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Abstract: In this study, the static bending and free vibration of a bilaterally coated magneto electro elastic (MEE) functionally graded (FG) 
microbeam is analysed by using a high order quasi-3D beam theory, along with a Differential Quadrature Finite Element Method (DQ-FEM). 
The power formulation for FG gradation through the thickness direction is considered. The microbeam consists of two materials, one pos-
sessing piezo-magneto-electric characteristics and the other without them. The material characteristics are progressively graded from the 
outermost surfaces to the innermost core. In order to localize the microstructural effect of the beam, the modified couple stress theory (MCST) 
is incorporated. By the application of Lagrange's theorem and Gauss-Lobato node scheme, the general governing equation are established. 
Through the implementation of the established model, “the static bending and free vibration” analysis are determined. To illustrate the 
effectiveness and accuracy of this particular numerical resolution method, the obtained results are validated with similar outcomes in existing 
literature. The effects of the material gradation volume fraction index, and the length-thickness ratio on the natural frequencies and static 
bending are investigated. The results reveal that the material distribution plays a significant role in influencing both static bending and free 
vibration behavior. Material composition plays a critical role, with higher proportions of MEE material enhancing the piezoelectric effect and 
magnetostrictive response, respecting the material gradation with optimized combinations of MEE material for higher deflection and optimal 
electric and magnetic potentials. This study provides a comprehensive framework for optimizing MEE microbeams in applications requiring 
precise control of mechanical, electrical, and magnetic responses. 
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1. INTRODUCTION 

Magneto-electro-elastic materials have sparked widespread at-
tention due to their multifunctional features, which integrate me-
chanical, electrical, and magnetic forces. These materials are com-
monly employed in sophisticated engineering applications such as 
sensors, actuators, and energy harvesters. Understanding these 
materials' mechanical behavior, particularly in microbeam struc-
tures, is critical for maximizing their performance and dependability 
in practical applications [1-4]. “In addition, functionally graded ma-
terials (FGM) exhibit continuous changes in properties through var-
ious direction. FGM offer several benefits, including temperature 
protection, sound insulation, and energy and electromagnetic wave 
absorption [5-7]. Currently, scientists have been interested in eval-
uating the mechanical behavior of laminated-surface- piezoelectric 
in host structures [8]. Research into multilayer magneto-electro-
elastic functionally graded materials (MEE-FGMs) on thin beams 
and plates has gained popularity in recent years. [9] investigated 
the free vibration behavior of both anisotropic and linear MEE-FGM 
plates. [10] suggested a meshless approach for analyzing the 
bending of circular MEE-FGM plates. [11] conducted an inquiry into 
the implications of porosity on the nonlinear deformation character-
istics exhibited by functionally graded magneto-electro-elastic 
smart shells in the context of simultaneous application of loads. [12] 
analyzed the static bending and the free vibration of a transversely 
isotropic magneto-electro-elastic beam including microstructure 
and foundation effects. [13] studied the bending and vibration of FG 

MEE Timoshenko Microbeams and added wave propagation anal-
ysis [14]. [15] developed a microstructure-dependent anisotropic 
magneto-electro-elastic Mindlin plate model via a modified couple 
stress theory. Notably, [16] introduced an isogeometric model to 
study size-dependent effects in magneto-electro-elastic mi-
crobeams. Their work highlights the role of gradient index variations 
in tailoring MEE responses. Similarly, [17] conducted nonlinear 
bending analysis on nonlocal MEE laminated nanobeams and em-
phasized the influence of boundary conditions and external elec-
tric/magnetic potentials. The thermal buckling behavior of MEE 
nanobeams has also been explored by [18] who employed von Ká-
rmán’s nonlinear equations to examine the impact of temperature 
gradients and electrical/magnetic fields. Further, [19] investigated 
the nonlinear vibrations of flexoelectric functionally graded nano-
plates under the influence of a magnetic field, demonstrating the 
importance of electromechanical interactions at the nanoscale. [20] 
extended this research by analyzing nonlinear deformations of 
MEE nanobeams resting on an elastic foundation, using a modified 
couple stress theory to accurately capture nonlocal effects. Addi-
tionally, [21] investigated the free vibration characteristics of MEE 
nanobeams in a thermal environment, revealing the dependency of 
natural frequencies on length and thickness variations. In the con-
text of buckling analysis, [22] focused on size-dependent magneto-
electromechanical buckling using strain gradient theory, showing 
how mechanical and electrical fields affect stability conditions. Non-
linear postbuckling behavior has been studied by [23], who ana-
lyzed magneto-electro-thermo-elastic laminated microbeams 
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incorporating the modified couple stress theory and Reddy’s shear 
deformation theory. Their results provide key insights into the com-
bined effects of temperature, magneto-electric potential, and slen-
derness ratio on postbuckling performance. [24] introduced a con-
tinuum-based model for functionally graded conical nano/mi-
croshells, demonstrating how flexoelectric effects influence static 
and vibrational behaviors. [25] presented a nonlinear dynamic 
model for geometrically imperfect functionally graded MEE nano-
beams, which is essential for understanding real-world imperfec-
tions in nanostructures. Recent models, such as the axially func-
tionally graded (AFG) micro-beam based on strain gradient elastic-
ity theory (RSGET), incorporate size effects and material inhomo-
geneity to analyze the static and dynamic responses at the micro-
scale [26]. Similarly, isogeometric analysis (IGA) has been applied 
to magneto-electro-elastic functionally graded microplates, high-
lighting the impact of microstructure effects on mechanical and 
electromagnetic behaviors [27]. Additionally, a new IGA model for 
magneto-electro-elastic curved microbeams, considering size ef-
fects and the modified couple stress theory (MCST), offers insights 
into the bending and vibration behaviors of functionally graded 
structures [16]. These models are essential for optimizing the per-
formance of micro-sensors, actuators, and other micro-scale de-
vices. “Numerous investigations [28, 29] have demonstrated that 
thin beams and plates typically display size effects. Classical theo-
ries at the micro/nano scale cannot account for non-local interac-
tions of material particles at such small scales due to a lack of ma-
terial length scale parameters. To anticipate size effects, a variety 
of theories with extra material properties have been developed, in-
cluding couple stress theories [30-32], strain gradient theories [33-
35]. These concepts were effectively used to generate size-de-
pendent structural models at extremely tiny scales. For example, 
based on nonlocal theories, a variety of MEE beam and plate mod-
els have been created to capture non-local size effects [36-39], in 
which a non-local medium with long-range material interactions is 
used. [40] suggested a non-local strain gradient theory that incor-
porates both non-local and strain gradient effects, and the bending, 
buckling, and free variation issues of FGM beams have been re-
solved [41, 42].” “Researchers frequently employ 1st “order shear 
deformable beam theory”, (HSBT) “higher-order shear deformable 
beam theory”, and shear and “normal deformable beam theory”, 
commonly known as Q3D theory. The FSBT is the simplest model, 
but it necessitates a shear correction factor as it does not fulfil the 
zero traction boundary criterion at the top and bottom surfaces of 
the beam [43],[44]. The “HSBT” theories were suggested, that en-
hanced the “transverse shear stress distribution” and, as a result, 
removed the need for a “shear correction factor” (SCF) [45]. How-
ever, HSBT theories do not take into consideration the usual strain 
as well as stretch effect, which then becomes highly relevant and 
should be considered for thick typical FGBs. As a consequence, 
Q3D theories [46], [47] that take shear and stretching effects into 
account are created by employing the idea of higher order variation 
in both transverse and axial displacements”. In recent decades, nu-
merical and semi-numerical methods, such as the finite element 
method (FEM) and the generalized differential quadrature method 
(GDQM), have gained popularity for their efficiency, flexibility, and 
adaptability in solving differential equations related to structural el-
ements with complex effects, including geometries, shapes, inter-
actions, boundary conditions, and more, with precise results. Since 
then, other investigations have been conducted using these numer-
ical approaches. [48] investigated the dynamic behavior of function-
ally graded porous beams sitting on a viscoelastic foundation using 
GDQM. Dahmane et.al studied the influence of crack on the 

dynamic behavior of bidirectional imperfect FG beams on an elastic 
basis via FEM. [49] used the DQFEM to investigate the dynamic 
behavior of on-board shafts. [50] investigated the vibration and 
buckling characteristics of nano-composite beams reinforced with 
agglomerated carbon nanotubes using the DQFEM. A combined 
study between DQFEM and MCST to analyze the dynamic behav-
iors of microbeams was used in several works [51, 52]. 

The present paper uses the extended modified couple stress 
theory to develop a bilaterally coated MEE microbeam model via 
the refined high order beam theory combined with the DQFEM for 
the first time to solve the static bending and free vibration. 

The proposed bilaterally coated magneto-electro-elastic (MEE) 
microbeam, analyzed using a quasi-3D beam theory and DQ-FEM, 
has potential applications in various engineering fields. The unique 
electromechanical coupling behavior enables its use in microelec-
tromechanical systems (MEMS) such as high-sensitivity sensors, 
actuators, and vibration-based energy harvesters. In biomedical 
engineering, it can be employed in micro-pumps, biosensors, and 
drug delivery systems. Additionally, the tailored functionally graded 
composition makes it suitable for aerospace applications, including 
adaptive structures and damping mechanisms. These diverse ap-
plications highlight the significance of the proposed model in ad-
vancing smart material-based technologies. 

2. FORMULATION 

2.1. MEE FG microbeam model 

This study considers a microbeam of length L, width b, and 
thickness h, as shown in figure 1, from which the material charac-
teristics are progressively graded from the outer surfaces to the in-
ner core. 

 
Fig. 1. Piezo- bilaterally FG microbeam model 

 
The material characteristics are considered to change continu-

ously in two opposite direction throughout the thickness (z-axis) 
based on the power-law distribution [52]. The following equations 
describe the distribution of material characteristics in FG materials: 

𝑃(𝑧) = (𝑃1 − 𝑃2) (||
2𝑧

ℎ
| − 1|)

𝑘𝑧

+ 𝑃2                                      (1) 

Where 𝑃(𝑧) represent “elastic stiffness, couple stress stiff-
ness, piezoelectric constant, piezomagnetic constant, dielectric 
constant, magnetic permeability constant, magneto-dielectric con-
stant and density”. 

The total strain energy in this particular situation is as follow.  

𝑈 =
1

2
∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗 − 𝐷𝑖𝐸𝑖 −𝐵𝑖𝐻𝑖)𝑑𝐴𝐴

𝑑𝑥
𝐿

0
              (2) 
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The equations representing “transversely isotropic magneto-
electro-elastic materials” are provided in accordance with the ex-
tended MCST[12]. Where 𝜎𝑖𝑗, 𝑚𝑖𝑗 , 𝐷𝑖, 𝐵𝑖 represent the “Cauchy 

stress tensor, deviatoric couple stress tensor, electric displace-
ments, and magnetic fluxes:  

{

𝜎𝑥𝑥
𝜎𝑧𝑧
𝜎𝑧𝑥

} = [
𝐶11 𝐶13 0
𝐶13 𝐶33 0
0 0 𝐶55

] {

𝜀𝑥𝑥
𝜀𝑧𝑧
2𝜀𝑥𝑧

} − [
0 𝑞31
0 𝑞33
𝑞15 0

]{
𝐻𝑥
𝐻𝑧
} −

[
0 𝑒31
0 𝑒33
𝑒15 0

] {
𝐸𝑥
𝐸𝑧
}                                                                            (3) 

{
𝑚𝑦𝑧

𝑚𝑥𝑦
} = [

𝐴44 0
0 𝐴66

] {
2𝜒𝑦𝑧
2𝜒𝑥𝑦

}                                                    (4) 

{
𝐷𝑥
𝐷𝑧
} = [

0 0 𝑒15
𝑒31 𝑒33 0

]{

𝜀𝑥𝑥
𝜀𝑧𝑧
2𝜀𝑧𝑥

} + [
𝑠11 0
0 𝑠33

] {
𝐸𝑥
𝐸𝑧
} +

[
𝑑11 0
0 𝑑33

] {
𝐻𝑥
𝐻𝑧
}                                                                          (5) 

{
𝐵𝑥
𝐵𝑧
} = [

0 0 𝑞15
𝑞31 𝑞33 0

] {

𝜀𝑥𝑥
𝜀𝑧𝑧
2𝜀𝑧𝑥

} + [
𝜇11 0
0 𝜇33

] {
𝐻𝑥
𝐻𝑧
} +

[
𝑑11 0
0 𝑑33

] {
𝐸𝑥
𝐸𝑧
}                                                                           (6) 

 
The parameters (𝐶11, 𝐶13, 𝐶55) , (𝐴44, 𝐴66) describe the 

elastic stiffness tensor and the couple stress tensor, with:  

𝐴𝛼𝛽 = 𝐶𝛼𝛽𝑙
2                                                                                (7) 

where 𝑙 is the material length scale parameter (MLSP). 
𝑞𝑖𝛼, 𝑒𝑖𝛼, 𝑠𝑖𝑗 , 𝜇𝑖𝑗, 𝑑𝑖𝑗  are the piezomagnetic tensor, the piezoelec-

tric tensor, the dielectric tensor, the magnetic permeability tensor, 
and the magneto-dielectric tensor respectively. And 𝜀𝑖𝑗 , 𝜒𝑥𝑥 are 

“the strain tensor and the rotationally symmetric gradient tensor”, 
which are described by the following equations: [53] 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                                       (8) 

𝜒𝑖𝑗
𝑠 =

1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖)                                                                     (9) 

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗                                                                             (10) 

The variables 𝑢𝑖 and 𝜃𝑖 represent the components of the dis-
placement vector and rotation vectors, respectively. 𝑒𝑖𝑗𝑘 is the per-

mutation symbol. Also, 𝐸𝑖 and 𝐻𝑖 represent the electric field and 
magnetic field intensities, respectively. [15] 

𝐸𝑖 = −𝛷,𝑖    ,    𝐻𝑖 = −𝑀,𝑖                                                          (11) 

𝛷 and 𝑀 represent the “electric and magnetic potentials, 
respectively. 

In accordance with the higher order quasi-3D beam theory [50], 
The current study posits that the field of displacement at any ran-
dom spot on the microbeam can be expressed as follows: 

{
𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧

𝑑𝑤𝑏

𝑑𝑥
+ 𝑓(𝑧)

𝑑𝑤𝑠

𝑑𝑥

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + 𝑔(𝑧)𝑤𝑧(𝑥, 𝑡)
               (12) 

The transversal displacement is divided into two components, 
notably 𝑤𝑏, 𝑤𝑠  and 𝑤𝑧, following this method. Where 𝑢, 𝑤𝑏, 𝑤𝑠  
and 𝑤𝑧 represents the displacement in the x-direction, the bending 
component, the shear components and the stretching components 

of the transverse displacement of the points on the neutral axis of 
the beam, respectively. The selection of our function 𝑓(𝑧) is gov-
erned by the shear function provided by Reddy in equation (15). 

𝑓(𝑧) = 𝑧 − (1 − (
4𝑧2

3ℎ2
)) , 𝑔(𝑧) = (1 −

𝑑𝑓

𝑑𝑧
)                         (13) 

The distribution of electric and magnetic potentials in the thick-
ness direction of the piezoelectric inner layer (core) is provided by 
[13]: 

{
𝛷(𝑥, 𝑧, 𝑡) = −cos (

𝜋

ℎ
𝑧) 𝛾(𝑥, 𝑡) +

2𝑧

ℎ
𝛾0

𝑀(𝑥, 𝑧, 𝑡) = −cos(
𝜋

ℎ
𝑧) 𝜁(𝑥, 𝑡) +

2𝑧

ℎ
𝜁0

                               (14) 

The spatial variations of electric potential in the x-direction are 
represented by 𝛾, while the external electric potential is denoted as 
𝛾0. 𝜁 and 𝜁0 represent the spatial variations of the magnetic poten-
tial in the x-direction and the external magnetic potential, respec-
tively. Several studies used uniform distribution in the longitudinal 
direction and linear distribution [54, 55]. Works donne by  Gopina-
than [56] and Wang and Quek [57] demonstrated that a quadratic 
or half-cosine distribution provides a more accurate representation, 
as it better satisfies Maxwell’s static electricity equation. The elec-
tric and megnitic potential distribution we adopted follows this ap-
proach. The choice of electric and magnetic potential distributions 
directly affects the coupling terms in the strain energy expression. 
A different assumption, such as a purely linear distribution, would 
result in different governing equations, potentially missing key cou-
pling effects. By considering a half-cosine and linear variation, the 
proposed model ensures that the strain energy formulation incor-
porates essential electro-magnetic coupling effects without neglect-
ing significant terms. 

By substituting equation (12) into equation (8), the non-zero 
components of the deformation tensor are extracted as: 

{
 
 

 
 𝜀𝑥𝑥 =

𝑑𝑢

𝑑𝑥
− 𝑧

𝑑2𝑤𝑏

𝑑𝑥2
− 𝑓

𝑑2𝑤𝑠

𝑑𝑥2

𝜀𝑧𝑧 =
𝑑𝑔

𝑑𝑧
𝑤𝑧

𝜀𝑥𝑧 =
1

2
𝑔 (

𝑑𝑤𝑠

𝑑𝑥
+

𝑑𝑤𝑧

𝑑𝑥
)

                                                     (15) 

Replacing equation (12) into (10) and (9) gives: 

{
𝜒𝑦𝑧 = 𝜒𝑧𝑦 = −

1

4
(
𝑑2𝑓

𝑑𝑧2

𝑑𝑤𝑠

𝑑𝑥
+

𝑑𝑔

𝑑𝑧

𝑑𝑤𝑧

𝑑𝑥
)

𝜒𝑥𝑦 = 𝜒𝑦𝑥 = −
1

4
(2

𝑑2𝑤𝑏

𝑑𝑥2
+ (

𝑑𝑓

𝑑𝑧
+ 1)

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝑔

𝑑2𝑤𝑧

𝑑𝑥2
)

     (16) 

Introducing equation (14) into (11) yields: 

{
  
 

  
 𝐻𝑥 = (cos(

𝜋

ℎ
𝑧)

𝑑𝜁

𝑑𝑥
)

𝐻𝑧 = (−
𝜋

ℎ
sin (

𝜋𝑧

ℎ
) 𝜁 −

2

ℎ
𝜁0)

𝐸𝑥 = (cos(
𝜋

ℎ
𝑧)

𝑑𝛾

𝑑𝑥
 )

𝐸𝑧 = (−
𝜋

ℎ
sin(

𝜋𝑧

ℎ
) 𝛾 −

2

ℎ
𝛾0)

                                             (17) 

Given Equations (8)-(11), the constitutive equation (2) is de-
rived as follows: 



Besma Khouani, Ahmed Saimi, Ismail Bensaid                                                                                                                                                              DOI 10.2478/ama-2025-0041                                                                                                                      
Bending and Vibration Analysis of Magneto-Electro Bilaterally Coated Quasi-3D Microbeam via DQ-FEM 

340 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

{𝐼1:6} = ∫C11(1, 𝑧, 𝑓, 𝑧𝑓, 𝑧
2, 𝑓2)𝑑𝑧𝑑𝑦 ,

{𝐼8 :10} = ∫ C13
𝑑𝑔

𝑑𝑧
(1, 𝑧, 𝑓)𝑑𝑧 𝑑𝑦 ,

{𝐼12 :14} = ∫𝑒31
𝜋

ℎ
sin(

𝜋𝑧

ℎ
) (1, 𝑧, 𝑓)𝑑𝑧 𝑑𝑦

{𝐼18:19} = ∫𝑔
𝜋

ℎ
cos (

𝜋𝑧

ℎ
) (𝑒15, 𝑞15)𝑑𝑧𝑑𝑦

{𝐼22 :24} = ∫(
𝜋

ℎ
cos (

𝜋𝑧

ℎ
))

2
(𝑠11, 𝜇11, 𝑑11)𝑑𝑧 𝑑𝑦

{𝐼7} = ∫C33 (
𝑑𝑔

𝑑𝑧
)
2

𝑑𝑧𝑑𝑦 , {𝐼11} = ∫𝐶55𝑔
2𝑑𝑧𝑑𝑦  

{𝐼15 :17} = ∫ 𝑞31
𝜋

ℎ
sin(

𝜋𝑧

ℎ
) (1, 𝑧, 𝑓)𝑑𝑧 𝑑𝑦

{𝐼20:21} = ∫
𝑑𝑔

𝑑𝑧

𝜋

ℎ
sin (

𝜋𝑧

ℎ
) (𝑒33, 𝑞33)𝑑𝑧𝑑𝑦

{𝐼25:27} = ∫ (
𝜋

ℎ
sin (

𝜋𝑧

ℎ
))

2
(𝑠33, 𝜇33, 𝑑33)𝑑𝑧 𝑑𝑦

            (18)        

{
{𝐷1:3} = ∫

1

4
𝐴44 ((

𝑑2𝑓

𝑑𝑧2
)
2

, (
𝑑𝑔

𝑑𝑧
)
2
,
𝑑2𝑓

𝑑𝑧2
𝑑𝑔

𝑑𝑧
)𝑑𝑧𝑑𝑦

{𝐷4:9} = ∫
1

4
𝐴66 (1, (

𝑑𝑓

𝑑𝑧
+ 1) , 𝑔, 𝑔 (

𝑑𝑓

𝑑𝑧
+ 1) , (

𝑑𝑓

𝑑𝑧
+ 1)

2
, 𝑔2)𝑑𝑧𝑑𝑦

     

                                                                                                                                             (19) 

𝑈 =
1

2
∫ ( 𝐼1 (

𝑑𝑢

𝑑𝑥
)
2

− 2𝐼2
𝑑𝑢

𝑑𝑥

𝑑2𝑤𝑏

𝑑𝑥2
− 2𝐼3

𝑑𝑢

𝑑𝑥

𝑑2𝑤𝑠

𝑑𝑥2
+

𝑙

0

2𝐼4
𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2
+ 𝐼5 (

𝑑2𝑤𝑏

𝑑𝑥2
)
2

+ 𝐼6 (
𝑑2𝑤𝑠

𝑑𝑥2
)
2

+ 𝐼7𝑤𝑧
2 +

2𝐼8
𝑑𝑢

𝑑𝑥
𝑤𝑧 − 2𝐼9

𝑑2𝑤𝑏

𝑑𝑥2
𝑤𝑧 − 2𝐼10

𝑑2𝑤𝑠

𝑑𝑥2
𝑤𝑧 + 𝐼11 ((

𝑑𝑤𝑠

𝑑𝑥
)
2

+

(
𝑑𝑤𝑧

𝑑𝑥
)
2

+ 2
𝑑𝑤𝑠

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥
) + 2𝐼12

𝑑𝑢

𝑑𝑥
𝛾 − 2𝐼13

𝑑2𝑤𝑏

𝑑𝑥2
𝛾 −

2𝐼14
𝑑2𝑤𝑠

𝑑𝑥2
𝛾 + 2𝐼15

𝑑𝑢

𝑑𝑥
𝜁 − 2𝐼16

𝑑2𝑤𝑏

𝑑𝑥2
𝜁 − 2𝐼17

𝑑2𝑤𝑠

𝑑𝑥2
𝜁 −

2𝐼18 (
𝑑𝑤𝑠

𝑑𝑥

𝑑𝛾

𝑑𝑥
−

𝑑𝑤𝑧

𝑑𝑥

𝑑𝛾

𝑑𝑥
) − 2𝐼19 (

𝑑𝑤𝑠

𝑑𝑥

𝑑𝜁

𝑑𝑥
−

𝑑𝑤𝑧

𝑑𝑥

𝑑𝜁

𝑑𝑥
) +

2𝐼20𝑤𝑧𝛾 + 2𝐼21𝑤𝑧𝜁 − 𝐼22 (
𝑑𝛾

𝑑𝑥
)
2

− 𝐼23 (
𝑑𝜁

𝑑𝑥
)
2

− 2𝐼24
𝑑𝜁

𝑑𝑥

𝑑𝛾

𝑑𝑥
−

𝐼25𝛾
2 − 𝐼26𝜁

2 − 2𝐼27𝛾𝜁 + 𝐷1 (
𝑑𝑤𝑠

𝑑𝑥
)
2

+𝐷2 (
𝑑𝑤𝑧

𝑑𝑥
)
2

+

2𝐷3
𝑑𝑤𝑠

𝑑𝑥

𝑑𝑤𝑧

𝑑𝑥
+ 4𝐷4 (

𝑑2𝑤𝑏

𝑑𝑥2
)
2

+ 4𝐷5
𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑠

𝑑𝑥2
+

4𝐷6
𝑑2𝑤𝑏

𝑑𝑥2

𝑑2𝑤𝑧

𝑑𝑥2
+ 2𝐷7

𝑑2𝑤𝑠

𝑑𝑥2

𝑑2𝑤𝑧

𝑑𝑥2
+ 𝐷8 (

𝑑2𝑤𝑠

𝑑𝑥2
)
2

+

𝐷9 (
𝑑2𝑤𝑧

𝑑𝑥2
)
2

)𝑑𝑥                                                                            (20) 

The Kinetic Energy can be written as:  

𝑇 =
1

2
∫ [𝐽1(𝑢̇

2 + 𝑤̇𝑏
2 + 𝑤̇𝑠

2 + 2𝑤̇𝑏𝑤̇𝑠) − 2𝐽2𝑢̇
𝑑𝑤̇𝑏

𝑑𝑥
−

𝑙

0

2𝐽3𝑢̇
𝑑𝑤̇𝑠

𝑑𝑥
+ 2𝐽4

𝑑𝑤̇𝑏

𝑑𝑥

𝑑𝑤̇𝑠

𝑑𝑥
+ 𝐽5 (

𝑑𝑤̇𝑏

𝑑𝑥
)
2

+ 𝐽6 (
𝑑𝑤̇𝑠

𝑑𝑥
)
2

+ 𝐽7𝑤̇𝑧
2 +

2𝐽8(𝑤̇𝑏𝑤̇𝑧 + 𝑤̇𝑠𝑤̇𝑧)] 𝑑𝑥                                                         (21) 

with: 

{𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6, 𝐽7, 𝐽8} =
∫𝜌(1, 𝑧, 𝑓, 𝑧𝑓, 𝑧2, 𝑓2, 𝑔2, 𝑔)𝑑𝑧 𝑑𝑦                                       (22) 

Furthermore, the virtual work performed by the applied loades 
acting on the current quasi-3D microbeam can be written as: 

∫ [𝑞0(𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + 𝑔(𝑧)𝑤𝑧(𝑥, 𝑡))]𝑑𝑥
𝐿

0
                    (23) 

 

 

 

3. DQ-FEM 

This approach combines the “generalized differential quadra-
ture method” (GDQM) with the traditional finite element method 
(FEM). 

In order to simulate our beam, we assume that the shape func-
tions take the following form: [49] 

𝑞[𝑥] = ∑ 𝐿𝑖(𝑥)𝑞𝑖
𝑁
𝑖=1                                                                  (24) 

With Li is the Lagrange polynomial,  qi = q(xi), 𝑞 =
𝑢,wb, ws, wz, 𝛾, 𝜁  are the displacements the spatial variations of 
the electric potential and 𝜁𝑖 = 𝜁(xi) the spatial variations of the 
magnetic potential of the Gauss Lobato quadrature points where 
the nodal displacements DQ of the finite element of the beam. 

The derivative of order n at a discrete point xi of a field variable 
f (x) is expressed by”: [49] 

𝜕𝑛𝐹(𝑥,𝑡)

𝜕𝑥𝑛
|
𝑥𝑖
= ∑ 𝐴𝑖𝑗

(𝑛)
𝐹(𝑥𝑗 , 𝑡)

𝑁
𝑗=1 (𝑖 = 1,2,3,… . . , 𝑁)          (25) 

Where Aij
(n)

 is the weighting coefficient, which is related to the 

derivative of order n. “The Gaussian - Lobato quadrature rule with 
a degree of precision (2n-3) for the function F(x) defined in the in-
terval [-1, 1] is:” [49] 

∫ 𝐹(𝑥)𝑑𝑥
1

−1
= ∑ 𝐶𝑗𝐹(𝑥𝑗)

𝑁
𝑗=1                                                  (26) 

Cj is the weighting coefficient of Gauss-Lobatto integration: [58] 

𝐶1 = 𝐶𝑁 =
2

𝑁(𝑁−1)
,   

𝐶𝑗 =
2

𝑁(𝑁−1)[𝑃𝑁−1(𝑥𝑗)]
2      (𝑗 ≠ 1, 𝑁)                                    (27) 

xj represents the (j-1) zero of the first derivative of Legendre poly-

nomials  PN−1(x). To achieve rapid convergence and high accu-
racy, a denser population near the boundaries is essential. Sam-
pling points are selected based on the distribution of the grid of 
Gauss-Lobato nodes. 

𝑥𝑗 = −𝑐𝑜𝑠 (
𝑗−1

𝑁−1
𝜋)                                                                     (28) 

Gauss-Lobatto nodes are determined using the Newton-
Raphson iteration method. The relationship between 𝑢 and 𝑢̅, as 
well as , 𝑤 and 𝑤̅, is established according to rule DQ. 

𝑢 = 𝑄𝑢̅,    𝑤𝑏 = 𝑄𝑤̅𝑏 , 𝑤𝑠 = 𝑄𝑤̅𝑠 , 𝛾 = 𝑄𝛾̅, 𝜁 = 𝑄𝜁 ̅        (29) 
where 

𝑄 =

[
 
 
 
 
 
 
1 0 0 ⋯ 0 0

𝐴1,1
(1)

𝐴1,2
(1)

𝐴1,3
(1)

⋯ 𝐴1,𝑁−1
(1)

𝐴1,𝑁
(1)

0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

𝐴𝑁,1
(1)

𝐴𝑁,2
(1)

𝐴𝑁,3
(1)

⋯ 𝐴𝑁,𝑁−1
(1)

𝐴𝑁,𝑁
(1)
]
 
 
 
 
 
 

                 (30) 

Utilizing the DQ-FEM, the principles of motion are derived by 
substituting equations (24-30) into the energy equations (18, 21). 
Subsequently, by substituting the resulting expressions and apply-
ing Lagrange’s principle, the following system of equations is ob-
tained. The elementary mass and stiffness matrixs and external 
loads vector derived using DQ-FEM. 
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[𝑀𝑒] =

[
 
 
 
 
 
 
[𝑀𝑒]11 [𝑀𝑒]12 [𝑀𝑒]13 [0] [0] [0]

[𝑀𝑒]22 [𝑀𝑒]23 [𝑀𝑒]24 [0] [0]

[𝑀𝑒]33 [𝑀𝑒]34 [0] [0]

[𝑀𝑒]44 [0] [0]

[0] [0]

𝑠𝑦𝑚 [0]]
 
 
 
 
 
 

            (31) 

[𝐾𝑒] =

[
 
 
 
 
 
 
[𝐾𝑒]11 [𝐾𝑒]12 [𝐾𝑒]13 [𝐾𝑒]14 [𝐾𝑒]15 [𝐾𝑒]16

[𝐾𝑒]22 [𝐾𝑒]23 [𝐾𝑒]24 [𝐾𝑒]25 [𝐾𝑒]26
[𝐾𝑒]33 [𝐾𝑒]34 [𝐾𝑒]35 [𝐾𝑒]36

[𝐾𝑒]44 [𝐾𝑒]45 [𝐾𝑒]46
𝑠𝑦𝑚 [𝐾𝑒]55 [𝐾𝑒]56

[𝐾𝑒]66]
 
 
 
 
 
 

             (32) 

[𝐹] =

{
  
 

  
 
[0]
[𝐹𝑒]22
[𝐹𝑒]33
[𝐹𝑒]44
[0]
[0] }

  
 

  
 

                                                                                               (33) 

Hence the components of the elementary stiffness matrice and 
mass matrix are detailed in the appendix. The “matrices for the 
whole system are derived applying the MEF principles for con-
structing elementary matrices, 

([𝐾] − 𝜔2[𝑀])(𝑢̅ 𝑤̅𝑏 𝑤̅𝑠 𝑤̅𝑧 𝛾̅ 𝜁̅)T = {F}            (34) 

Since the Differential Quadrature Finite Element Method 
(DQFEM) follows a similar approach to the Finite Element Method 
(FEM), the electrical and magnetic boundary conditions are applied 
in the same manner as the displacement boundary conditions. Spe-
cifically, for clamped (C), simply supported (S), and free (F) beams, 
the electric and magnetic boundary conditions. At clamped and 
simply supported ends the electrical potential   𝛾 = 0 and also the 
magnitic potential 𝜁 = 0. 

In the Differential Quadrature Finite Element Method (DQFEM), 
boundary conditions are imposed by modifying the elementary ma-
trices through the elimination of specific rows and columns associ-
ated with the constrained generalized coordinates. For the Simply 
Supported Case: The first and penultimate rows and columns are 
eliminated from the elementary matrices to enforce the boundary 
conditions. This ensures that the displacement at the supports is 
constrained while allowing rotation. For Clamped (Fixed) Case: The 
first, second, penultimate, and last rows and columns are elimi-
nated. This fully constrains both displacement and rotational de-
grees of freedom, ensuring a rigid connection at the clamped 
boundary. This approach effectively reduces the system's degrees 
of freedom, ensuring that the boundary conditions are properly en-
forced in the numerical model while maintaining accuracy and sta-
bility in the solution process. 

Numerical results and validation 
In this work, the BaTiO3 − CoFe2O4 [12, 15, 59] is chosen as 

inner core material (Table 1). For the upper and bottom outer sur-
faces, epoxy [60] is used, from which this mixture is controlled by 
the power law of FG materials in equation (1). The physical char-
acteristics of these materials are listed in Table 1. A uniform con-
tinuous load 𝑞0 = 1/2000ℎ 𝑁/𝑚 is applied along the mi-
crobeam along the Oz axis. In the first step, a comparison with lit-
erature works is made, where the model used is a simply supported 
(S-S) microbeam assumed to be composed of 50%-50% 
BaTiO3 − CoFe2O4 [12]. The shape cross section is taken as 
𝑏 = 2ℎ and 𝐿 = 20ℎ, and ℎ = 14.42 𝜇𝑚. In the second step, 
a parametrical study is elaborated to observe the behavior of the 
static bending and the free vibration with different geometrical pa-
rameters, and various upper and bottom outer surfaces materials. 

The units in table 1 are as follow: the piezoelectric constants 
are given in 𝑒𝑖𝑗  (𝐶/𝑚

2 ) , the dielectric constants are given in 

𝑠𝑖𝑗(10
−9𝐶2/(𝑁.𝑚2)), the piezomagnetic constants are given in 

𝑞𝑖𝑗(𝑁/(𝐴.𝑚)), the magnetoelectric constants are given in 

𝑑𝑖𝑗(10
−12𝑁𝑠/(𝑉. 𝐶)), the magnetic constants are given in 

𝜇𝑖𝑗(10
−6𝑁𝑠2/𝐶2), and the density is given in 𝜌(𝑘𝑔/𝑚3). The 

material length scale parameter is given in 𝑙 (𝜇𝑚). 
To validate our model, we computed the semi-analytical model 

presented in reference [12] and compared it with our method. As 
shown in Figures 2-4, the results of our current model closely align 
in midspan with the semi-analytical results from [12]. Our model 
give the exact shape of the bending , electrical potential and mag-
netic potential, on the other hand the literature semi analytical 
model give only the sinusoidal midspan value shape. This compar-
ison supports the validity of the existing model and demonstrates 
that the DQFEM, in conjunction with the refined high-order beam 
theory, provides more accurate results at all locations, in contrast 
to analytical methods, which only provide data at the midline. Table 
2 presents a comparison of the first and second frequencies, as 
well as the midspan deflection, electric potential, and magnetic po-
tential. The results in Table 2 further confirm the effectiveness and 
validity of our model. 

 
Fig. 2.   Comparative analysis of the bending of a doubly S-S microbeam 

exposed to an even distribution of load 

 

 
Fig. 3. Comparative analysis of electrical potential of a doubly S-S 

microbeam exposed to an even distribution of load 
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Tab. 1. Materials Properties of the mixture (BaTiO3 − CoFe2O4) 

 
𝐁𝐚𝐓𝐢𝐎𝟑 − 𝐂𝐨𝐅𝐞𝟐𝐎𝟒 

epoxy 
0%-100% 20%-80% 40%-60% 50%-50% 60%-40% 80%-20% 100%-0% 

𝐶11 286 262 238 226 214 190 166 4.889 

𝐶13 170 151.6 133.2 124 114.8 96.4 78 2.407 

𝐶33 269.5 248 226.5 215.75 205 183.5 162 4.889 

𝐶55 45.3 44.84 44.38 44.15 43.92 43.46 43 1.241 

𝑞31 580.3 464.24 348.18 290.15 232.12 116.06 0 0 

𝑞33 699.7 559.76 419.82 349.85 279.88 139.94 0 0 

𝑞15 550 440 330 275 220 110 0 0 

𝑒31 0 -0.88 -1.76 -2.2 -2.64 -3.52 -4.4 0 

𝑒33 0 3.72 7.44 9.3 11.16 14.88 18.6 0 

𝑒15 0 2.32 4.64 5.8 6.96 9.28 11.6 0 

𝑠11 0.08 2.3 4.53 5.64 6.75 8.98 11.2 0 

𝑠33 0.093 2.59 5.10 6.35 7.6 10.10 12.6 0 

𝑑11 0 2.6 4.58 5.38 6.02 7.04 0 0 

𝑑33 0 2020 2760 2740 2520 1550 0 0 

𝜇11 590 473 356 297.5 239 122 5 0 

 𝜇33 157 127.6 98 83.5 68.8 39.4 10 0 

𝜌 5300 5400 5500 5550 5600 5700 5800 1180 

𝑀𝐿𝑆𝑃  𝑙  7.33 7.29 7.24 7.21 7.18 7.10 7 16.93 

 

 
Fig. 4.   Comparative analysis of magnetic potential of a doubly S-S 

microbeam exposed to an even distribution of load 
 
Tab. 2.  Comparison of numerical results (𝑏 = 2ℎ, 𝐿 = 20ℎ),  

50%-50% BaTiO3 − CoFe2O4 

ℎ(𝜇𝑚) 

Frequency (MHz) 

1st mode 2nd mode 3rd mode 

[12] present [12] 
presen

t 
[12] 

presen
t 

14.42 4.097 4.069 16.811 16.228 
39.64

7 
34.853 

28.84 1.710 1.701 7.007 6.784 
16.46

6 
14.796 

 

ℎ(𝜇𝑚) 

Midspan 
Deflection  
𝑤/ℎ 

Midspan 
Electric 

potential  
𝛾(𝑉) 

Midspan Magnetic 
potential  
𝜁(𝐴) 

[12] 
presen

t 
[12] 

presen
t 

[12] present 

14.42 
0.079

2 
0.0793 

-
1.25

1 
-1.229 0.0125 0.0122 

28.84 
0.028

4 
0.0283 

-
0.89

6 

-0.877 0.0090 0.0087 

 
 

 

 
Fig. 5. Deflection of MEE bilaterally microbeam with various boundary 

conditions  (𝑘𝑧 = 1, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 = 20ℎ,

BaTiO3(50%)− CoFe2O4(50%)) 
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Fig. 6. Electric potential of MEE bilaterally microbeam with various 

boundary conditions (𝑘𝑧 = 1, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 = 20ℎ,

BaTiO3(50%)− CoFe2O4(50%)) 

 

 
Fig. 7.  Magnetic potential of MEE bilaterally microbeam with various 

boundary conditions (𝑘𝑧 = 1, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 =

20ℎ, BaTiO3(50%)− CoFe2O4(50%)) 

 
In Figure 5, we demonstrated the bending response of the mag-

neto-electro-elastic (MEE) bilaterally supported microbeam under 
different boundary conditions (simply supported, clamped, and 
clamped-free). The observed variations in deflection arise due to 
differences in constraint stiffness. The simply supported beam ex-
periences the highest deflection as it lacks rotational constraints at 
the ends, whereas the clamped beam exhibits reduced deflection 
due to restricted end rotations.  

The clamped-free (cantilever) configuration shows the highest 
deflection at the free end due to the absence of support at one end. 
This deflection pattern influences the distribution of electric and 
magnetic potentials along the beam length, as illustrated in Figures 
6 and 7. 

The electromechanical coupling in the system arises due to the 
piezoelectric and piezomagnetic effects. When the beam under-
goes bending, the induced strain leads to charge polarization. The 
regions experiencing compression generate a positive electric 
charge (due to the direct piezoelectric effect) and a negative mag-
netic charge (due to the piezomagnetic effect), whereas the ten-
sioned regions exhibit the opposite effect.  

This explains why, in the simply supported case, the electric 
potential (V) is uniformly positive (Figures 6), while in the clamped-
free case, it is uniformly negative. The clamped configuration re-
sults in a more complex charge distribution due to localized con-
straint effects at the boundaries. 
 

 
Fig. 8. Simply supported microbeam midspan deflection with various 

thickness and MEE inner material mixture 
percentage BaTiO3− CoFe2O4 (𝑘𝑧 = 1, 𝑏 = 2ℎ, 𝐿 =
20ℎ, ) 

 

 
(a) 

 
(b) 
Fig. 9.    Electric (a) and magnetic (b) potentials at simply supported 

microbeam midspan with various thickness and MEE inner 
material mixture percentage BaTiO3− CoFe2O4 
(𝑘𝑧 = 1, 𝑏 = 2ℎ, 𝐿 = 20ℎ, ) 

Figures 8 and 9 illustrate the midspan deflection, electric poten-
tial, and magnetic potential as functions of beam thickness and in-
ner material composition. The inverse relationship between thick-
ness and deflection is expected, as thicker beams possess higher 
flexural rigidity, making them more resistant to deformation under 
the same applied load. Regarding electromechanical behavior, in-
creasing the proportion of BaTiO3 enhances the piezoelectric re-
sponse, leading to higher electric potential generation. This occurs 
because BaTiO3 is a piezoelectric ceramic with a high electrome-
chanical coupling coefficient, meaning it efficiently converts 
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mechanical deformation into electrical energy. Conversely, 
CoFe2O4 exhibits strong piezomagnetic properties, leading to 
higher magnetic potential generation. However, as the beam thick-
ness increases, both electric and magnetic potentials decrease be-
cause strain distribution becomes more uniform, reducing localized 
stress concentrations that drive charge generation. This behavior 
aligns with the fundamental principles of piezoelectric and piezo-
magnetic materials, where mechanical strain directly affects charge 
separation and potential generation. 

 
Fig. 10.  Simply supported microbeam midspan deflection with various 

FG fraction index and MEE inner material mixture 
percentage BaTiO3 − CoFe2O4 (ℎ = 20𝜇𝑚, 𝑏 = 2ℎ,
𝐿 = 20ℎ, ) 

 

 
(a) 

 
(b) 
Fig. 11.  Electric (a) and magnetic (b) potentials at simply supported 

microbeam midspan with various FG fraction index and MEE 
inner material mixture percentage BaTiO3− CoFe2O4 
(ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 = 20ℎ, ) 

Figures 10 and 11 depict the influence of the functionally 
graded (FG) material gradation index on the midspan deflection 
and electromechanical potentials. As the gradation index 𝑘𝑧 in-
creases, the beam composition transitions from a fully magneto-
electro-elastic core (BaTiO3 − CoFe2O4) to an outer epoxy-rich 
composition. Given that epoxy is significantly more flexible and less 
dense than the ceramic phases, the beam exhibits increased de-
flection due to reduced overall stiffness. 

The electrical and magnetic potentials initially increase with the 
FG index, peaking at a critical range (𝑘𝑧 = [6: 20]), before stabi-
lizing. This behavior suggests that an optimal material gradation 
exists where electromechanical efficiency is maximized. The in-
creasing deflection enhances charge generation up to a certain 
threshold, beyond which further material gradation reduces effec-
tive coupling due to the dominance of the epoxy phase. This insight 
is crucial for optimizing FG microbeam designs to balance mechan-
ical flexibility and electromechanical efficiency. 

 
Fig. 12.  Electric and magnetic potentials distribution of simply 

supported microbeam with 𝑘𝑧 = 5, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ,
𝐿 = 20ℎ, BaTiO3(50%)− CoFe2O4(50%) 

 
Fig. 13.  Electric and magnetic potentials distribution of clamped 

microbeam with 𝑘𝑧 = 5, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 = 20ℎ,
BaTiO3(50%)− CoFe2O4(50%) 

 

 
Fig. 14.  Electric and magnetic potentials distribution of clamped free 

microbeam with 𝑘𝑧 = 5, ℎ = 20𝜇𝑚, 𝑏 = 2ℎ, 𝐿 = 20ℎ,
BaTiO3(50%)− CoFe2O4(50%) 
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Figures 12-14 illustrate the distribution of electric and magnetic 
potentials across the xOz surface of a magneto-electro-elastic mi-
crobeam under different boundary conditions: simply supported 
(Figure 12), clamped (Figure 13), and clamped-free (Figure 14). 

It is evident that the electric and magnetic potential distributions 
for the simply supported (Figure 12) and clamped (Figure 13) 
beams exhibit central symmetry.  

For the simply supported beam, the maximum values of both 
electric and magnetic potentials occur at the center. In contrast, for 
the clamped beam, the highest potentials are found at three loca-
tions: near the embedding points and in the center.  

In the case of the clamped-free beam, the electric and magnetic 
potentials are primarily concentrated near the embedding location. 
In conclusion, the high values of electric and magnetic potentials 
correspond to areas where bending-induced deformations are most 
significant. 

Figures 15-18 presents the variations in deflection, electrical 
potential, magnetic potential, and natural frequency respectively for 
different microbeam thicknesses, considering the length-to-thick-
ness ratio in both the current (MCST) and classical models.  

With BaTiO3(50%) − CoFe2O4(50%). In the numerical 
analysis, the current model accounts for the couple stress effect, 
which is incorporated using the Modified Length Scale Parameter 
(MLSP) 𝑙 ≠ 0 (as defined in Equation (7)).  

Conversely, the classical model is derived using the same gov-
erning equation but with 𝑙 = 0, meaning that it does not consider 
the microstructural effects introduced by MCST.  

The results indicate that the deflection, electrical potential, and 
magnetic potential predicted by the current model are consistently 
lower than those obtained using the classical model across all 
tested cases.  

This discrepancy arises due to the inclusion of the couple stress 
effect in the MCST model, which introduces additional material stiff-
ness at the microscale. As expected, the difference between the 
two models becomes more pronounced as the microbeam thick-
ness decreases.  

This behavior is due to the fact that size-dependent effects be-
come more significant at smaller scales, where the influence of mi-
crostructural mechanics cannot be neglected.  

In other words, the classical model, which disregards these ef-
fects, tends to overestimate the response of the microbeam in com-
parison to the MCST-based model.  

The increasing stiffness introduced by the couple stress theory 
results in reduced deflection and altered electrical/magnetic re-
sponses, as well as higher natural frequencies.  

Additionally, it is observed that as the length-to-thickness ratio 
increases, the microbeam becomes more flexible, leading to a 
greater deflection. This increase in deflection consequently en-
hances both the electrical and magnetic potentials.  

On the other hand, the natural frequencies exhibit an inverse 
relationship with the length-to-thickness ratio, decreasing as the mi-
crobeam becomes thinner.  

This trend is attributed to the reduced stiffness associated with 
higher length-to-thickness ratios, which lowers the beam’s re-
sistance to dynamic vibrations. 

 

 
Fig. 15.  Deflection with respect to length-thickness ratio of simply 

supported microbeam with 𝑘𝑧 = 5, 𝑏 = 2ℎ 

 

 
Fig. 16.  Electric potential with respect to length-thickness ratio of 

simply supported microbeam with 𝑘𝑧 = 5,𝑏 = 2ℎ 

 

 
Fig. 17. Magnetic potential with respect to length-thickness ratio of 

simply supported microbeam with 𝑘𝑧 = 5,𝑏 = 2ℎ 
 

 
Fig. 18.  Natural frequencies with respect to length-thickness ratio of 

simply supported microbeam with 𝑘𝑧 = 5, 𝑏 = 2ℎ  
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Tab. 3. Natural frequency (MHz) of simply supported MEE FG microbeam  (𝑏 = 2ℎ, 𝐿 = 20ℎ, ) 
 𝐁𝐚𝐓𝐢𝐎𝟑 − 𝐂𝐨𝐅𝐞𝟐𝐎𝟒 

𝒉(𝝁𝒎) 𝒌𝒛 0%-100% 20%-80% 40%-60% 50%-50% 60%-40% 80%-20% 100%-0% 

20 

0 3.0009 2.8571 2.7108 2.6363 2.5613 2.4071 2.2472 

0.5 2.5250 2.4124 2.2975 2.2391 2.1802 2.0589 1.9332 

1 2.2200 2.1283 2.0348 1.9872 1.9393 1.8404 1.7380 

5 1.5182 1.4840 1.4491 1.4313 1.4135 1.3766 1.3386 

10 1.3919 1.3731 1.3539 1.3441 1.3344 1.3141 1.2932 

15 1.3538 1.3411 1.3282 1.3216 1.3150 1.3013 1.2872 

20 1.3352 1.3260 1.3166 1.3118 1.3070 1.2970 1.2867 

40 

0 1.3578 1.2891 1.2191 1.1836 1.1476 1.0739 0.9974 

0.5 1.0979 1.0449 0.9909 0.9634 0.9356 0.8786 0.8194 

1 0.9270 0.8847 0.8415 0.8196 0.7973 0.7518 0.7045 

5 0.5204 0.5078 0.4950 0.4885 0.4820 0.4687 0.4550 

10 0.4603 0.4548 0.4492 0.4464 0.4436 0.4378 0.4318 

15 0.4502 0.4469 0.4435 0.4418 0.4401 0.4366 0.4330 

20 0.4481 0.4458 0.4435 0.4423 0.4411 0.4387 0.4362 

100 

0 0.5260 0.4989 0.4713 0.4572 0.4430 0.4139 0.3836 

0.5 0.4189 0.3980 0.3768 0.3660 0.3550 0.3326 0.3092 

1 0.3475 0.3310 0.3141 0.3055 0.2968 0.2789 0.2604 

5 0.1722 0.1677 0.1633 0.1610 0.1587 0.1541 0.1494 

10 0.1473 0.1458 0.1442 0.1434 0.1427 0.1411 0.1395 

15 0.1449 0.1441 0.1433 0.1429 0.1425 0.1417 0.1408 

20 0.1455 0.1450 0.1445 0.1442 0.1440 0.1434 0.1429 

Table 3 shows the natural frequencies of a simply supported 
magneto-electro functionally graded microbeam made of 
BaTiO3 − CoFe2O4 and epoxy composite material. Here, natural 
frequencies are influenced by the thickness ℎ(𝜇𝑚) and the power-
law compositional gradient index 𝑘𝑧, with different percentages of 
BaTiO3 and CoFe2O4. As the thickness ℎ(𝜇𝑚) increases from 
20 μm to 100 μm, the natural frequencies decrease across all ma-
terial distributions and power-law indices. This is expected as 
thicker beams generally have lower resonant frequencies due to 
increased mass and flexibility. The material BaTiO3 − CoFe2O4 
distribution percentages (ranging from 0%-100% to 100%-0%) also 
impact the natural frequencies. Generally, as the proportion of 
BaTiO3 increases, the natural frequency decreases. For instance, 
at ℎ = 20𝜇𝑚 and 𝑘𝑧 = 0, the natural frequency changes from 
3.0009 MHz (0%-100%) to 2.2472 MHz (100%-0%). This suggests 
that a higher content of BaTiO3 (0%-100%) corresponds to higher 
stiffness and thus higher natural frequency, while increasing 
CoFe2O4 content (100%-0%) reduces the stiffness, lowering the 
natural frequency. For each thickness ℎ(𝜇𝑚), as 𝑘𝑧 increases 
from 0 to 20, there is a notable decline in natural frequency, regard-
less of the BaTiO3 − CoFe2O4 distribution. For instance, at ℎ =
20𝜇𝑚, with a 0%-100% distribution, natural frequency decreases 
from 3.0009 MHz at 𝑘𝑧 = 0 to 1.3352 MHz at 𝑘𝑧 = 20. Higher 𝑘𝑧 
values indicate a more percentage of epoxy in material gradation 
composition, which lowers stiffness and thus reduces the natural 
frequency. In summary, increasing thickness ℎ, higher content of 
CoFe2O4, and larger power-law index 𝑘𝑧 all contribute to lower 
natural frequencies. These parameters offer tunability in the design 
of microbeam resonators by adjusting stiffness through material 
composition and geometric factors. 

4. CONCLUSION 

In this study, we investigated the static bending and free vibra-
tion behavior of a bilaterally coated magneto-electro-elastic (MEE) 
microbeam using a quasi-3D high-order beam theory in conjunction 

with the Differential Quadrature Finite Element Method (DQ-FEM). 
The incorporation of the modified couple stress theory (MCST) ef-
fectively accounted for the microstructural effects within the beam. 
Our model, validated against existing literature, demonstrated a 
high degree of accuracy in predicting both the deflection and vibra-
tional behavior of the microbeam under various loading and bound-
ary conditions. 

Beam thickness plays a significant role in reducing both mid-
span deflection and the magnitudes of electric and magnetic poten-
tials, as thicker beams are stiffer and resist deformation. 

Material composition influences the beam’s response signifi-
cantly. Higher proportions of BaTiO3 increase the piezoelectric ef-
fect, enhancing both deflection and electric potential, while in-
creased CoFe2O4 improves the magnetostrictive response, raising 
the magnetic potential. 

Material gradation affects the mechanical and electromechani-
cal responses, with optimized combinations of BaTiO3 −
CoFe2O4  and epoxy producing the highest electric and magnetic 
potentials. 

Natural frequency decreases with both increasing beam thick-
ness and the gradation index, indicating that the mechanical and 
vibrational properties are highly sensitive to material distribution. 

These results highlight the importance of beam geometry and 
material composition in the design and optimization of MEE mi-
crobeams for applications that require precise control of mechani-
cal, electrical, and magnetic responses. The developed model and 
numerical approach provide a robust framework for further explo-
ration of functionally graded materials in micro-scale systems. 

A comparative analysis between the MCST-based model and 
the classical model revealed that the couple stress effect introduces 
additional material stiffness at the microscale, leading to consist-
ently lower deflections and energy potentials in the current model. 
The discrepancy between the two models becomes more pro-
nounced as beam thickness decreases, emphasizing the signifi-
cance of size-dependent effects in micro-scale systems. The re-
sults also show that increasing the length-to-thickness ratio en-
hances deflection, thereby increasing both electrical and magnetic 
potentials. However, this increase in flexibility also leads to a 
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reduction in natural frequencies due to the lower stiffness of thinner 
microbeams. 

These results highlight the importance of beam geometry and 
material composition in the design and optimization of MEE mi-
crobeams for applications requiring precise control of mechanical, 
electrical, and magnetic responses. The developed model and nu-
merical approach provide a robust framework for further exploration 
of functionally graded materials in micro-scale systems. 

5. ANNEX 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [𝐾𝑒]11 = 𝐼1 [𝑄

𝑇𝐴1
𝑇
𝐶𝐴1𝑄] [𝐾𝑒]12 = −𝐼2 [𝑄
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𝐶𝐴2𝑄]
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𝑇𝐴1

𝑇
𝐶𝐴2𝑄] [𝐾𝑒]14 = 𝐼8 [𝑄

𝑇𝐴1
𝑇
𝐶𝑄]

[𝐾𝑒]15 = 𝐼14 [𝑄
𝑇𝐴1

𝑇
𝐶𝑄] [𝐾𝑒]16 = 𝐼17 [𝑄

𝑇𝐴1
𝑇
𝐶𝑄]

[𝐾𝑒]22 = (𝐼5 + 4𝐷4) [𝑄
𝑇𝐴2

𝑇
𝐶𝐴2𝑄]

[𝐾𝑒]23 = (𝐼4 + 2𝐷5) [𝑄
𝑇𝐴2

𝑇
𝐶𝐴2𝑄]

[𝐾𝑒]24 = −𝐼9 [𝑄
𝑇𝐴2

𝑇
𝐶𝑄] + 2𝐷6 [𝑄

𝑇𝐴2
𝑇
𝐶𝐴2𝑄]

[𝐾𝑒]25 = −𝐼15 [𝑄
𝑇𝐴2

𝑇
𝐶𝑄]

[𝐾𝑒]26 = −𝐼18 [𝑄
𝑇𝐴2

𝑇
𝐶𝑄]

[𝐾𝑒]33 = (𝐼6 + 𝐷8) [𝑄
𝑇𝐴2

𝑇
𝐶𝐴2𝑄] + (𝐼11 + 𝐷1) [𝑄

𝑇𝐴1
𝑇
𝐶𝐴1𝑄]

[𝐾𝑒]34 = −𝐼10 [𝑄
𝑇𝐴2

𝑇
𝐶𝑄] + (𝐼13 + 𝐷3) [𝑄

𝑇𝐴1
𝑇
𝐶𝐴1𝑄] + 𝐷7 [𝑄

𝑇𝐴2
𝑇
𝐶𝐴2𝑄]

[𝐾𝑒]35 = −𝐼16 [𝑄
𝑇𝐴2

𝑇
𝐶𝑄] − 𝐼20 [𝑄

𝑇𝐴1
𝑇
𝐶𝐴1𝑄]

[𝐾𝑒]36 = −𝐼19 [𝑄
𝑇𝐴2

𝑇
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𝑇𝐴1
𝑇
𝐶𝐴1𝑄]

[𝐾𝑒]44 = 𝐼7[𝑄
𝑇𝐶𝑄]+ (𝐼12 + 𝐷2) [𝑄

𝑇𝐴1
𝑇
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𝑇𝐴2
𝑇
𝐶𝐴2𝑄]
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𝑇𝐴1

𝑇
𝐶𝐴1𝑄] + 𝐼24[𝑄

𝑇𝐶𝑄]

[𝐾𝑒]37 = −𝐼23 [𝑄
𝑇𝐴1

𝑇
𝐶𝐴1𝑄] + 𝐼25[𝑄

𝑇𝐶𝑄]

[𝐾𝑒]55 = −𝐼26 [𝑄
𝑇𝐴1

𝑇
𝐶𝐴1𝑄] − 𝐼29[𝑄

𝑇𝐶𝑄]

[𝐾𝑒]56 = −𝐼28 [𝑄
𝑇𝐴1

𝑇
𝐶𝐴1𝑄] − 𝐼31[𝑄

𝑇𝐶𝑄]
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𝑇𝐴1

𝑇
𝐶𝐴1𝑄] − 𝐼30[𝑄

𝑇𝐶𝑄]

 (35) 
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𝑇𝐶̅𝑄] [𝑀𝑒]12 = −𝐽2[𝑄
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[𝑀𝑒]13 = −𝐽3[𝑄
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𝑇
𝐶̅𝐴̅1𝑄]

[𝑀𝑒]23 = 𝐽1[𝑄
𝑇𝐶̅𝑄] + 𝐽4[𝑄

𝑇𝐴̅1
𝑇
𝐶̅𝐴̅1𝑄]

[𝑀𝑒]24 = 𝐽8[𝑄
𝑇𝐶𝑄]

[𝑀𝑒]33 = 𝐽1[𝑄
𝑇𝐶̅𝑄] + 𝐽6[𝑄

𝑇𝐴̅1
𝑇
𝐶̅𝐴̅1𝑄]

[𝑀𝑒]34 = 𝐽8[𝑄
𝑇𝐶𝑄]

[𝑀𝑒]44 = 𝐽7[𝑄
𝑇𝐶𝑄]

            (36) 

{

[𝐹𝑒]22 = 𝑞0[𝑄
𝑇𝐶̅]

[𝐹𝑒]33 = 𝑞0[𝑄
𝑇𝐶̅]

[𝐹𝑒]44 = 𝑞0[𝑄
𝑇𝐶̅]

                                                               (37) 

All types of nodal arrangement for differentiation and quadra-
ture reside inside the interval [-1, 1]. Consequently, to implement 
them in practice, the subsequent adjustments must be applied to 
the differential and quadrature matrices, 

𝐶̅ =
𝑙𝑒

2
𝐶,       𝐴̅1 =

2

𝑙𝑒
𝐴1,     𝐴̅2 =

4

𝑙𝑒
2 𝐴

2                                  (38) 

Were  𝑙𝑒  is the length of the microbeam element. 
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