 2. 

The development of models of blade wear over time and deter-
mination of RUL were carried out using monotonically changing val-
ues of wear indicators, which have a direct impact on the value of 
blade shortening and surface precision. Determination of the refer-
ence value of critical wear enabled the model to be adjusted to the 
actual values of blade wear in given cutting conditions. The biggest 
limitation in the use of models with a reference value is the problem 
of the dispersion of wear intensity and tool life. Studies show the 
randomness of factors that cause deterioration of cutting properties 
of tools, where, apart from abrasive wear, other wear mechanisms, 
such as diffusion or chemical wear, begin to dominate. Defining the 
tool life in the conditions of randomness of the tool wear process 
requires determining the time of its reliable operation until the blade 
blunting criterion (reference value) is achieved. Problems related to 
determining the time of the first exit of the process from the allowa-
ble area were considered in the theory of stochastic processes. Ef-
fective solutions can be obtained from the equation of the reliability 
function, which depends on the physicochemical and strength prop-
erties of the blade material. These in turn depend on the tempera-
ture and machinability of the processed material. Additionally, the 
wear of the blade depends on its load and the dynamics of the cut-
ting process. 

4.2. Development of the model  

The linear wear model of the form as Eq. (2) was analysed 

𝑦(𝑡) = 𝑦(𝑡 = 0) + 𝐴𝑡   (2) 

where the parameter A refers to the intensity of tool shortening over 
time and the first-order inertial model as expressed in Eq. (2) 

𝑦(𝑡) = 𝑦(𝑡 = 0)𝑒𝑥𝑝 (
−𝑡

𝑇
) + 𝐾 (1 − 𝑒𝑥𝑝 (

−𝑡

𝑇
)) + 𝐶0   (3) 

The parameter T in equation (3) for T > 0 can be interpreted as 
the period where for t=T we reach 63% and for t=3T we reach 95% 
of the critical value of the wear. The parameter K can be interpreted 
as the gain, the maximum value in the steady state. Knowing the 
current value of y(t) and the value of y(t) for t=3T we can estimate 
the RUL.  

Tab. 2. Summary of assumptions for building the cutting tool wear model 

Assumptions RUL Tool position 
correction 

The model should 
represent the change in 
tool edge reduction over 
time. The output of the 

model should be the tool 
edge reduction value KE, 

and the independent 
variable should be cutting 

time.  

The edge reduction 
value over time 

allows for summing 
values and 

comparing them with 
the critical value. 

The edge reduction 
value over time 

allows for 
determining current 
corrections in the 

process and 
predicting 

corrections for 
subsequent time 

units. 

The model should enable 
the determination of the 
tool infeed, taking into 
account the tool edge 
reduction. The infeed 

value determined on the 
basis of the model should 
enable the correction of 
the position due to the 

assumed accuracy of the 
workpiece. 

The infeed value 
determined on the 
basis of the model 

enables comparison 
with the critical 

infeed value, above 
which it is not 

possible to achieve 
the assumed 

dimensional and 
shape accuracy and 
surface roughness. 

The infeed value 
determined on the 
basis of the model 

makes it possible to 
achieve the 

assumed accuracy 
of the workpiece. 

The model should reflect 
the progression of tool 
wear over time, i.e. a 

typical S-shaped profile, 
with rapid initial growth, 

an almost flat middle 
region, and a final rapid 

growth. The model is 
nonlinear and it should be 

taken into account that 
the wear pattern changes 

with time tA. 

The gradient of the 
S-shaped function 
determines three 

areas of wear 
changes over time: 
the first area with a 
decreasing value, 

the second area of a 
constant value and 

the third area of 
accelerated wear, 
the value of which 

increases over time 
and which allows for 
the estimation of the 

RUL. 

The gradient of the 
W-shaped function 
determines three 

areas of wear 
changes over time 
and thus allows for 

estimating the 
correction values for 
each of the areas. 

The model should take 
into account tool wear 
mechanisms. Model 
parameters must be 

interpretable in terms of 
tool edge reduction over 
time. Parameters must 

enable assessment of the 
intensity of wear 

mechanisms over time for 
different cutting 

conditions. 

Model parameters 
resulting from the 

intensity of 
elementary wear 
processes can be 

used to estimate the 
RUL value. 

Model parameters 
resulting from the 

intensity of 
elementary wear 
processes enable 

the determination of 
corrections to tool 
life based on them. 

The model should take 
into account the constant 
cutting process load as 

an input signal. In 
principle, the undeformed 

chip thickness for each 
tool feed has a constant 

value, which at a constant 
cutting speed allows the 
assumption of a constant 

load (material removal 
rate), described by a unit 

stroke function. 

The model taking 
into account the 

constant cutting load 
makes it possible to 

predict RUL. 

Assuming a constant 
cutting load allows 

the influence of 
other factors 

influencing the wear 
process to be limited 
and thus the error in 

predicting 
corrections in the 

process to be 
limited. 
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The goodness of fit of the models was assessed using the 
NRMSE index. The goodness of fit values are within the range 
〈−∞;  1〉, where “0” − perfect fit to the reference data (zero errors) 

" − ∞" − poor fit, “1” − the model values do not fit better than the 
fit of the reference value with a linear model. Tab. 3 presents the 
results for the average NRMSE values for the goodness of fit of the 
reference data for the linear and first-order inertial models for all 
experiment points. The results indicate the advantage of the first-
order inertial model over the linear model. The fit was significantly 
better, and the average NRMSE value was half as small. 

Tab. 3. Summary of assumptions for building the tool wear model 

Cutting edge 

reduction 𝑲𝑬 

𝑵𝑹𝑴𝑺𝑬 

Linear model First order inertial 
model 

10% 1.2 0.17 

50% 0.86 0.47 

75% 0.75 0.39 

100% 0.33 0.43 

 
Fig. 7 shows an example of a single cutting process, in which 

the collected reference data of the tool wear for 75% of the critical 
value. The reference data were modelled with a linear model and a 
first-order inertial model. For this specific cutting case, the linear 
model seems to be a better fit than the first-order inertial model. 
The fit was similar for the linear model and the first-order inertial 
model. However, statistically for the entire experiment, the results 
for the first-order inertial model indicated its advantage over the lin-
ear model. 

 
Fig. 7. Example of application of linear and first-order inertial models in 

the estimation of tool wear 

Despite the good fit of the models, it can be observed that the 
measured values and the values estimated by the models, when 
compared to the reference value under narrow tolerance condi-
tions, do not ensure complete compliance of the items with the 
specification. To perform a more comprehensive analysis, Fig. 7 
presents the measured value of 𝐷𝑑𝑚𝑎𝑥 for selected experimental 
points (10% of the critical wear value) along with the cumulative 
value of tool position corrections. The value of 𝐷𝑑𝑚𝑎𝑥 and the 
cumulative value of the tool position correction, adjusted for the cur-
rent measurement value, remain in high agreement, which was 
confirmed by a statistical test for equality of means. The plots in 
Fig. 8 have been supplemented with estimated cutting edge reduc-
tion values for the linear model. The linear model was determined 
using the least squares method based on all the measured data. 

The chart in Fig. 8a indicates that a tool position correction was 
made for the fifth and seventh workpieces. The corrections were 

significant, amounting to 10 μm each. Introducing the correction 
based on the measured dimension values of the workpiece enabled 
the production of subsequent workpieces in compliance with the 
specification. Similarly, the situation unfolded in the remaining cut-
ting trials, as shown in Fig. 8b-8d. 

In this particular case, all workpieces were measured, and the 
correction was made in the subsequent step. This is an ideal situa-
tion, as statistical process control is used in production, and correc-
tions are applied with a certain delay relative to the current meas-
ured value. Therefore, there is a need to predict the tool position 
correction values for the production of subsequent workpieces. 

If the linear model identified based on multiple repetitions of the 
experiment were applied, it would be evident that its use in produc-
tion would not guarantee an accurate reflection of the wear progres-
sion. The corrections calculated from this model might not ensure 
the production of workpieces within the specified dimensional toler-
ance. For example, the intensity of tool wear, according to Fig. 8a 
and 8c, is much greater than in the case of the experiments shown 
in Fig. 8b, where tool position corrections were made only for the 
14th workpiece. The linear model suggested an earlier correction; 
however, despite the delay, the intensity of tool wear was small 
enough that the workpieces remained within the accepted tolerance 
range. 

 
a) 

 
b)

 

c) 
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d) 

 
 

Fig. 8. Tool wear cases as a function of the number of workpieces, 
highlighting the 𝐷𝑑𝑚𝑎𝑥 values 

The analysis of cases involving tool position corrections and 
wear progression indicates the need to train the models with refer-
ence values during the machining process in order to predict wear 
values. This, in turn, would enable the effective application of tool 
position corrections. 

4.3. The recursive model with reference value 

In the case of the Intelligent Tool Change System, the model is 
developed based on historical data of the process trace and tool 
wear. The maximum cutting edge reduction and the number of 
workpieces machined with the given tool are determined. As indi-
cated in section 4.2, these values do not guarantee achieving the 
required workpiece accuracy due to the cutting edge reduction but 
serve as baseline data for developing the appropriate model selec-
tion strategy. 

The adaptive linear model and first-order inertial adaptive 
model were developed in two versions, the results of which are 
shown in Fig. 9 and Fig. 10.  

The adaptive linear model (Fig. 9a) and first-order inertial adap-
tive model (Fig. 9b) more accurately represent the tool position cor-
rections than the linear model. The smoothing of the curves by av-
eraging predictive tool position data from the current and previous 
models allowed for the model to be smoothed. The use of meas-
ured values for model fine-tuning means that the developed recur-
sive model could be applied to predict wear values for subsequent 
workpieces. 
 
a) 

 

b)

 
Fig. 9.   A comparison of tool wear measurements and data generated 

using the linear model, as well as the adaptive linear model (a) 
and first-order inertial adaptive model (b), as reference data for 
tool position correction for the first 10 pieces 

a)

 
b)

 
 

Fig. 10. A comparison of tool wear measurements and data generated 
using the linear model and the adaptive linear model (a) and 
first-order inertial adaptive model (b), as reference data for tool 
position correction, considering a smoothing window for the first 
10 pieces 

The strategy for determining and fine-tuning the models was 
verified using experimental data from a real production process in 
the Intelligent Tool Change System. For the manufacturing process 
being carried out, based on workpiece measurements taken every 
5 pieces, corrections were made using the adaptive linear model. 
The model was fine-tuned as new measurements were received 
and predicted the cutting edge reduction values based on a mono-
tonic function model with an increment of 5 μm. The prediction and 
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actual measurements were in high agreement. For the sample data 
from Figure 7, the goodness of fit index 𝑁𝑅𝑀𝑆𝐸 for the model was 
0.2674, and after averaging, it was 0.2187 (Tab. 4). 

Tab. 4. Adaptive linear function models with a 50-piece FIFO buffer 

 Recursive model with  
parameter estimation 

every 5 pieces 
Averaging recursive model 

A
da

pt
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e 
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r 

m
od

el
 

 
𝑁𝑅𝑀𝑆𝐸 = 0.2087 

 
𝑁𝑅𝑀𝑆𝐸 = 0.1964 

M
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f 
th

e 
m
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ot

on
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fu
nc

tio
n 

 
𝑁𝑅𝑀𝑆𝐸 = 0.2350 

 
𝑁𝑅𝑀𝑆𝐸 = 0.1884 

M
od

el
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st
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t  

in
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em
en

t 
of

 5
 

m
 

 
𝑁𝑅𝑀𝑆𝐸 = 0.2674 

 
𝑁𝑅𝑀𝑆𝐸 = 0.2187 

Tab. 5. First order inertial adaptive model with a 50-piece FIFO buffer 

 Recursive model with  
parameter estimation every 

5 pieces 
Averaging recursive model 

F
irs

t 
or

de
r 

in
er

tia
l  

ad
ap

tiv
e 

m
od

el
 

 
𝑁𝑅𝑀𝑆𝐸 = 0.1515 

 
𝑁𝑅𝑀𝑆𝐸 = 0.1527 

M
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m
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ic

 

fu
nc

tio
n 

 
𝑁𝑅𝑀𝑆𝐸 = 0.1685  
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The use of the first-order inertial adaptive model for all experi-
ment points yielded better results than the adaptive linear model. 
For the sample data from Fig. 7, the goodness of fit index NRMSE 

for the first-order inertial adaptive model was 0.1890, and after av-
eraging, it was 0.1783 (Tab. 5). The prediction allowed for real-time 
tool position correction, ensuring that all workpieces were produced 
within the specified dimensional tolerance. 

5. CONCLUSIONS 

Tool wear during machining negatively affects the dimensional 
accuracy of the workpiece. In practice, the shortening of the cutting 
edge is compensated for by applying tool position corrections rela-
tive to the workpiece, typically integrated into the production pro-
gram. These correction values are often based on reference meas-
urements or predefined benchmarks. However, models relying 
solely on offline-determined parameters often fail to deliver accu-
rate predictions, especially when the tool undergoes rapid wear or 
when tight dimensional tolerances must be maintained. 

To address this limitation, a wear prediction strategy was de-
veloped using reference values dynamically adjusted during the 
machining process. This approach was tested using two model 
types: an adaptive linear model and a first-order inertial adaptive 
model. The latter demonstrated superior performance in terms of 
predictive accuracy and process stability. By fine-tuning model pa-
rameters based on real-time tool wear, inferred from measure-
ments of the machined workpieces, it was possible to achieve reli-
able tool wear prediction. This enabled timely corrections that en-
sured dimensional compliance across all manufactured parts in a 
system equipped with the Intelligent Tool Change System. 
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