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Abstract: This paper demonstrates the unsuitability of relations and diagrams known from literature for antiresonant machines, in terms
of determining the position of resonances of dynamic elimination systems. Correct formulas were derived and a nomogram for designers
was built based on them. The effect of the actual number of degrees of freedom on the natural frequencies of machines with a design based
on the dynam-ic eliminator principle is presented. The effect of the spring mass on the antiresonance frequency explicit to the natural
frequency of the eliminator was pointed out, and correct relations for its consideration were derived. The experimental and numerical studies
carried out in this paper have confirmed that including the effect of spring inertia in analytical calculations improves the accuracy of the results
obtained. Furthermore, it was shown that the actual way in which the ends of the leaf springs are attached can significantly affect the natural
frequency of the system. The factors discussed and analysed in this paper are omitted in conventional vibrating machine calculations,
resulting in an overestimation of the natural frequencies determined from them.
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1. INTRODUCTION

Antiresonant vibratory conveyors (Base — Excited Conveyors),
shown in Fig.1, owe their rapidly increasing popularity to their two
main advantages:

— Negligible, theoretically equal to zero, value of dynamic forces
transferred to the ground during operation, resulting from the
Frahm dynamic eliminator effect used in their construction, with
the trough as the properly tuned eliminator mass [1], and

— Lower, compared to currently used over-resonant machines,
required excitation force of vibrators, which induces vibrations
of only a light transport trough, which does not require signifi-
cant bending rigidity, as it is ensured by a massive body of the
machine, and which is not burdened by significant masses of
the drive system attached to this body.

These conveyors are becoming more and more widely used to
transport loose materials [2], where dynamic forces transmitted to
the ground by super-resonant conveyors are a significant disad-
vantage. For example, this is the case in mineral raw material pro-
cessing plants, where flimsy buildings of processing stations, made
of reinforced concrete, usually contain a considerable number of
vibratory machines accumulated: conveyors, screens, dewatering
centrifuges, etc., leading to intensive spread of floor vibrations, cov-
ering the majority of operation sites, endangering the health of op-
erators and sometimes leading to building damage.

The antiresonance phenomenon is widely described in existing
literature [3, 4]. Authors of [5] pointed out, that it is possible to de-
termine the resonance frequencies of the structure under ideal
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boundary conditions, based on the experimentally determined anti-
resonance frequencies for structure under arbitrary boundary con-
ditions. Renault et al. [6] proposed extension of linear concepts
about antiresonances to the nonlinear cases of vibrating systems.
The influence of transported material mass fluctuation has been an-
alysed in [7], where authors presented nonlinear dynamic model of
antiresonant vibrating machine.

Fig. 1. VIBRAflex Il Sanitary Antiresonant Vibratory Conveyor — PFl, which
dynamic and discret model is presented in Fig. 2

The widespread use of antiresonant machines such as convey-
ors [8] or vibrating screens [9, 10] requires accurate and reliable
methods of calculation, in which the correct determination of the
antiresonant frequency and resonant frequency of the system plays
a fundamental role. The development of anti-resonance vibration
isolation methods is also important because more accurate compu-
tational models can be used both in the design of new systems and
in the optimisation of the existing ones [11].
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Due to the fact that there are a number of erroneous traditions
in this field, usually resulting from misinterpretation, but also from
the incompleteness of the dynamic elimination theory, this paper
presents the basic mistakes made in this field, and the addition to
Frahm’s theory and other phenomena to the extent required in the
design of antiresonant machines.

2. THEORETICAL FOUNDATIONS OF ANTIRESONANT
CONVEYOR OPERATION - DYNAMIC ELIMINATOR
THEORY [12], [13]

Antiresonant machines operate on the basis of the dynamic elim-
inator scheme [14], where the body of the machine, resiliently located
and setin motion by a set of inertial vibrators, constitutes the protected
object, while the transport trough, connected to the body by a set of
springs, constitutes the mass of the eliminator. Let us denote the mass
and the elastic and damping coefficients of the body spring elements
by M, K, C, respectively, and the mass of the trough and the elastic
and damping coefficients of the springs by me, ke, Ce.

The operating principle of this system involves proper tuning of the
eliminator [1]. The force in the eliminator spring (or spring system, in
the case of a conveyor) reaches an amplitude and phase that coun-
teracts the excitation force. For conveyors, this excitation force is the
resultant force from the vibrators. When tuned correctly, the protected
system (the machine body) nearly stops vibrating. This means it no
longer transmits dynamic forces to the ground. Meanwhile, vibrations
of the eliminator (the trough) enable the vibratory transport process.

Since this phenomenon occurs only in a narrow range of excitation
frequencies [15] around the eliminator’s natural frequency (1)

fn:i\/ke/me (1)

(the so-called partial frequency, as it is not the vibration frequency of a
combined system), wherein this frequency is closely surrounded by
the resonant frequencies of the system on both sides. , The excitation
and natural frequencies of the eliminator are subject to various
interferences. Therefore, accurately determining these frequencies is
essential for the machine's practical usability. These values
significantly depend on precisely defined suspension parameters of
the machine, including mass distribution, suspension stiffness and
damping [1].

Fig. 2. Diagram of the dynamic vibration eliminator: M — protected mass,
me — eliminator mass, K, C - constants of elasticity and damping of
support elements of protected mass, ke, Ce — constants of elasticity
and damping of elastic elements of the eliminator, Po e — harmonic
excitation force

Let us denote the absolute displacements of the masses M and
me in the vibrations of the direction of the system by x and y,
respectively, while the amplitude and frequency of the excitation
force by Poand v (Fig. 2.)

The dynamic equations of motion of both masses are described
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by the following relationships :

M3 + Cx + Kx + c,(x — y) + ko (x — y) = P,e™*

Mey — Ce(X —Y) —ke(x—y) =0 2)
The solution to the system of equations is predicted to be :

x = Ae™t, x = ivAe™t, ¥ = —v24et

y = Be™, y = ivBe™t, jj = —v2Bet 3)

here A and B - vibrations amplitudes of the protected mass and the

vibration eliminator and i — imaginary unit

Substituting the expected forms of the solutions of (3) into (2)
resulted in the following relations:

M(—v?Ae™) + CivAe™t + KAe™® + c,(ivAe™t —
ivBe'") +
+ko(Ae™t — Bet) = P et (4)
m,(—v2Be™?) — ¢, (ivAe™t — ivBe™") — k, (Ae™" —
Be®™t) =0

Equations (4) can be represented in matrix form

(5).

[—Mv2 + (C+c)iv+ (K +k,) —c v —k,
_ —Ceiv — ke —m,v? + civ + k,
Aelvt _ P ewt
' Bei”t] - [ "0 ] ®

After solving the matrix system (5), absolute amplitudes of the
form (6) and (7) were obtained for quasi-stationary values of v.

|A| — V(Pocev)?+(—Pomev?+Poke)? (6)

(Kmev2—Kke+keMv2+komev2—Mmev*+Ccev?)?
+([CMme+ceM+ceme]v3—Ckev—ceKv)?

_ V(Pocev)?+(Poke)?
|B| = (7)
(Kmev2—KketkeMv2+kemev2—Mmev*+Ccov?)?
+([CMme+ceM+ceme|v3—Ckev—CcoKv)?

The partial frequency of the undamped vibrations of the protected
system {M, K, C}is wo (8)

w, = K/M (8)

and of the eliminator is wn (9)

wp = ke/m, @)

(Since the frequency wn (9) is at the same time an antiresonant
frequency ws, i.e., one at which body vibrations in the undamped
system disappear, therefore, both designations are equivalent).

After assuming the coefficient values (Tab.1), an amplitude-phase
diagram of the type shown in Fig. 3 can be obtained, on which the
vibration amplitudes of the basic system without eliminator are usually
plotted for comparison.

As can be seen in Fig. 3, the vibration amplitude A of the protected
mass M will be close to zero (red curve) at the antiresonant frequency
(10).

Vv=w, ® w, = Jk./m, (10)

This condition is a condition for dynamic elimination of vibrations
by means of an additional attached mechanical system — the dynamic
eliminator.

Graphs such as these are common in the literature and reproduce
the position of the resonance frequencies for weakly damped systems
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quite faithfully, but they completely deform the vibration amplitudes,
which results from the real excitation nature, depending on the square
of the excitation frequency v. To make them more realistic, one can,
for example, substitute the force amplitude P in equations (6), (7) with
the expression Po(v/iwn)2 However, the route discussed below is
much easier in order to determine the resonance frequencies of the
system.

0 ‘; 2‘ 3 4‘1 é 6

s=vfw, [1

Fig.3. Plotof dimensionless amplitudes z1 for absolute displacements of the
protected system A, the vibration eliminator B, and the system with-
out the eliminator Ao, as a function of the ratio & for the excitation
frequency v to the partial frequency of the eliminator wn, equal to the
antiresonant frequency (10) of the system, where z; — the ratio of am-
plitudes to the value of static deflection of the protected mass

Tab. 1. Parameters of the dynamic model from Fig. 2

Parameter Value Unit
M 600 kg
Me 450 kg
K 719.387 N/m
ke 4.963.770 N/m
C 142 Ns/m
Ce 298 Ns/m
P 14.450 N

3. NOMOGRAMS FOR DETERMINATION
OF RESONANCE FREQUENCIES

Around the resonance frequency (10) on its left and right sides
there is an antiresonance zone, i.e. a region of frequencies for which
vibrations of the protected mass M are the lowest. The values of am-
plitudes increase as one moves away from the antiresonant frequency,
towards the resonance frequency forming a peculiar zone (Fig. 3. red
graph). The width of the interval between the resonance frequencies
is important for the safety of the system operation. The wider it is, the
higher the operational safety, and therefore the more resistant the me-
chanical system is to various interferences of its operation. To pre-
cisely determine the safe operating range — which is not the subject
of this study — it is necessary not only to determine the width of the
antiresonant zone, but also to define the acceptable vibration ampli-
tude limits, which requires a detailed analysis of each specific case
and the corresponding identification of a safe operating frequency
band. The primary objective for the designer of antiresonant machines
should be to estimate the antiresonant frequency as accurately as
possible and ensure that the system operates in its vicinity.

To determine the distance on the axis between the values of the
natural frequency in a simple way, based on the solution of the
damped linear system, we assumed ce= C = 0. When equating the
denominator of the expression (6) or (7) to zero with the damping
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neglected yields the expression (11), which allows to determine the
resonant frequencies of the system, limiting the antiresonant zone:

(K + ko, — Mv®)(k, — m,v?) —k,2 =0 (11)

Dividing the above equation by ke, K, and making further transfor-
mations and simplifications, we finally obtain the form (12).

To solve this equation efficiently, the assumption of equality of
the partial frequencies of the eliminator and the protected mass (13)
is used in the literature [12].

ke v2 V2 ke_
(12-5) (1) -0 2

ke kE e

m—e=§=w§ or Z=Te (13)
Using the notation (14) we obtain the final form of the foregoing

equation for this case (15):

me = (14)

(1+u—:—;)(1—:—;)—u=0 (15)

The roots of this equation are the following values:

(wln)2=(1 +4F /u+’1—2 (16)

The obtained dependence of the antiresonant zone width on
the mass ratio only is shown in the graph in Fig. 4. The value of v/wn
=1 for me/M = =0 in Fig. 4 indicates that no eliminator mass was
applied (me = 0). In this case, the resonant frequency is singular and
determined solely by the main suspension. Attaching an eliminator
mass on an additional suspension with a partial frequency equal to the
partial frequency of the main suspension results in the emergence of
two resonant frequencies, which appear on the graph on either side of
the antiresonant frequency. This antiresonant frequency corresponds
simultaneously to the partial frequency of the eliminator and the main
mass. As a result, two curves are formed, representing the natural fre-
quencies for a given p value. When the eliminator mass increases, the
mass ratio y increases as well, leading to a greater separation be-
tween the antiresonant frequency and the two resonant frequencies.
In case (13), the differences between the lower and upper resonances
relative to the antiresonant frequency are practically identical.

As can be seen in Fig. 4, the ratio of eliminator mass to main
mass cannot be too low, as this reduces the antiresonant zone, and
thus the system may be subjected to increased amplitudes when
operating with a non-uniform load or other disturbances that may
shift the operating point to a frequency close to the resonance fre-
quency.

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
w1l

Fig.4. Graph showing the ratio of the resonance frequencies to the antireso-
nance frequency v/wn of the analysed system, compared to the ratio
of masses me/M =  in the equality of partial frequencies of the pro-
tected and eliminator masses
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Unfortunately, this solution does not cover the case of antireso-
nant machines, since they do not satisfy the equality condition (13) of
the partial frequencies of the object and the eliminator. Although a
change in the support stiffness of the protected system K does not
affect the existence and location of the antiresonant point, it does af-
fect the location of the target natural frequencies of the main mass-
eliminator system.) The aforementioned assumption (13) means only
that a special case is considered when the protected mass is excited
in its partial resonance. Having considered that, further conclusions
based on this assumption would only apply to such a case, which ob-
viously does not occur in soft-based antiresonant conveyor systems.
This fact will be considered further on, where dependencies on the
position of the resonance frequencies of the main mass — eliminator
system will be derived, useful for analysing the operation of antireso-
nant conveyors.

4. EXTENSION OF THE METHOD FOR DETERMINING
THE RESONANT FREQUENCIES PRESENTS THE CASE
OF SYSTEMS IN WHICH THE MAIN MASS IS TUNED
SUPER-RESONANTLY

To derive relations that define the location of resonance frequen-
cies of the main mass—eliminator system in the general case involving
the partial tuning of the main mass below the excitation force fre-
quency, we will make the following additional assumption: we assume
that the ratio of the antiresonance frequency (10) to the frequency of
body oscillation on its spring suspension system (8) is represented by
(7).

In -4 (17)

Wo

In this case, we get (18)

Ke _ 5

o A? - (18)

therefore (19) and (20)

ke _

o= (19)

K w3

—= (20
Inserting (18), (19), and (20) into (12), we obtain:

(1+A2/,L—A:22)(1—:—;)—A2y= 0 21)

Transforming this expression by extracting the ratio v/ws, we ob-
tain the equation to determine the resonance frequencies at any tun-
ing of the main system:

<(L)2>2A2 - (wl,,)z A+22A+m)+1=0 (22)

Wn

The roots of this equation are as follows.

v [[+22(+p)]E [1+42 (1+p)]%-442

w_n - \/ 242 (23)
Graphs showing the ratios of the upper and lower frequencies

of the system to the antiresonance frequency wa = wn are shown in

DOI 10.2478/ama-2025-0054

Fig. 5 for a typical operating range of antiresonant machines and,
comparatively, for A =1.

DODDDDDDDD
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wll

Fig. 5. Graphs showing the ratio of the upper and lower resonance frequency
to wn as a function of the mass ratio Y, depending on the value of the
parameter A. Note: upper frequency graphs for A>>1 values (A = 4 to
7) coincide approximately on the graph

Comparison of the diagrams for A = 1 and those corresponding
to typical super-resonant tunings of the protected system A = 4 to
7, leads to the conclusion that the nature of the two relations is dif-
ferent, wherein the super-resonant tuning of the main mass causes
a downward shift of the resonant frequencies surrounding the anti-
resonant zone, causing a significant approximation of the upper
resonant frequency to the operating frequency v = wn, which in-
creases the danger of accidental entry of the system into the near-
resonant state.

To provide a better illustration of the effect of the parameter A
(17) on the ratio of the resonance frequency to the antiresonance
frequency, a graph, shown in Fig. 6, was prepared presenting four
values of the parameter i (14). These diagrams prove that for ma-
chines with bodies operating in the typical super-resonance regime,
the main effect on widening the antiresonance zone is to increase
the eliminator-to-body mass ratio, and for a fixed value of this ratio,
it is advantageous to increase the parameter A, which, however,
almost exclusively decreases the lower resonance frequency, leav-
ing the upper resonance frequency, located relatively close to the
excitation frequency, almost unchanged, much lower than the one
resulting from the graphs for A = 1 (Fig. 4).

un=0.6
12 #=06
pn=04
n=04

— = 0.2

= o8 — =0
5 — =0
~
N 06
0.4
—
0.2
0 . . . . .
4 4.5 5 5.5 6 6.5 7
All

Fig. 6. Plots of the ratios of the upper and lower frequency of the system to
the antiresonance frequency wn as a function of A
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5. THE EFFECT OF THE ACTUAL NUMBER OF DEGREES
OF FREEDOM IN A SYSTEM ON ITS CHARACTERISTIC
FREQUENCIES

Although the theoretical analysis cited above allows the posi-
tion of resonant frequencies to be determined with respect to the
antiresonant frequency, which is the intended operating frequency
of the system, this analysis does not take into account the fact that
the actual system of an antiresonant conveyor has a much greater
number of degrees of freedom, as shown in Fig. 5 on the example
of a machine with a flat layout [16].

In particular, the actual system has the possibility and the spec-
ified frequency of the swinging motion a in the machine plane of
symmetry, resulting in the actual lower limit of operating speed fluc-
tuation possibly not corresponding to the lower resonant frequency
of the eliminator considered earlier. These phenomena will be in-
vestigated during the modal analysis using the simulation model
shown in Fig. 7.

5.1. Discrete dynamic model of an antiresonant
conveyor

To perform a dynamic and modal analysis of the antiresonant
conveyor, its discrete model formulated in [16] was used, with 6
degrees of freedom { X, y, a, f, @1, @2 }, as shown in Fig. 7. The
model consists of two masses, i.e. the mass of the body Mk and the
mass of the trough M;, acting as a dynamic eliminator in this model,
and two inertial vibrators with individual induction drive.

The body was spring-supported on helical springs fixed to the
ground, while the conveyor trough was supported on spring rails
fixed to the body. Counter-rotating inertial vibrators are the source
of the resultant excitation force acting on the body at an angle § to
the horizontal. The vibrators were mounted in such a way that the
symmetrical segment connecting the centers of the vibrator bear-
ings intersected the center of mass of the body and the trough. The
following values of constants [SI] were assumed in the Tab. 2. and
came from the literature [16].

acta mechanica et automatica, vol.19 no.3 (2025)

Tab. 2. Parameters of the dynamic model from Fig. 7

Parameter Value Unit
M: 1000 kg
M 2500 kg
Ji 12200 kgm?
Jr 5000 kgm?
ky 2328000 N/m
K« 1164000 N/m
ke 10962000 N/m
by 0~ Ns/m
bx 0~ Ns/m
br 0~ Ns/m
L 2 m
Ly 1.92 m
H 0.48 m
hy 1.1 m
§ 30 deg

To analyse the motion of the system, in the static equilibrium
state of the machine without a feed, an absolute central system was
assumed in relation to the body of the machine, with the axes x, y,
body rotation angle a, relative displacement of the trough relative
to the body f and the absolute angles of rotation of the vibrators @1
and @z

The set of equations describing the motion of the machine can
be expressed in matrix form:

M-j=0Q
where

(24)

2
q Z%[x'ylatf!d)lid)Z]T

The form of the mass matrix M and the vector of free expres-
sions Q can be found in [2]. An approximate linearised form of these
relations is used below to perform a modal analysis of the system.

Lr

__F

Mr.Jr /

e

Fig. 7. Discrete model of an antiresonant vibratory conveyor shown in Fig. 2

464



§ sciendo

Jerzy Michalczyk, Marek Gajowy, Krzysztof Michalczyk

Causes of Errors in Estimating the Characteristic Frequencies of Antiresonant Conveyors

5.2. Linearisation of a Nonlinear System

Due to the low energy dissipation in the springs, mainly from
material and structural damping, itis possible to analyse the natural
vibrations of the system as undamped. The remaining nonlineari-
ties of the machine model without feed are related to the effect of
body vibrations on the vibrator motion and to the Coriolis accelera-
tion in the compound motion of the trough. The dimension-to-mass
ratios in typical vibratory machine designs generally allow the mo-
tion of the vibrator to be neglected in the natural vibration analysis
and its mass to be focused on the rotation axis [12]. Similarly, when
analysing the Coriolis acceleration value, it can be neglected com-
pared to the other acceleration components for typical machine di-
mension ratios.

By doing so, the dynamic equation (24) can be reduced to the
form (25)

M-g+K-q=0 (25)
in which: 0 — zero vector, M — mass matrix, K — elasticity matrix,
q=qo - sin(wt+7y) (26)
where:

qo — vector of coordinate amplitudes: x, y, a, f,

w - natural frequency,

y - vibration phase angle.

Therefore, we obtain the matrix equation (27).
(K—w?-M)-q=0 (27)

The existence of a non-zero solution to this equation is possible
if the matrix(K — w? - M)is singular, i.e.

det(K—w?-M) =0 (28)

The relation (24) is a 4t degree equation on w? and leads to
the determination of 4 natural frequencies (not necessarily differ-
ent). We reject negative frequencies as physically meaningless.

After considering the form of the mass and elasticity matrices,
we obtain:

dz1 dzz Q3 Q4
K — wz . M = 29
( ) d3z1 dzz A3z 034 (29)
Ay Qgp Qg3 Qg
where

a1 =k, — (My + M) w?
Ay =0z, =0

a3 = az; = k H + h.M,w?
Qs = A4 = —M,0* cos(B)
Ay = ky — (M + M) w?
A3 = a3y = —L.M,w?

Qs = G4y = —M,w? sin(B)

a33 = kaZ + kyLz
- (]k +]r + MrLg‘ + Mrhrz‘)wz
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a3y = Q43 = [-M, L, sin(B) + M,h, cos(B)]w?
Ayq = —1\/17(1\)2 + kf

After substituting the previously assumed numerical values and
equating the determinant of the matrix (29) to zero, we obtain the
following solution of equation (28) in the form of 4 natural frequen-
cies:

fi=261Hz, £=347Hz, f=441Hz, f;=19.84Hz.

5.3. Forms of natural vibrations

Zeroing the principal matrix determinant means that the equa-
tions are linearly dependent, therefore it is not possible to obtain
specific values of the amplitudes. By substituting a given natural
frequency into the matrix, it is possible to determine the correspond-
ing vibration form, that is, the ratio of amplitudes of individual coor-
dinates. For specific values of vibration frequency, vibration forms
were obtained in the form (30)

A

_|B
a0 =" (30)

D

Calculation of the vibration form for a given natural frequency:

A 0
(K—w?-M)-qo=K-o? M5 =7 (31)
D 0

The form of the vibration related to the relative displacement
amplitude f was obtained using the LU matrix decomposition.

For fi=2.61Hz

48.32
—443
—1210 ' (32)

Proceedlng similarly for the other frequencies, the following
was obtained in Tab. 3.

OO

Tab. 3. The form of the vibration

=3.47 Hz f3=4.41 Hz f4=19.84 Hz
A 18.22 —10.75 —0.25
B| _ 12,51 4526 | -0.15 |
cl™ 880 ~11.10 —0.00014
D 1 1

The form of the foregoing vibration forms indicates that the suc-
cessive frequencies correspond approximately, respectively, to:
horizontal vibrations of the entire machine, co-phase vibrations
close to vibrations with lower frequency of the machine as an elim-
inator, angular vibrations of the machine and reciprocating vibra-
tions of the trough and the body in the operating direction. The last
form, which corresponds to the highest natural frequency, has the
nature of an upper resonant frequency of the Frahm system.
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If based on machine parameters we determine the value of the
ratio of the trough mass to the body mass p = 0.4 and based on the
relations (23) derived for the Frahm’s model we calculate the value
of the upper resonance frequency f, and the lower resonance fre-
quency f,. Using formulas (10), (18), (23) and values from Tab. 2.

keM
N2 = L7k (33)
Mykyy

where equivalent stiffness coefficient kyy is (34)

kyy = \/(kx -cos a)? + (ky - sin a)z (34)

and finaly

[+ 22+ )]+ [1+42(1+p)]2 - 442
Vu,l - 2A2 )

kf [rad
S e

We obtain the following frequencies: f, = 19,83 Hz and f; = 3,32
Hz, respectively. The higher value is in satisfactory agreement with
fs of the machine, while the lower value reproduces f. of the ma-
chine with an error of 4,3%. More importantly, the lower limit of the
antiresonant zone does not correspond to f, since the resonant re-
gion f3 of the machine, corresponding in the real machine to its an-
gular vibration, is closer to the antiresonant frequency.

6. SPRING WEIGHT REDUCED TO TROUGH

In the case of antiresonant machines, the high stiffness of the
spring system means that the mass of the springs is significant, ac-
counting for about 1/4 of the trough mass, and should not be ig-
nored when determining the antiresonant frequency. Since the
spring is a deformable system, its mass "belonging" to the trough
should be determined by determining the reduced mass. The lack
of adequate values of reduction factors for springs in the literature
makes it necessary to determine them.

To do so, assuming in line with reality that the first bending fre-
quency of the spring positioned in its outermost points is many
times higher than the operating frequency of the machine, to deter-
mine the deformation form f of the spring, we can assume that it is
caused by the static application of force S in the operating direction
- Fig. 8.

Let us denote by mj the mass of the active part of the spring.
Taking advantage of the symmetry of the system, which leads to
zero bending moment for w=I/2 , let us write the equation of the
deflection line of the lower half of the spring, i.e. for the range w=0
to I/2 in the form (36):

2
EJ% =S(/2 —w) (36)

The solution to this equation (36) with boundary conditions (37)
is (38)

—0 Y=
(O =0, 7-(0)=0 (37)
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ron =565 @
Therefore, (39) were obtained.
JORERE-16) i

where A=f(l) denotes the total amplitude of the relative displace-
ment of both ends of the spring, equal to the vibration amplitude of
the trough relative to the body in the direction f.

AW

1
e

o

Fig. 8. Continuous spring model (flat spring during deformation)

By determining the S value from relation (39) and substituting it
in equation (38) we obtain the deflection line of the lower half of the
spring depending on A (40):

_ 3 1y w2 w34
fiw) = oo |G) 5515 (40)
for
w=0 to l/2

Using the antisymmetry of the deformation form of the upper
and lower spring halves, the displacements of the upper part can
be written in the form (41).

fuw) = {1 -5 [(5) - 52 - )
@]}A, for w :é to [

Between the time course of deflection f(t) and the speed
coursef () for harmonic vibrations, there is a relation of the ve-
locity amplitude being equal to the displacement amplitude multi-
plied by the angular frequency of vibrations w.

Therefore, the square of the velocity amplitude of the point of
the spring with deflection fisf2w?. This allows us to present the
maximum kinetic energy of the mass reduced to the trough as (42)

R 42)
And the spring:

Emy, = 5 Jy fW)?w? m dw (43)

where

="k (44)

l
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By comparing the two expressions (42) and (43) for kinetic en-
ergy, the second of which is the sum of both parts of the spring, it
is possible, after calculating the integral and dividing by A2w?/2, to
determine the reduced mass of the spring (45) which is connected
with the trough and that produces the same inertial resistance at
the attachment point as the tip of the spring.

. /2 l
My = %{f fiw))? dw+fl/2 Ui (w)] 2 dw}

= M (45)

Correct determination of the antiresonant frequency of the sys-
tem requires adding the determined fraction of the mass of the ac-
tive spring part to the mass of the trough (and, of course, the total
mass of the grip parts associated with the trough).

6.1.  Experimental and numerical study of the frequency
of bending vibrations

6.1.1. An experimental model and Identification of system
parameters and experimental determination of the
first natural frequency

To check the accuracy of the calculation model taking into ac-
count the mass of the flat springs (Equation (45)), an experiment
was carried out to determine the first natural frequency of bending
vibrations of the system shown in Fig. 9. This system reflects the
typical method of attaching flat springs in vibrating conveyors, such
as the one shown in Fig. 1. attached by screws E, washers F and
nuts G and pressure plates D to distancing bodies B. Figure 9a
shows the basic dimensions of the elements of the analysed sys-
tem. Figure 9b shows the system of Figure 9a attached by means
of a vice to the anchored in the foundation. The vibrations of the
free end of the system were induced by its deflection and release.
Vibration recording was performed using a vibration analyzer KSD-
400 from SENSOR equipped with a miniature accelerometer
352C22 from PCB PIEZOTRONICS with a mass of 0.5 g. The ac-
celerometer was glued to one of the flat springs, as shown in Fig.
9b. The sampling frequency was 4.096 Hz. Due to analog integra-
tion, the vibration velocity was measured over time.

o

Fig. 9. Scheme of the elastic support system, (a) A flat spring, B — distancing
mass, C — mounting washers in the vice jaws, D — pressure plates, E —
screws M5x40, F — nuts, G — washers; (b) the system attached to the
foundation with a vice
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The results of free vibration tests of the system are shown in
Fig.10. The time course of the vibration velocity decay is shown in
Fig.10a. The results of the FFT analysis are presented on Fig. 10b.
The natural frequency obtained from the experiments was 85,3 Hz.

In order to determine the actual elastic-inertial properties of the
system, additional tests were carried out;

— three-point bending flexural tests of each of both flat springs, in
order to determine their individual bending stiffnesses EJsi ;

— testing of the transverse stiffness kf of the entire system;

— measurement of the masses of system elements.
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Fig. 10. Time course of vibration velocity (a), FFT analysis results (b)

The values of the bending stiffness EJs1 and EJs2 of the used
springs and the transverse stiffness kf of the entire system were
experimentally tested using the MTS ACUMEN 3 testing machine,
equipped with a 250 N force sensor. The traverse shift velocity in
all tests was 0.5 mm/s. In the three-point bending flexural tests, the
distance between the supports was 70 mm. Figure 11 shows a
stand for three-point bending flexural tests and a graph of the lateral
force versus the deflection arrow for one of the springs, along with
a 1st degree polynomial approximating this course. Approximations
of the experimental results were performed in the MATLAB soft-
ware environment. The values of the slope coefficients of the linear
approximating functions were 48.7078 N/mm and 48.4407 N/mm
respectively, while the coefficients of determination were 0.9991 R-
squared and 0.9992 R-squared respectively. Based on these val-
ues and the known relations, the bending stiffness values of the two
springs were determined, which were EJs1 = 348058 Nmm2 and
EJs2 = 346149 Nmm2 respectively. Figure 12 shows the entire sys-
tem subjected to transverse load (Fig. 12a) and the relationship be-
tween transverse force and stiffness kf of the system along with a
function that approximates stiffness (Fig. 12b). The approximate
stiffness value was 30.4068 N/mm, with a coefficient of determina-
tion of 0.9967.
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Fig. 11. An experimental determination of the transverse stiffness of flat
springs: (a) view of the station, (b) force-displacement diagram for
one of the spring
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Fig. 12. Experimental determination of the stiffness of the entire system
(a) before and after the load, (b) the relationship between the
transverse force and the stiffness kf of the system

The information contained in Tab. 4 with the following notations
was obtained from the analysis.
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Tab. 4. Geometric and physical parameters of flat springs and other com-
ponents of the test system (Fig. 9) - mass values are given with
an accuracy of 0.01g

Parameter | Value Unit Meaning
I = 0.1 m total length of the spring
I = 0.06 m active length of the spring
b = 0.02 m spring width
h = 0.001 m spring thickness
m = 0.00948 kg mass of the active part of a single spring
my = 0.00352 kg reduced mass of a single spring (45)
mg = 0.09609 kg vibratingmassB+D + E
m; = 0.10314 kg total weight reduced
EJs1 = 348058 Nmm? | spring stiffness no. 1
EJ2 = 346149 Nmm2 | spring stiffness no. 2

6.1.2. The 1st natural frequency — a continuous and discrete
model

The impulse excitation was used to perform a modal analysis,
i.e. the appearance of a short-term high force acting across the
springs. The appearance of this force causes the excitation of res-
onance vibrations. These vibrations also include the first form of
natural vibrations, which is related to the deformation of the springs
of mass mr and the oscillations of the mass ma, which is the sum of
the masses of the non-deformable parts (distancing mass (B),
screws and washers (E)). The behaviour of the vibrating system
with the first mode of natural vibrations from Fig. 9 shows not only
the continuous model (Fig. 13a), but also the discrete model (Fig.
13b), which simplifies the behaviour of the system for the transla-
tional movement of the mass m; (due to the identical displacement
of the mounting points of the flat springs ). The mass m; is the re-
duced mass of the vibrating elements, i.e. masses of the deformed
springs mrand the nondeformable vibrating parts mq. Using formula
(45), the reduced mass m; was obtained in the form (46).

13

m,= my+2-my =md+2-£mr (46)
k=
x
m, —
f oo B N
b,
! a o
! /

Fig. 13. Continuous model of the tested system showing the first natural
frequency (a), discrete equivalent model of the tested system for
the first natural frequency (b)

In this case, the replacement suspension system was a spring
and damper package with stiffness and damping coefficients krand
by, respectively, attached to the support and the reduced mass m;
parallel to the direction of vibration.
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The elasticity of a single flat spring used in the experiment was
calculated from the Eq. (47), which takes into account the constant
moment of inertia (48) of the cross-section b x h of the spring bar
shown in Fig. 9a and Tab. 4.

kpo = 5 (47)
where
=% (48)

12

The energy absorption coefficient y for flat steel springs is
equal to 0.04 [17], which means that the viscous damping coeffi-
cient of the spring is so small that its impact on the vibration fre-
quency is negligible. After taking into account the parallel connec-
tion of flat springs and the discrete model, the doubled elasticity k¢
and the first natural frequency of undamped vibrations (doubled
damping coefficient br= 0) in the form (49) were obtained.

szzlkfi (2?:1’31‘1')2 jiiz:lkfi
mgz 2my mg
f= ~ ~97.33 Hz (49)

2 2

Frequency not taking into account the spring mass calculated
from the Eq. (50)

2
Shakpi (Thabri TEi ks

2 2

~ 100.83 Hz (50)

6.1.3. The 1st natural frequency — a numerical model

FEM software is usually used as a tool to check the accuracy
of analytical calculations carried out in the conveyor design pro-
cess. Modal analyses are most often used to determine the natural
frequency of the system. The results of such an analysis, performed
in the ANSYS software environment, are presented below. The in-
ertial and elastic parameters of the solid model were determined on
the basis of experimental data presented in Tab. 4. Due to differ-
ences in the geometry of the real elements and the solid model (e.g.
modelling the threaded part of the screws in the form of a cylinder,
omitting chamfers, etc.), appropriate density values were assigned
to individual elements in the solid model so that their masses were
consistent with those measured experimentally. The Poisson num-
ber for all elements was assumed to be 0.3, and the Young's mod-
ulus of springs was assumed to be 208262.1 MPa, which is the
average of the values determined on the basis of experiments. For
the remaining elements, a value of Young's modulus representative
for carbon steels was assumed, equal to 200000 MPa. In order to
obtain a high-quality FE mesh, the selected elements were divided
into smaller volumes and then the requirement for compliance of
common nodes was imposed within these elements. All parts of the
system have been discretised using higher-order finite elements
exhibiting quadratic displacement behavior. Springs have been dis-
cretised using quadratic 20-node hexahedral elements, which gen-
erally give more accurate results than tetrahedral-shaped elements
and are also more reliable in terms of the skewness parameter [18,
19]. To obtain reliable results from the FEM analyses, in addition to
analysing the quality of the FE mesh, an additional analysis of the
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influence of the density of the spring modelling mesh was per-
formed. Modal analyses were performed with three finite element
mesh settings in the spring thickness direction b: with one, two, and
three finite element layers. The models obtained in this way are
shown in Fig. 14. In Figure 14, the boundary condition of the re-
straint on the surface of the mounting plate on the FEM model is
additionally marked in yellow. Table 4 lists the number of nodes in
individual system models, the results of the FE mesh quality analy-
sis (average skewness and average orthogonal quality), and the
results of the impact of the FE mesh density on the natural fre-
quency value obtained in the modal analysis.

1 layer ‘ The FEM mode! The 1st mode

Fig. 14. The results of the modal analysis performed in the ANSYS
environment - the first form of vibration from Fig. 8 and 9 - the
simulation result is 97,74 Hz (Tab.4) for three finite element lay-
ers on flat springs

The difference between the results (Tab. 5.) obtained for mod-
els with 3 and 2 layers was approximately 0.06%, indicating the
high accuracy of the results. These results are in good agreement
with the result of the formula (49) taking into account the mass of
the spring (97.33 Hz). The difference between the pattern result and
the 3-layer FEM result was approximately 0.4%.

6.1.4. Comparison of analysis results

In the comparative analysis, the reference value with which the
remaining results were compared is the frequency of the first form
of vibration obtained from the experimental analysis, which was
85.3 Hz. As shown in Table 6, the result of the theoretical analysis
of 97.33 Hz, taking into account the reduced mass of flat springs
(49), is closest to the value obtained from the experimental test.
The difference in values and the relative error of 14.10% may result
from assembly errors and measurement errors when determining
the active length of the flat spring.

Tab. 5. Parameters of modal analysis

Number of layers in

1 2 3
thickness h
Total number of nodes / num- 379514/ 397475/ 415436/
ber of nodes of one spring 15629 24586 33543
Average Skewness 024776 | 023940 | 0.23175
parameter

Average Orthogonal Quality 0.87048 0.87567 0.88043

The 1st natural
frequency

98.01 Hz 97.80 Hz 97.74 Hz
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Tab. 6. Comparison of the frequency results of the first form of
bending vibrations

A type of modal analysis f[Hz] £[%)]*
theoretical without taking into account
. 100.83 18.21
the mass of flat springs

h ical taking i t th

theoretical taking into ?ccoun the 9733 1410
mass of flat springs
numerical 97.74 14.58
experimental 85.30 0

* £- the relative difference between a specific value and the value
obtained from experiment

The active length should be counted from the place where the
spring is attached, taking into account the chamfers of the spacer
mass (B) and the pressing washers (D) from Fig. 9. The theoretical
method does not take into account their deformability, which could
occur under real conditions. Failure to take into account the mass
of the springs (50) with the result of 100.83 Hz leads to even greater
errors in frequency estimation at the level of 18.21%. The numerical
analysis gave a result very close to the theoretical value, taking into
account the reduced spring mass. Both of these methods assume
tight adhesion of the springs and spacer masses to each other, and
hence the active length in both methods is identical. In fact, due to
the slight deformability of the handles, the active length can be
greater and the elasticity of the springs can decrease with the cube
of the active length of the spring (45).

7. CONCLUSIONS

Achieving high mobility properties of conveyors operating on
the basis of Frahm's principle of dynamic elimination requires high
accuracy in determining both the position of the antiresonant point
and the resonance frequency of the system. Relationships based
on the classical Frahm damping theory lead to results that are far
from real in this regard. This paper presents correct derived formu-
las and a nomogram built for designers based on them. The effect
was shown that the actual number of degrees of freedom in ma-
chines constructed using the dynamic eliminator principle has on
frequencies limiting the antiresonance zone. The effect of the
spring mass on the antiresonance frequency was also pointed out,
and correct relations for its consideration were derived. The issues
discussed do not exhaust the possible causes of unsatisfactory run-
ning properties of antiresonance type conveyors. Many significant
errors may also result from a simplified mathematical description of
the vibrating system, not including the phenomenon of self-syn-
chronisation of vibrators [7] or even the construction of a system
that does not guarantee the possibility of obtaining the exciting
force along a straight line [20], which is the cause of the component
of the direct transfer of the exciting force to the ground.

REFERENCES

1. Czubak P, Gajowy M. Influence of selected physical parameters on
vibroinsulation of base-exited vibratory conveyors. Open Engineering.
2022 Jan 1;12(1):382-93. Available from: https://doi.org/10.1515/eng-
2022-0033

2. Suréwka W, Czubak P. Transport properties of the new vibratory con-
veyor at operations in the resonance zone. Open Engineering. 2021
Jan 1;11(1):1214-22. Available from: https://doi.org/10.1515/eng-
2021-0122

3. SunJQ, Jolly MR, Norris MA. Passive, Adaptive and Active Tuned Vi-
bration Absorbers—A Survey. Journal of Mechanical Design. 1995

470

acta mechanica et automatica, vol.19 no.3 (2025)

Jun 1;117(B):234-42.
Available from: https://doi.org/10.1115/1.2836462

4. Ibrahim RA. Recent advances in nonlinear passive vibration isolators.
Journal of Sound and Vibration. 2008 Jul;314(3-5):371-452.
Available from: https://doi.org/10.1016/}.jsv.2008.01.014

5. Wahl F, Schmidt G, Forrai L. On The Significance Of Antiresonance
Frequencies In Experimental Structural Analysis. Journal of Sound
and Vibration. 1999 Jan;219(3):379-94.

Available from: https://doi.org/10.1006/jsvi.1998.1831

6. Renault A, Thomas O, Mahé H. Numerical antiresonance continuation
of structural systems. Mechanical Systems and Signal Processing.
2018 Jul 27;116:963-84.

Available from: https://doi.org/10.1016/j.ymssp.2018.07.005

7. Li X, Shen T. Dynamic performance analysis of nonlinear anti-reso-
nance vibrating machine with the fluctuation of material mass. Journal
of Vibroengineering. 2016 Mar 31;18(2):978-88. Available from:
https://doi.org/10.21595/jve.2016.16559

8. Cieplok G. Self-synchronization of drive vibrators of an antiresonance
vibratory conveyor. Journal of Theoretical and Applied Mechanics.
2023 Sep 18;61(4):501-11.

Available from https://doi.org/10.15632/jtam-pl/170840

9. LiY,RenT, Meng X, Zhang M, Zhao P. Experimental and theoretical
investigation on synchronization of a vibration system flexibly driven
by two motors. Proceedings of the Institution of Mechanical Engineers
Part C Journal of Mechanical Engineering Science. 2020 Feb
25;234(13):2550-62.

Available from: https://doi.org/10.1177/0954406220907930

10. Peng H, Hou Y, Fang P, Zou M, Zhang Z. Synchronization analysis of
the anti-resonance system with three exciters. Applied Mathematical
Modelling. 2021 Apr 13;97:96-112.

Available from: https://doi.org/10.1016/j.apm.2021.03.055

11. Richiedei D, Tamellin I, Trevisani A. Beyond the Tuned Mass Damper:
a Comparative Study of Passive Approaches to Vibration Absorption
Through Antiresonance Assignment. Archives of Computational Meth-
ods in Engineering. 2021 Apr 28; 29.

Available from: https://doi.org/10.1007/s11831-021-09583-w

12. Den Hartog, JP. Mechnical vibrations [in Polish]. PWN. Warszawa;
1971.

13. Frahm H. Device for Damping Vibrations of Bodies. 1909, US Patent
No. 989958.

14. Michalczyk J, Gajowy M. Operational properties of vibratory conveyors
of the antiresonance type. Archives of Mining Sciences. 2018,
63(2):301-319.

15. Klemiato M, Czubak P. Control of the transport direction and velocity
of the two-way reversible vibratory conveyor. Arch Appl Mech. 2019
Jan 4;89(7):1359-73. Available from: https://doi.org/10.1007/s00419-
018-01507-8

16. Gajowy M. Analysis of the dynamic properties of vibrating conveyors
operating on the basis of the phenomenon of dynamic vibration elimi-
nation [in Polish]. Doctoral dissertation, Faculty of Mechanical Engi-
neering and Robotics, AGH University of Science and Technology,
Krakéw, Poland. 2017

17. Michalczyk J. Vibration machines, dynamic calculations, vibrations,
noise [in Polish]. WNT; 2011

18. Burkhart TA, Andrews DM, Dunning CE. Finite element modeling
mesh quality, energy balance and validation methods: A review with
recommendations associated with the modeling of bone tissue. J Bio-
mech. 2013;46(9):1477-1488.

Available from: https://doi.org/10.1016/j.jbiomech.2013.03.022

19. Ruggiero A, D’Amato R, Affatato S. Comparison of meshing strategies
in THR finite element modelling. Materials. 2019 Jul 23;12(14):2332.
Available from: https://doi.org/10.3390/ma12142332

20. Sturm M. Two-mass linear vibratory conveyor with reduced vibration
transmission to the ground. Vibroengineering Procedia. 2017 Sep
19;13:20-3. Available from: https://doi.org/10.21595/vp.2017.19066

This work is financed by AGH University of Krakow, Faculty of Mechanical
Engineering and Robotics, research program No. 16.16.130.942.

Jerzy Michalczyk: https://orcid.org/0009-0006-1968-7561
Marek Gajowy: https://orcid.org/0000-0001-6326-2364
Krzysztof Michalczyk: https://orcid.org/0000-0002-1024-5947

This work is licensed under the Creative
Commons BY-NC-ND 4.0 license.

S0eo


https://orcid.org/0009-0006-1968-7561
https://orcid.org/0000-0001-6326-2364
https://orcid.org/0000-0001-6326-2364
https://orcid.org/0000-0002-1024-5947
https://orcid.org/0000-0001-6326-2364
https://orcid.org/0000-0002-1024-5947
https://orcid.org/0009-0006-1968-7561



