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Abstract: This paper presents a new approach for solving several fractional coupled systems of nonlinear partial differential equations
(FCSNLPDEs) using initial conditions (ICs). This approach is based on the Elzaki transform (ET). A comprehensive description is provided
to facilitate understanding of the procedure. The applicability and validity of this technique for solving FCSNLPDE problems in a few steps
have been demonstrated. Using this approach, both linear and nonlinear FCSPDEs can be solved without the need for discretization
or restrictive assumptions. This method requires fewer numerical calculations because it does not introduce approximation errors.
Numerical examples are presented to illustrate the accuracy and efficiency of this new technique. To further illustrate how the suggested
approach affected the outcomes, 2D and 3D graphs and tables were employed.
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1. INTRODUCTION

Many applications in physics are simulated using fractional
nonlinear PDEs (FNLPDEs). Even though a lot of academics are
willing to study these models, they insist on using different methods
to identify answers that are explicit, exact, or approximate. In recent
times, a lot of scholars have been interested in solving ODEs,
PDEs, and integral equations. Many authors have also concen-
trated on investigating various methods for solving NLPDEs.

Although fractional derivatives (FDs) are not new to mathemat-
ics, their application in research has lagged for a considerable
amount of time. The prevalence of non-equivalent formulation of a
fractional derivative may be one reason for its disfavor [1]. Further-
more, because FDs are non-local, they cannot be accurately inter-
preted geometrically [2]. FDs are capable of explaining a wide
range of events, such as the nonlinear oscillation of earthquakes
[3] as well as the mistake in the fluid-dynamic traffic model resulting
from the belief of continuous traffic flow [4]. According to empirical
data, fractional order phenomena in DEs and FPDEs for seepage
flow in porous media are proposed by [5] and [6], respectively.
Mainardi [7] provides an outline of a few uses of FDs in continuous
mechanics and statistical mechanics. Numerous authors have
studied the analytical findings on the uniqueness and existence of
FDE solutions [1, 8]. In recent times, a variety of methods, including
Homotopy Analysis and Adomian decomposition, have been em-
ployed to solve dynamic systems that comprise FDs, FDEs,
FPDEs, and FIDEs [9-13]. Due to their non-local character, frac-
tional operators (FO) are a valuable tool for analyzing phenomena
involving the memory effect. We underline that a PDE can be con-
verted from a local to a nonlocal one by substituting a specific FO
for the standard derivative with respect to time.
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Some of the excellent studies that have been recently covered
is the one conducted by Shabir Ahmad et al.[14 - 18] are Dynamical
study of a novel 4D hyperchaotic system [14], Dynamical Analysis
of Bio-Ethanol Production Model under Generalized Nonlocal Op-
erator in Caputo Sense [15], A hybrid analytical technique for solv-
ing nonlinear fractional order PDEs [16], Mathematical Analysis of
Biodegradation Model under Nonlocal Operator in Caputo Sense
[17] and Analysis of the seventh-order Caputo fractional KdV equa-
tion [18].

This essay will solve SFPDEs using the innovative ET method.
Boundary value problems are resolved with ET and its variations.
The novel process gives better accuracy since different initial ap-
proximations are used in all iteration of the solution, in contrast to
the recommended approach [17], which puts the result in a finite
series form which is simple to calculate. A number of the difficulties
are addressed using the general explanation of the suggested rem-
edy. Finding analytical solutions with ICs for FCSNLPDEs is chal-
lenging. The current work uses a relatively simple to comprehend
and implement approach to produce closed-form analytical solu-
tions for the FCSNLPDEs.

The suggested method offers a fresh approach to broadening
the use of fractal techniques to a variety of systems with highly ac-
curate results. This method may show great promise in the near
future for creating and using intricate fractal models in a variety of
domains, including engineering and physics. The freshly developed
method has two distinct features: it is simple to use and offers rec-
ommendations for choosing the initial iteration, selecting the first
iteration is crucial since it can initiate the method's convergence
and enable the calculation of the exact solution in a limited number
of steps, if the ICs are exactly zero, we can choose the first iteration
all or a subset of the inhomogeneous terms.
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Because this method relies entirely on the ET transform and
initial conditions, it will be ineffective if the ET is missing for the
fractional derivative or if the initial conditions are not present. Also,
if the initial iteration is not chosen correctly, we may not reach a
convergence to the exact solution.

In this paper, we employ a particular analytical method that uti-
lizes the ET to solve FCSNLPDEs. Examples are given to illustrate
this method's efficacy and dependability. This method can be used
to solve functional equations that arise from numerical modeling of
many processes.

Definition 1: Following are the definitions for the Riemann-Liou-
ville (R-L) operator of order

K>0,of<I>EC,,u2—1,

J*®(B) = f (B —0)“'®(0)do,k >0,

Ir(x)
J1°®(B) = ®(B).

Properties of %,
For @™ € CynmE€N,k,A=0ando = —1:

JJ*@(B) = J***®(B),

ric+1)
r'o+k+1)

Definition 2: As stated by Caputo, the FD of ®(B) is:
D¥®(B) = J™*D™p(B),

K+o

]KBO' e

form—1<k<mmeN,B>0,and® € C".

To find an FD's correct order, one computes an ordinary deriv-
ative first, followed by a fractional integral.

Just like the R-L fractional integral operator, the integer-order
integration is a linear process:

J*Ziz1 c®i(B)) = Xisy ¢ “®i(B),

{c;}7-, are constants.

[10], explains that FD is believed to possess a Caputo meaning in
the current inquiry, which supports the application of the Caputo
definition. One of the great advantages of the Caputo fractional de-
rivative is that it allows traditional initial and boundary conditions to
be included in the formulation of the problem. In addition, its deriv-
ative for a constant is zero, therefore, Caputo fractional derivative
was chosen in this paper.

2. ELZAKI TRANSFORM

In general, the ET is described as:
E[®(t)] =0 f0w<1>(r)e_% dt =T(0),t>0, (1)

o is a complex value.

PDEs, ODEs, and integral equations in [1-4] and [23-25, 27-
32] can all be resolved with ET. Effective application of ET is pos-
sible while Sumudu and Laplace transforms fail to handle DEs hav-
ing variable coefficients [26].

Theorem 1: [2] The partial derivatives are converted by ET in
the following ways:

£ [acp(vr)] _ T(U 0) —0®(v,0),E [8<D(UT)] =
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d
- [T 0],
920 (v,1) 1 _
E[ 200 = 21, 0) <D(v 0)
0% (v,0) 22 <D(v1.') _ a°
0 ot '’ [ ov2 - dv2 [T(U, O)]
ET of some functions:
(1) E[®(r)] =T(0)
1 0?
T 03
.L.n n! 0n+2
ea‘r 02
1—ao
sinat ao?
1+ a?0?
cosart 0?
1+ a?0?

In this instance, we offer a few lemmas that enable func-
tion ®(A) inference from its ET.
Lemma 1: ETof R-L operator of order k > 0 is

E[J*®(A)] = 0*T(0).
Proof: We establish by
1 4 -1 —
E[J*®(4)] = E[mf (A—B)*'®(B)dB| =

m; T(o)G(o) = 0*T(0)

where
G(0) = E[A*™ '] = 0" (k).

Lemma 2: ET of Caputo fractional (CF) derivative for
k>0m—-—1<k<mmEeEN,

i

% (v,0)
T(,0) ®@0) —H
E[Df(P(U,‘[)] = oMK om om-—2 om-3 ’
o™ (v, 0)
- grm-1
or
E[DF®d(v,7)] = =E[@ (v, 1)] — I, 150w0) amperic

otk
—1<KSm,

The following is the definition of the Mittag-Leffler functions:

® 7" o Ll
€ (1) = Xn=o rink+1)’ €ea (1) = Zao rne+)’

Where I’ is the gamma function and x,A are complex
parameters with real part are zero.

Lemma 3:
fx, 1 >0,aeC andix > |al, then:

E‘l[ 1]—‘[’1 L g, (—at®).

1+ao¥

Proof:
o+t _ A1 1 oMt ne,K\n
1+ao® 0 1+ao" Z 0(—61) (O )

— Zoo 0(_a)n nk+A+1
n=
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Then

E-1 [1+aOK] — —1[2220(_a)n0nx+l+1] —

(_a)n.[nx+a—1 _

Yn=o0

-1y (cat)" -1 ¢
n= 01"(mc+l)

r(nk+A)

T ka (—at’).

3. THE NOVEL ANALYTICAL METHOED

The primary concept of the suggested plan of study will be
made clearer by applying the SFPDE in the following ways,

D‘:-CP(U,T) + Rl[P'Q'Pv' QU] +N1[P'Q'PU'QU] = gl(U'T)'
D.:-CQ(U,T) + RZ[P' Q' PU! Qv] + NZ[P' Q!PU' Qv] = gZ(UvT)'

0<k<10<v<kt>0k>0 2)
with the ICs,
P(v,0) = hy(v),Q,0) = hy(v) 3)

Where D¥ is a Caputo FD,R, R,,N;, N,are linear and nonlin-
ear operators, and g, (v, 1), g, (v, T) are inhomogeneous terms.
Taking ET of Egs. (2), to get:
E[D‘:'CP(U'T)] + E{Rl[Pr Qerr QU] + Nl[Pr QIPU' Qv]} =
E[g:(v, )],
E[D‘:'CQ(va)] + E{RZ[P' Qerr QU] + NZ[Pr Qerr Qv]} =
E[gZ (U' T)]r (4)
E(P(v, 1)) = 0%hy(x) — 0*E{R,[P,Q,P,, Q,] +
Nl [P: Q' Pvr Qv] - gl(vr T)},
E(Q(U' T)) = 02h2 (x) - OaE{RZ [P: Q' Pv: Qu] +
NZ [P: Q: Pvt Qu] - gZ(Ur T)}

Solutions of Egs. (2), should be performed using the series form
that follows:

P, 1) = Xn=o Pa(v,7),Q(v, T) = L= Cn (v, ). (5)
Using Eqgs. (5) and the inverse of ET to Egs. (4), to get:

Tnzo P, D) = Gi(v,7) — E"H{o"E[R,[P,Q, R, Q] +

Ni[P,Q, P, Q,1]}

Yn=0Q@,7) = G,(v,7) — E"*{0"E[R,[P,Q,P,, Q,] +
NZ[PI Qva: Qv]]} (6)

G, (v, T), G, (v, T) are the terms found that come from the source
terms and the ICs.

This approach is dependent on how we select the initial itera-
tions Py, Qythat yield the precise solutions in a constrained amount
of steps. The solutionsP (v, 7), Q(v, T), can be found iteratively
using the foIIowing relations
{ KE [Rl[Pn! Qn: (P )vv (Qn) ] ]}

+N1 Pn' Qn' (P )Ul (Qn) ]

RZ P Qn (P )v (Qn) ]
RoArArANCRN|| )

From Egs. (7) and (4), we can determine that:

P01P1rP2 llll QO'erQZ’---f

Pi(u,1) =
Py(v,7) = Gl(v ),
Quia ) = B o |
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using Egs. (5) to find the solution.

4. ILLUSTRATIVE EXAMPLES

Using the process described in this study, we produced the ex-
act solutions for FCSNLPDEs and compared them with the known
exact solutions.

Example 1: Consider the FCSNLPDE

DEP(v,7) + P — 2PP, + (PQ), = 0,0 <k < 1,

DrQ(v, 1) +Q —2Q0Q, + (PQ), =0 (8)
with the ICs
P(v,0) =sinv,Q(v,0) = sinv 9)

Using the ET of Egs. (8) and ICs, to get:
—E[P] = P(v,0)0%™ + E[P] = E[2PP, — (PQ),],

—E[Q] - Q(v, 000> + E[Q] = E[2QQ, — (PQ), ],

2
sinv
1+0%

E[P] = (PQ)y],

2

E[Q] = 2 sinv + —E[2QQ, — (PQ),]

1+o0*
Inverse ET shows:
P(v,7) =€, (—t%)sinv+ E~! {

E[2PP, - (PQ),1},
Q(,7) =€, (—t9) sinv + E~ {{7E[200, — (PQ), ]}

The iteration formulas that utilize an initial approximation are as
follows:

P (0,7) = E {HKE[ZP (P)o — (aQu)ol},
Qa0 1) = 7 {22 E[20,(Qu)y — (P@u)ul),

Py(v,7) =€, (—1%) sinv, Qy(v, 1) =€, (—1*) sinv, (10)
Then we find:

1+0%

ok
1+0%

P, 7) = EH = E[0]} = 0,0 (v, 1) = B { E[0]} =0

140%
Then, using (5), to get:
P(v,1) =€, (—1™) sinv,Q(v, 1) =€, (—7) sinv,
Ifx = 1, then:
P(v,t) =e Tsinv,Q(v,7) = e Tsinv
Example 2: Consider the FCSNLPDE
DEP(,4,7) + QuK; — Q:K, = —P,0 <k <1,
DfQ(,{,7) + PK; + P;K, = Q,
DfK(v,{,7) + RQ; + P;Q, = K (11)
with the IC and BCs
P(,{,0) =e"",Q,{,0) = e’ 5, K(v,{,0) = eV (12)
Using similar steps as in example 1, to obtain:

P@,6,7) =€, (=190 + E7 o E[QuK; — 0k, ]),
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Q. {,1) =€, (T¥)eV ¢ - E‘l{ o E[P,K; + ngu]},

1-o¥

K@,,1) =€, (@9)ef — E {2 E[R,Q; + P;Q,]}

1-o0*
The recurring connections are as follows:

ok

P @,87) = B {0 E[(Qn)y (K = (@u)e (K]}

= Py =€, (—1%)ev*¢

Oki

Qua (0.6,7) = ~E~ {2 B[Ry (Ka); + (B (]
= Qo =€, (e,

Knaa @,0,7) = —E7 (=22 E[(@u); (P)y + (@) (P} a)
= Ky =€, (1)ef™V (13)
From Egs. (13), we get: p o
Py = EH L E[0]} = 0,0, = ~E (-2 E[0]} = 0, ; o
Ky =-E"{-=_E[0]} = 0 ;
Using Eq. (11) to get: 2
P =€, (—1)e¥*¢,Q =€, (17)e? %, K =€, (t%)ef™V e — o = =
The subsequent exact solutions can be obtained if k = 1, (b)
P(,{,1) =e" 5,0, (1) = e’ " K(,{,7) = Fig. 2. (a) Comparing the provided method's 3D representations of the
ol-vHT solutions to the exact solutions for Eq. (11), P (v, {, T) the

outcome in comparison to the exact solutions, (b) represent the
solutions at k = 0.95,0.9,0.85

M Exact

W x=0.95
Wx=09
ki k=085
(a)
(a)
10 Exact .
s
k=09 4 x=o:9
08
k=085 x=0.85
06 s
04 2
02 -
[ 05 10 15 (b)
(b) Fig. 3. (@) Comparing the provided method's 3D representations of the
Fig.1. (@) Comparing the provided method's 3D representations of the solutions .t° the exa.ct solutions for Eq. (11.)’ Qv,¢,7) the
solutions to the exact solutions for Eq. (8), the outcome in outhme in comparison to the exact solutions, (b) represent the
comparison to the exact solutions, (b) represent the solutions at solutions at x = 0.95,0.9,0.85

x = 0.95,0.9,0.85
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Exact
k=095
k=09

¥ =085

Fig.4. (a) Comparing the provided method's 3D representations of the solutions to the exact solutions for Eq. (1), K (v, {, ) the outcome in comparison to

the exact solutions, (b) represent the solutions at k = 0.95,0.9,0.85

Tab. 1. The comparison of the exact and approximate solutions yields the numerical result for example (1)

T v Kk = 0.85 k=209 K = 0.95 Exact Error
0 0. 0. 0. 0. 0.
z 0.489578 0.491835 0.493619 0.495025 | 0.00140562
6
P(v,7) 0.01 z 0.847973 0.851883 0.854974 0.857408 | 0.00243461
Q1) 3
T 0.979155 0.98367 0.987239 0.99005 | 0.00281124
2
Tab. 2. The comparison of the exact and approximate solutions yields the numerical result for example (2)
4 T v K = 0.85 k=109 xk=0.95 Exact Error
0 1.08213 1.08712 1.09107 1.09417 | 0.0031069
% 1.82674 1.83516 1.84182 1.84707 | 0.00524474
P(w,¢,7r) | 01| 0.01 % 3.08371 3.09793 3.10916 3.11802 | 0.0088536
% 5.20558 5.22958 5.24855 5.2635 0.0149457
Tab. 3. The comparison of the exact and approximate solutions yields the numerical result for example (2)
{ T v K = 0.85 k=0.9 x = 0.95 Exact Error
0 0.885976 0.890061 0.89329 0.913931 | 0.0206408
% 1.49561 1.50251 1.50796 1.5428 0.0348435
Q@,¢,7) | 01 | 0.01 % 2.52473 2.53637 2.54557 2.60439 0.058819
% 4.26197 4.28162 4.29715 439645 | 0.0992919
Tab. 4. The comparison of the exact and approximate solutions yields the numerical result for example (2)
4 T v K = 0.85 k=109 K = 0.95 Exact Error
0 1.08213 1.08712 1.09107 1.11628 0.0252107
% 0.64104 0.643995 0.646332 0.661266 0.0149344
K@w,{,7) | 0.1 | 0.01 % 0.379742 0.381493 0.382877 0.391724 | 0.00884693
% 0.224954 0.225991 0.226811 0.232051 | 0.00524079
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4. NUMERICAL SIMULATIONS

Using a new analytical technique based on ET, this study
solves the FCSNLPDEs with ICs; the outcomes of previous ap-
proaches are not comparable to those of the present techniques.
Multiple parameter values are provided by Equations (8) and (11)
in order to give a range of solutions. By allowing the arbitrary pa-
rameters to have varying values in the solutions, a range of solu-
tions may be generated. The collected replies are grouped into cat-
egories. Additionally, 2D and 3D visual representations are created.
These plots may be described using the following details: Figures
1,2, 3, and 4 show different arrangements of lone waves. Figure1
was produced for the values in Eq. (8), showing: atkx =
0.95,0.9,0.85.,7 = 0.01. This mixture falls within the periodic
category, in Eq. (11). Figures 2, 3 and 4 are created usingx =
0.95,0.9,0.85.,7 = 0.01.

The exact solution, which was determined by comparing the
values of the exact and approximate solutions of FCSNLPDEs dis-
covered in this problem for various values of the variables, 0 <

v < g T = 0.01, is provided in Table1. Tables 2, 3 and 4 are con-

tains the approximate solutions, which was ascertained by
comparing the values of the exact solutions of FCSNLPDEs for
various values of the variables, 0 < v < ~,¢ = 0.1,7 = 0.01L. It

was discovered that the proposed methods were effective and fea-
sible. The simulations were conducted and the results analysed us-
ing the Wolfram Mathematica software.

5. CONCLUSION

In order to solve FCSNLPDEs using ICs, we created the ET in
this study. To demonstrate the usefulness of the proposed method,
two examples are provided. It may be possible to handle the solu-
tions in a very basic manner.

The method may be used to tackle a range of initial value prob-
lems because to its exceptional ability to solve FCSNLPDEs for var-
ious values of fractional orders. Furthermore, 2D and 3D graphs
and tables were used to show how the recommended strategy in-
fluenced the results. This clearly shows that the new method con-
siderably outperforms the fields when compared to the older meth-
ods. In this article we just want to demonstrate the effectiveness of
the method discussed and in the near future we will compare this
method with other methods to confirm its effectiveness in solving
other fractional equations. Also we will consider in future studies
the possibility of adapting this approach to other complex systems
or fuzzy differential equations. There will be further study done on
how to apply this approach to more complex problems, how to in-
tegrate it with more sophisticated computer techniques, and how to
apply it in the actual world for problems like biological system sim-
ulation and epidemic prediction. This advancement creates new av-
enues for identifying novel solutions to challenging problems in sci-
ence. Future research will apply the proposed approach to biologi-
cal simulations and epidemic prediction, extend it to more intricate
and stochastic systems, and increase computer efficiency using ad-
vanced techniques.
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