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Abstract: This paper presents a new approach for solving several fractional coupled systems of nonlinear partial differential equations 
(FCSNLPDEs) using initial conditions (ICs). This approach is based on the Elzaki transform (ET). A comprehensive description is provided 
to facilitate understanding of the procedure. The applicability and validity of this technique for solving FCSNLPDE problems in a few steps 
have been demonstrated. Using this approach, both linear and nonlinear FCSPDEs can be solved without the need for discretization  
or restrictive assumptions. This method requires fewer numerical calculations because it does not introduce approximation errors.  
Numerical examples are presented to illustrate the accuracy and efficiency of this new technique. To further illustrate how the suggested 
approach affected the outcomes, 2D and 3D graphs and tables were employed. 
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1. INTRODUCTION 

Many applications in physics are simulated using fractional 
nonlinear PDEs (FNLPDEs). Even though a lot of academics are 
willing to study these models, they insist on using different methods 
to identify answers that are explicit, exact, or approximate. In recent 
times, a lot of scholars have been interested in solving ODEs, 
PDEs, and integral equations. Many authors have also concen-
trated on investigating various methods for solving NLPDEs. 

Although fractional derivatives (FDs) are not new to mathemat-
ics, their application in research has lagged for a considerable 
amount of time. The prevalence of non-equivalent formulation of a 
fractional derivative may be one reason for its disfavor [1]. Further-
more, because FDs are non-local, they cannot be accurately inter-
preted geometrically [2]. FDs are capable of explaining a wide 
range of events, such as the nonlinear oscillation of earthquakes 
[3] as well as the mistake in the fluid-dynamic traffic model resulting 
from the belief of continuous traffic flow [4]. According to empirical 
data, fractional order phenomena in DEs and FPDEs for seepage 
flow in porous media are proposed by [5] and [6], respectively. 
Mainardi [7] provides an outline of a few uses of FDs in continuous 
mechanics and statistical mechanics. Numerous authors have 
studied the analytical findings on the uniqueness and existence of 
FDE solutions [1, 8]. In recent times, a variety of methods, including 
Homotopy Analysis and Adomian decomposition, have been em-
ployed to solve dynamic systems that comprise FDs, FDEs, 
FPDEs, and FIDEs [9–13]. Due to their non-local character, frac-
tional operators (FO) are a valuable tool for analyzing phenomena 
involving the memory effect. We underline that a PDE can be con-
verted from a local to a nonlocal one by substituting a specific FO 
for the standard derivative with respect to time. 

Some of the excellent studies that have been recently covered 
is the one conducted by Shabir Ahmad et al.[14 - 18] are Dynamical 
study of a novel 4D hyperchaotic system [14], Dynamical Analysis 
of Bio-Ethanol Production Model under Generalized Nonlocal Op-
erator in Caputo Sense [15], A hybrid analytical technique for solv-
ing nonlinear fractional order PDEs [16], Mathematical Analysis of 
Biodegradation Model under Nonlocal Operator in Caputo Sense 
[17] and Analysis of the seventh-order Caputo fractional KdV equa-
tion [18].  

This essay will solve SFPDEs using the innovative ET method. 
Boundary value problems are resolved with ET and its variations. 
The novel process gives better accuracy since different initial ap-
proximations are used in all iteration of the solution, in contrast to 
the recommended approach [17], which puts the result in a finite 
series form which is simple to calculate. A number of the difficulties 
are addressed using the general explanation of the suggested rem-
edy. Finding analytical solutions with ICs for FCSNLPDEs is chal-
lenging. The current work uses a relatively simple to comprehend 
and implement approach to produce closed-form analytical solu-
tions for the FCSNLPDEs.  

The suggested method offers a fresh approach to broadening 
the use of fractal techniques to a variety of systems with highly ac-
curate results. This method may show great promise in the near 
future for creating and using intricate fractal models in a variety of 
domains, including engineering and physics. The freshly developed 
method has two distinct features: it is simple to use and offers rec-
ommendations for choosing the initial iteration, selecting the first 
iteration is crucial since it can initiate the method's convergence 
and enable the calculation of the exact solution in a limited number 
of steps, if the ICs are exactly zero, we can choose the first iteration 
all or a subset of the inhomogeneous terms. 
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Because this method relies entirely on the ET transform and 
initial conditions, it will be ineffective if the ET is missing for the 
fractional derivative or if the initial conditions are not present. Also, 
if the initial iteration is not chosen correctly, we may not reach a 
convergence to the exact solution. 

In this paper, we employ a particular analytical method that uti-
lizes the ET to solve FCSNLPDEs. Examples are given to illustrate 
this method's efficacy and dependability. This method can be used 
to solve functional equations that arise from numerical modeling of 
many processes. 

Definition 1: Following are the definitions for the Riemann-Liou-
ville (R-L) operator of order     

𝜅 > 0, of  𝛷 ∈ 𝐶𝜇 , 𝜇 ≥ −1, 

𝐽𝜅𝛷(𝐵) =
1

𝛤(𝜅)
∫ (𝐵 − 𝑜)𝜅−1𝛷(𝑜)𝑑𝑜, 𝜅 > 0

𝐵

0

, 

𝐽0𝛷(𝐵) = 𝛷(𝐵). 

Properties of  𝐽𝛼 , 

For  𝛷𝑛 ∈ 𝐶𝜇 , 𝑛 ∈ 𝑁, 𝜅, 𝜆 ≥ 0 and 𝜎 ≥ −1: 

𝐽𝜅𝐽𝜆𝛷(𝐵) = 𝐽𝜅+𝜆𝛷(𝐵), 

𝐽𝜅𝐵𝜎 =
𝛤(𝜎 + 1)

𝛤(𝜎 + 𝜅 + 1)
𝐵𝜅+𝜎 . 

Definition 2: As stated by Caputo, the FD of Φ(𝐵) is: 

𝐷𝜅𝛷(𝐵) = 𝐽𝑚−𝜅𝐷𝑚𝛷(𝐵), 

for  𝑚 − 1 < 𝜅 ≤ 𝑚,𝑚 ∈ 𝑁, 𝐵 > 0, and 𝛷 ∈ 𝐶−1
𝑚 . 

To find an FD's correct order, one computes an ordinary deriv-
ative first, followed by a fractional integral. 

Just like the R-L fractional integral operator, the integer-order 
integration is a linear process: 

𝐽𝜅(∑ 𝑐𝑖𝛷𝑖(𝐵)𝑛
𝑖=1 ) = ∑ 𝑐𝑖𝐽

𝜅𝛷𝑖(𝐵)𝑛
𝑖=1 ,  

{𝑐𝑖}𝑖=1
𝑛  are constants. 

[10], explains that FD is believed to possess a Caputo meaning in 
the current inquiry, which supports the application of the Caputo 
definition. One of the great advantages of the Caputo fractional de-
rivative is that it allows traditional initial and boundary conditions to 
be included in the formulation of the problem. In addition, its deriv-
ative for a constant is zero, therefore, Caputo fractional derivative 
was chosen in this paper. 

2. ELZAKI TRANSFORM  

In general, the ET is described as: 

𝐸[𝛷(𝜏)] = 𝑜 ∫ 𝛷(𝜏)𝑒−
𝜏

𝑜
∞

0
𝑑𝜏 = 𝑇(𝑜), 𝜏 > 0,                       (1) 

𝑜 is a complex value. 
PDEs, ODEs, and integral equations in [1-4] and [23–25, 27-

32] can all be resolved with ET. Effective application of ET is pos-
sible while Sumudu and Laplace transforms fail to handle DEs hav-
ing variable coefficients [26]. 

Theorem 1: [2] The partial derivatives are converted by ET in 
the following ways: 

𝐸 [
𝜕𝛷(𝜐,𝜏)

𝜕𝜏
] =

1

𝑜
𝑇(𝜐, 𝑜) − 𝑜𝛷(𝜐, 0), 𝐸 [

𝜕𝛷(𝜐,𝜏)

𝜕𝜐
] =

𝑑

𝑑𝜐
[𝑇(𝜐, 𝑜)],  

𝐸 [
𝜕2𝛷(𝜐,𝜏)

𝜕𝜏2 ] =
1

𝑜2 𝑇(𝜐, 𝑜) − 𝛷(𝜐, 0) −

𝑜
𝜕𝛷(𝜐,0)

𝜕𝜏
, 𝐸 [

𝜕2𝛷(𝜐,𝜏)

𝜕𝜐2 ] =
𝑑2

𝑑𝜐2
[𝑇(𝜐, 𝑜)]. 

 

 

ET of some functions: 

𝛷(𝜏) 𝐸[𝛷(𝜏)] = 𝑇(𝑜) 

1 𝑜2 

𝜏 𝑜3 

𝜏𝑛 𝑛! 𝑜𝑛+2 

𝑒𝑎𝜏 𝑜2

1 − 𝑎𝑜
 

𝑠𝑖𝑛 𝑎 𝜏 𝑎𝑜3

1 + 𝑎2𝑜2
 

𝑐𝑜𝑠 𝑎 𝜏 𝑜2

1 + 𝑎2𝑜2
 

 

In this instance, we offer a few lemmas that enable func-
tion Φ(𝐴) inference from its ET. 

Lemma 1: ETof R-L operator of order 𝜅 > 0 is 

𝐸[𝐽𝜅𝛷(𝐴)] = 𝑜𝜅𝑇(𝑜).  

Proof: We establish by 

𝐸[𝐽𝜅𝛷(𝐴)] = 𝐸 [
1

𝛤(𝜅)
∫ (𝐴 − 𝐵)𝜅−1𝛷(𝐵)𝑑𝐵

𝐴

0

] = 

1

𝛤(𝜅)

1

𝑜
𝑇(𝑜)𝐺(𝑜) = 𝑜𝜅𝑇(𝑜)   

where 

𝐺(𝑜) = 𝐸[𝐴𝜅−1] = 𝑜𝜅+1𝛤(𝜅). 

Lemma 2: ET of Caputo fractional (CF) derivative for  

𝜅 > 0,𝑚 − 1 < 𝜅 ≤ 𝑚,𝑚 ∈ 𝑁,  

is  

𝐸[𝐷𝜏
𝜅𝛷(𝜐, 𝜏)] = 𝑜𝑚−𝜅

[
 
 
 
 𝑇(𝜐, 𝑜)

𝑜𝑚
−

𝛷(𝜐, 0)

𝑜𝑚−2
−

𝜕𝛷(𝜐,0)

𝜕𝜏

𝑜𝑚−3
−⋅⋅⋅

−𝑜
𝜕𝑚−1𝛷(𝜐, 0)

𝜕𝜏𝑚−1 ]
 
 
 
 

, 

or 

𝐸[𝐷𝜏
𝜅𝛷(𝜐, 𝜏)] =

1

𝑜𝜅 𝐸[𝛷(𝜐, 𝜏)] − ∑
𝜕𝑘𝛷(𝜐,0)

𝜕𝜏𝑘
𝑚−1
𝑘=0 𝑜2−𝜅+𝑘,  

𝑚 − 1 < 𝜅 ≤ 𝑚,  

The following is the definition of the Mittag-Leffler functions: 

∈𝜅 (𝜏) = ∑
𝜏𝑛

𝛤(𝑛𝜅+1)
∞
𝑛=0 , ∈𝜅,𝜆 (𝜏) = ∑

𝜏𝑛

𝛤(𝑛𝜅+𝜆)
∞
𝑛=0 .  

Where 𝛤  is the gamma function and
 
𝜅, 𝜆 are complex 

parameters with real part are zero. 
Lemma 3:  

If 𝜅, 𝜆 > 0, 𝑎 ∈ 𝐶
 
and 

1

𝑜𝜅 > |𝑎|,
 

then: 

𝐸−1 [
𝑜𝜆+1

1+𝑎𝑜𝜅] = 𝜏𝜆−1 ∈𝜅,𝜆 (−𝑎𝜏𝜅).  

Proof: 

𝑜𝜆+1

1+𝑎𝑜𝜅 = 𝑜𝜆+1 1

1+𝑎𝑜𝜅 = 𝑜𝜆+1 ∑ (−𝑎)𝑛(𝑜𝜅)𝑛∞
𝑛=0    

= ∑ (−𝑎)𝑛𝑜𝑛𝜅+𝜆+1∞
𝑛=0   

https://en.wikipedia.org/wiki/Gamma_function
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Then 

𝐸−1 [
𝑜𝜆+1

1+𝑎𝑜𝜅] = 𝐸−1[∑ (−𝑎)𝑛𝑜𝑛𝜅+𝜆+1∞
𝑛=0 ] =

∑
(−𝑎)𝑛𝜏𝑛𝜅+𝜆−1

𝛤(𝑛𝜅+𝜆)
∞
𝑛=0 =  

𝜏𝜆−1 ∑
(−𝑎𝜏𝜅)𝑛

𝛤(𝑛𝜅+𝜆)
∞
𝑛=0 = 𝜏𝜆−1 ∈𝜅,𝜆 (−𝑎𝜏𝜅).   

3. THE NOVEL ANALYTICAL METHOED 

 The primary concept of the suggested plan of study will be 
made clearer by applying the SFPDE in the following ways, 

𝐷𝜏
𝜅𝑃(𝜐, 𝜏) + 𝑅1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] + 𝑁1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] = 𝑔1(𝜐, 𝜏), 

𝐷𝜏
𝜅𝑄(𝜐, 𝜏) + 𝑅2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] + 𝑁2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] = 𝑔2(𝜐, 𝜏), 

0 < 𝜅 ≤ 1,0 ≤ 𝜐 ≤ 𝑘, 𝜏 > 0, 𝑘 > 0

                                          

(2)

                                                

 

with the ICs,  

𝑃(𝜐, 0) = ℎ1(𝜐), 𝑄(𝜐, 0) = ℎ2(𝜐)                                          (3)
                                                                  

 

Where 𝐷𝜏
𝜅 is a Caputo FD,𝑅1, 𝑅2,𝑁1, 𝑁2are linear and nonlin-

ear operators, and 𝑔1(𝜐, 𝜏), 𝑔2(𝜐, 𝜏) are inhomogeneous terms.  
Taking ET of Eqs. (2), to get: 

𝐸[𝐷𝜏
𝜅𝑃(𝜐, 𝜏)] + 𝐸{𝑅1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] + 𝑁1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐]} =

𝐸[𝑔1(𝜐, 𝜏)],  

𝐸[𝐷𝜏
𝜅𝑄(𝜐, 𝜏)] + 𝐸{𝑅2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] + 𝑁2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐]} =

𝐸[𝑔2(𝜐, 𝜏)],                                                                                             (4) 

𝐸(𝑃(𝜐, 𝜏)) = 𝑜2ℎ1(𝑥) − 𝑜𝛼𝐸{𝑅1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] +
𝑁1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] − 𝑔1(𝜐, 𝜏)},  

𝐸(𝑄(𝜐, 𝜏)) = 𝑜2ℎ2(𝑥) − 𝑜𝛼𝐸{𝑅2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] +
𝑁2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] − 𝑔2(𝜐, 𝜏)}.                                                               

Solutions of Eqs. (2), should be performed using the series form 
that follows: 

𝑃(𝜐, 𝜏) = ∑ 𝑃𝑛(𝜐, 𝜏)∞
𝑛=0 , 𝑄(𝜐, 𝜏) = ∑ 𝑄𝑛(𝜐, 𝜏)∞

𝑛=0 .              (5)        

Using Eqs. (5) and the inverse of ET to Eqs. (4), to get:

                

∑ 𝑃(𝜐, 𝜏)∞
𝑛=0 = 𝐺1(𝜐, 𝜏) − 𝐸−1{𝑜𝜅𝐸[𝑅1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] +

𝑁1[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐]]},  

∑ 𝑄(𝜐, 𝜏)∞
𝑛=0 = 𝐺2(𝜐, 𝜏) − 𝐸−1{𝑜𝜅𝐸[𝑅2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐] +

𝑁2[𝑃, 𝑄, 𝑃𝜐, 𝑄𝜐]]}                                                                      (6) 

𝐺1(𝜐, 𝜏), 𝐺2(𝜐, 𝜏) are the terms found that come from the source 
terms and the ICs. 

This approach is dependent on how we select the initial itera-
tions 𝑃0, 𝑄0that yield the precise solutions in a constrained amount 
of steps. The solutions𝑃(𝜐, 𝜏), 𝑄(𝜐, 𝜏), can be found iteratively 
using the following relations 

𝑃𝑛+1(𝜐, 𝜏) = 𝐸−1 {𝑜𝜅𝐸 [
𝑅1[𝑃𝑛, 𝑄𝑛, (𝑃𝑛)𝜐, (𝑄𝑛)𝜐]

+𝑁1[𝑃𝑛, 𝑄𝑛, (𝑃𝑛)𝜐, (𝑄𝑛)𝜐]
]}  

𝑃0(𝜐, 𝜏) = 𝐺1(𝜐, 𝜏),  

𝑄𝑛+1(𝜐, 𝜏) = 𝐸−1 {𝑜𝜅𝐸 [
𝑅2[𝑃𝑛, 𝑄𝑛 , (𝑃𝑛)𝜐, (𝑄𝑛)𝜐]

+𝑁2[𝑃𝑛, 𝑄𝑛, (𝑃𝑛)𝜐, (𝑄𝑛)𝜐]
]}                      (7) 

From Eqs. (7) and (4), we can determine that: 

𝑃0, 𝑃1, 𝑃2, . . . , 𝑄0, 𝑄1, 𝑄2, . . ., 

using Eqs. (5) to find the solution. 

4. ILLUSTRATIVE EXAMPLES 

Using the process described in this study, we produced the ex-
act solutions for FCSNLPDEs and compared them with the known 
exact solutions.  

Example 1: Consider the FCSNLPDE 

𝐷𝜏
𝜅𝑃(𝜐, 𝜏) + 𝑃 − 2𝑃𝑃𝜐 + (𝑃𝑄)𝜐 = 0,0 < 𝜅 ≤ 1,  

𝐷𝜏
𝜅𝑄(𝜐, 𝜏) + 𝑄 − 2𝑄𝑄𝜐 + (𝑃𝑄)𝜐 = 0                                                (8) 

 

with the ICs 

𝑃(𝜐, 0) = 𝑠𝑖𝑛 𝜐 , 𝑄(𝜐, 0) = 𝑠𝑖𝑛 𝜐                                                   (9) 

Using the ET of Eqs. (8) and ICs, to get: 

1

𝑜𝜅 𝐸[𝑃] − 𝑃(𝜐, 0)𝑜2−𝜅 + 𝐸[𝑃] = 𝐸[2𝑃𝑃𝜐 − (𝑃𝑄)𝜐],  

1

𝑜𝜅
𝐸[𝑄] − 𝑄(𝜐, 0)𝑜2−𝜅 + 𝐸[𝑄] = 𝐸[2𝑄𝑄𝜐 − (𝑃𝑄)𝜐],  

𝐸[𝑃] =
𝑜2

1+𝑜𝜅
𝑠𝑖𝑛 𝜐 +

𝑜𝜅

1+𝑜𝜅
𝐸[2𝑃𝑃𝜐 − (𝑃𝑄)𝜐],  

𝐸[𝑄] =
𝑜2

1+𝑜𝜅
𝑠𝑖𝑛 𝜐 +

𝑜𝜅

1+𝑜𝜅
𝐸[2𝑄𝑄𝜐 − (𝑃𝑄)𝜐]  

Inverse ET shows: 

𝑃(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐 + 𝐸−1 {
𝑜𝜅

1+𝑜𝜅 𝐸[2𝑃𝑃𝜐 − (𝑃𝑄)𝜐]},  

𝑄(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐 + 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[2𝑄𝑄𝜐 − (𝑃𝑄)𝜐]}  

The iteration formulas that utilize an initial approximation are as 

follows: 

𝑃𝑛+1(𝜐, 𝜏) = 𝐸−1 {
𝑜𝜅

1+𝑜𝜅 𝐸[2𝑃𝑛(𝑃𝑛)𝜐 − (𝑃𝑛𝑄𝑛)𝜐]},  

𝑄𝑛+1(𝜐, 𝜏) = 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[2𝑄𝑛(𝑄𝑛)𝜐 − (𝑃𝑛𝑄𝑛)𝜐]},  

𝑃0(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐 , 𝑄0(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐,  (10) 

      Then we find: 

𝑃1(𝜐, 𝜏) = 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[0]} = 0, 𝑄1(𝜐, 𝜏) = 𝐸−1 {

𝑜𝜅

1+𝑜𝜅
𝐸[0]} = 0,  

Then, using (5), to get: 

𝑃(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐 , 𝑄(𝜐, 𝜏) =∈𝜅 (−𝜏𝜅) 𝑠𝑖𝑛 𝜐,  

If 𝜅 = 1, then: 

𝑃(𝜐, 𝜏) = 𝑒−𝜏 𝑠𝑖𝑛 𝜐 , 𝑄(𝜐, 𝜏) = 𝑒−𝜏 𝑠𝑖𝑛 𝜐  

Example 2: Consider the FCSNLPDE 

𝐷𝜏
𝜅𝑃(𝜐, 𝜁, 𝜏) + 𝑄𝜐𝐾𝜁 − 𝑄𝜁𝐾𝜐 = −𝑃, 0 < 𝜅 ≤ 1,  

𝐷𝜏
𝜅𝑄(𝜐, 𝜁, 𝜏) + 𝑃𝜐𝐾𝜁 + 𝑃𝜁𝐾𝜐 = 𝑄,  

𝐷𝜏
𝜅𝐾(𝜐, 𝜁, 𝜏) + 𝑃𝜐𝑄𝜁 + 𝑃𝜁𝑄𝜐 = 𝐾                                              (11) 

with the IC and BCs 

𝑃(𝜐, 𝜁, 0) = 𝑒𝜐+𝜁 , 𝑄(𝜐, 𝜁, 0) = 𝑒𝜐−𝜁 , 𝐾(𝜐, 𝜁, 0) = 𝑒𝜁−𝜐
   

(12)
                                    

 

Using similar steps as in example 1, to obtain: 

𝑃(𝜐, 𝜁, 𝜏) =∈𝜅 (−𝜏𝜅)𝑒𝜐+𝜁 + 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[𝑄𝜐𝐾𝜁 − 𝑄𝜁𝐾𝜐]},  
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𝑄(𝜐, 𝜁, 𝜏) =∈𝜅 (𝜏𝜅)𝑒𝜐−𝜁 − 𝐸−1 {
𝑜𝜅

1−𝑜𝜅
𝐸[𝑃𝜐𝐾𝜁 + 𝑃𝜁𝐾𝜐]},  

𝐾(𝜐, 𝜁, 𝜏) =∈𝜅 (𝜏𝜅)𝑒𝜁−𝜐 − 𝐸−1 {
𝑜𝜅

1−𝑜𝜅
𝐸[𝑃𝜐𝑄𝜁 + 𝑃𝜁𝑄𝜐]}  

The recurring connections are as follows: 

𝑃𝑛+1(𝜐, 𝜁, 𝜏) = 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[(𝑄𝑛)𝜐(𝐾𝑛)𝜁 − (𝑄𝑛)𝜁(𝐾𝑛)𝜐]}  

⇒ 𝑃0 =∈𝜅 (−𝜏𝜅)𝑒𝜐+𝜁   

𝑄𝑛+1(𝜐, 𝜁, 𝜏) = −𝐸−1 {
𝑜𝜅

1 − 𝑜𝜅
𝐸[(𝑃𝑛)𝜐(𝐾𝑛)𝜁 + (𝑃𝑛)𝜁(𝐾𝑛)𝜐]} 

⇒ 𝑄0 =∈𝜅 (𝜏𝜅)𝑒𝜐−𝜁 ,   

𝐾𝑛+1(𝜐, 𝜁, 𝜏) = −𝐸−1 {
𝑜𝜅

1−𝑜𝜅
𝐸[(𝑄𝑛)𝜁(𝑃𝑛)𝜐 + (𝑄𝑛)𝜐(𝑃𝑛)𝜁]}  

⇒ 𝐾0 =∈𝜅 (𝜏𝜅)𝑒𝜁−𝜐                                                                            (13) 

From Eqs. (13), we get: 

𝑃1 = 𝐸−1 {
𝑜𝜅

1+𝑜𝜅
𝐸[0]} = 0, 𝑄1 = −𝐸−1 {

𝑜𝜅

1−𝑜𝜅
𝐸[0]} = 0,  

𝐾1 = −𝐸−1 {
𝑜𝜅

1−𝑜𝜅
𝐸[0]} = 0  

Using Eq. (11) to get: 

𝑃 =∈𝜅 (−𝜏𝜅)𝑒𝜐+𝜁 , 𝑄 =∈𝜅 (𝜏𝜅)𝑒𝜐−𝜁 , 𝐾 =∈𝜅 (𝜏𝜅)𝑒𝜁−𝜐  

The subsequent exact solutions can be obtained if 𝜅 = 1, 

𝑃(𝜐, 𝜁, 𝜏) = 𝑒𝜐+𝜁−𝜏, 𝑄(𝜐, 𝜁, 𝜏) = 𝑒𝜐−𝜁+𝜏, 𝐾(𝜐, 𝜁, 𝜏) =

𝑒𝜁−𝜐+𝜏.   

  

 

 

 

 

 

 

 

 

 

 

 

 
(a) 
 
 

 

(b) 

Fig.1. (a) Comparing the provided method's 3D representations of the 
solutions to the exact solutions for Eq. (8), the outcome in 
comparison to the exact solutions, (b) represent the solutions at 
𝜅 = 0.95,0.9,0.85 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
a) 

 

 

(b) 
 

Fig. 2. (a) Comparing the provided method's 3D representations of the 
solutions to the exact solutions for Eq. (11), 𝑃(𝜐, 𝜁, 𝜏) the 
outcome in comparison to the exact solutions, (b) represent the 
solutions at 𝜅 = 0.95,0.9,0.85 

 

 

 

 

 

 

 

 

 

 

 

(a) 
 

 

(b) 

Fig. 3. (a) Comparing the provided method's 3D representations of the 
solutions to the exact solutions for Eq. (11), 𝑄(𝜐, 𝜁, 𝜏) the 
outcome in comparison to the exact solutions, (b) represent the 
solutions at 𝜅 = 0.95,0.9,0.85 
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                               a)                                                                     b)                                             

 

Fig.4. (a) Comparing the provided method's 3D representations of the solutions to the exact solutions for Eq. (11), 𝐾(𝜐, 𝜁, 𝜏) the outcome in comparison to 

the exact solutions, (b) represent the solutions at 𝜅 = 0.95,0.9,0.85 

Tab. 1. The comparison of the exact and approximate solutions yields the numerical result for example (1) 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Tab. 2. The comparison of the exact and approximate solutions yields the numerical result for example (2)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

 

 

Tab. 3. The comparison of the exact and approximate solutions yields the numerical result for example (2) 

 
 
 
 
 

 
 
 
 
 
 
 
 
Tab. 4. The comparison of the exact and approximate solutions yields the numerical result for example (2) 
 

 
 
 
 
 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 𝜏 𝜐 𝜅 = 0.85 𝜅 = 0.9 𝜅 = 0.95 𝐸𝑥𝑎𝑐𝑡 𝐸𝑟𝑟𝑜𝑟 

  0 0. 0. 0. 0. 0. 

  
6



 
0.489578 0.491835 0.493619 0.495025 0.00140562 

𝑃(𝜐, 𝜏) 
𝑄(𝜐, 𝜏) 

0.01 
3



 

0.847973 0.851883 0.854974 0.857408 0.00243461 

  
2



 
0.979155 0.98367 0.987239 0.99005 0.00281124 

 𝜁 𝜏 𝜐 𝜅 = 0.85 𝜅 = 0.9 0.95 =  𝐸𝑥𝑎𝑐𝑡 𝐸𝑟𝑟𝑜𝑟 

   0 1.08213 1.08712 1.09107 1.09417 0.0031069 

   
6


 1.82674 1.83516 1.84182 1.84707 0.00524474 

𝑃(𝜐, 𝜁, 𝜏) 0.1 0.01 
3

  3.08371 3.09793 3.10916 3.11802 0.0088536 

   
2

  
5.20558 5.22958 5.24855 5.2635 0.0149457 

 𝜁 𝜏 𝜐 𝜅 = 0.85 𝜅 = 0.9 𝜅 = 0.95 𝐸𝑥𝑎𝑐𝑡 𝐸𝑟𝑟𝑜𝑟 

   0 0.885976 0.890061 0.89329 0.913931 0.0206408 

   6

  
1.49561 1.50251 1.50796 1.5428 0.0348435 

𝑄(𝜐, 𝜁, 𝜏) 0.1 0.01 3

  
2.52473 2.53637 2.54557 2.60439 0.058819 

   2

  
4.26197 4.28162 4.29715 4.39645 0.0992919 

 𝜁 𝜏 𝜐 𝜅 = 0.85 𝜅 = 0.9 𝜅 = 0.95 𝐸𝑥𝑎𝑐𝑡 𝐸𝑟𝑟𝑜𝑟 

   0 1.08213 1.08712 1.09107 1.11628 0.0252107 

   
6

  
0.64104 0.643995 0.646332 0.661266 0.0149344 

𝐾(𝜐, 𝜁, 𝜏) 0.1 0.01 
3

  
0.379742 0.381493 0.382877 0.391724 0.00884693 

   
2

  
0.224954 0.225991 0.226811 0.232051 0.00524079 
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4. NUMERICAL SIMULATIONS   

Using a new analytical technique based on ET, this study 
solves the FCSNLPDEs with ICs; the outcomes of previous ap-
proaches are not comparable to those of the present techniques. 
Multiple parameter values are provided by Equations (8) and (11) 
in order to give a range of solutions. By allowing the arbitrary pa-
rameters to have varying values in the solutions, a range of solu-
tions may be generated. The collected replies are grouped into cat-
egories. Additionally, 2D and 3D visual representations are created. 
These plots may be described using the following details: Figures 
1, 2, 3, and 4 show different arrangements of lone waves. Figure1 
was produced for the values in Eq. (8), showing: at𝜅 =
0.95,0.9,0.85.,𝜏 = 0.01. This mixture falls within the periodic 
category, in Eq. (11). Figures 2, 3 and 4 are created using𝜅 =
0.95,0.9,0.85.,𝜏 = 0.01. 

The exact solution, which was determined by comparing the 
values of the exact and approximate solutions of FCSNLPDEs dis-
covered in this problem for various values of the variables, 0 ≤

𝜐 ≤
𝜋

2
, 𝜏 = 0.01, is provided in Table1. Tables 2, 3 and 4 are con-

tains the approximate solutions, which was ascertained by  
comparing the values of the exact solutions of FCSNLPDEs for 

various values of the variables, 0 < 𝜐 ≤
𝜋

2
, 𝜁 = 0.1, 𝜏 = 0.01. It 

was discovered that the proposed methods were effective and fea-
sible. The simulations were conducted and the results analysed us-
ing the Wolfram Mathematica software. 

5. CONCLUSION  

In order to solve FCSNLPDEs using ICs, we created the ET in 
this study. To demonstrate the usefulness of the proposed method, 
two examples are provided. It may be possible to handle the solu-
tions in a very basic manner.  

The method may be used to tackle a range of initial value prob-
lems because to its exceptional ability to solve FCSNLPDEs for var-
ious values of fractional orders. Furthermore, 2D and 3D graphs 
and tables were used to show how the recommended strategy in-
fluenced the results. This clearly shows that the new method con-
siderably outperforms the fields when compared to the older meth-
ods. In this article we just want to demonstrate the effectiveness of 
the method discussed and in the near future we will compare this 
method with other methods to confirm its effectiveness in solving 
other fractional equations. Also we will consider in future studies 
the possibility of adapting this approach to other complex systems 
or fuzzy differential equations. There will be further study done on 
how to apply this approach to more complex problems, how to in-
tegrate it with more sophisticated computer techniques, and how to 
apply it in the actual world for problems like biological system sim-
ulation and epidemic prediction. This advancement creates new av-
enues for identifying novel solutions to challenging problems in sci-
ence. Future research will apply the proposed approach to biologi-
cal simulations and epidemic prediction, extend it to more intricate 
and stochastic systems, and increase computer efficiency using ad-
vanced techniques. 
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