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Abstract: This paper demonstrates the unsuitability of relations and diagrams known from literature for antiresonant machines, in terms   
of determining the position of resonances of dynamic elimination systems. Correct formulas were derived and a nomogram for designers 
was built based on them. The effect of the actual number of degrees of freedom on the natural frequencies of machines with a design based 
on the dynam-ic eliminator principle is presented. The effect of the spring mass on the antiresonance frequency explicit to the natural    
frequency of the eliminator was pointed out, and correct relations for its consideration were derived. The experimental and numerical studies 
carried out in this paper have confirmed that including the effect of spring inertia in analytical calculations improves the accuracy of the results 
obtained. Furthermore, it was shown that the actual way in which the ends of the leaf springs are attached can significantly affect the natural 
frequency of the system. The factors discussed and analysed in this paper are omitted in conventional vibrating machine calculations,    
resulting in an overestimation of the natural frequencies determined from them. 
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1. INTRODUCTION 

Antiresonant vibratory conveyors (Base – Excited Conveyors), 
shown in Fig.1, owe their rapidly increasing popularity to their two 
main advantages: 

− Negligible, theoretically equal to zero, value of dynamic forces 
transferred to the ground during operation, resulting from the 
Frahm dynamic eliminator effect used in their construction, with 
the trough as the properly tuned eliminator mass [1], and 

− Lower, compared to currently used over-resonant machines, 
required excitation force of vibrators, which induces vibrations 
of only a light transport trough, which does not require signifi-
cant bending rigidity, as it is ensured by a massive body of the 
machine, and which is not burdened by significant masses of 
the drive system attached to this body. 
These conveyors are becoming more and more widely used to 

transport loose materials [2], where dynamic forces transmitted to 
the ground by super-resonant conveyors are a significant disad-
vantage. For example, this is the case in mineral raw material pro-
cessing plants, where flimsy buildings of processing stations, made 
of reinforced concrete, usually contain a considerable number of 
vibratory machines accumulated: conveyors, screens, dewatering 
centrifuges, etc., leading to intensive spread of floor vibrations, cov-
ering the majority of operation sites, endangering the health of op-
erators and sometimes leading to building damage.  
   The antiresonance phenomenon is widely described in existing 
literature [3, 4]. Authors of [5] pointed out, that it is possible to de-
termine the resonance frequencies of the structure under ideal 

boundary conditions, based on the experimentally determined anti-
resonance frequencies for structure under arbitrary boundary con-
ditions. Renault et al. [6] proposed extension of linear concepts 
about antiresonances to the nonlinear cases of vibrating systems. 
The influence of transported material mass fluctuation has been an-
alysed in [7], where authors presented nonlinear dynamic model of 
antiresonant vibrating machine.  

 
Fig. 1. VIBRAflex II Sanitary Antiresonant Vibratory Conveyor – PFI, which 

dynamic and discret model is presented in Fig. 2 

 

The widespread use of antiresonant machines such as convey-
ors [8] or vibrating screens [9, 10] requires accurate and reliable 
methods of calculation, in which the correct determination of the 
antiresonant frequency and resonant frequency of the system plays 
a fundamental role. The development of anti-resonance vibration 
isolation methods is also important because more accurate compu-
tational models can be used both in the design of new systems and 
in the optimisation of the existing ones [11].  
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Due to the fact that there are a number of erroneous traditions 
in this field, usually resulting from misinterpretation, but also from 
the incompleteness of the dynamic elimination theory, this paper 
presents the basic mistakes made in this field, and the addition to 
Frahm’s theory and other phenomena to the extent required in the 
design of antiresonant machines. 

2. THEORETICAL FOUNDATIONS OF ANTIRESONANT 

CONVEYOR OPERATION - DYNAMIC ELIMINATOR 

THEORY [12], [13] 

Antiresonant machines operate on the basis of the dynamic elim-
inator scheme [14], where the body of the machine, resiliently located 
and set in motion by a set of inertial vibrators, constitutes the protected 
object, while the transport trough, connected to the body by a set of 
springs, constitutes the mass of the eliminator. Let us denote the mass 
and the elastic and damping coefficients of the body spring elements 
by M, K, C, respectively, and the mass of the trough and the elastic 
and damping coefficients of the springs by me, ke, ce.  
   The operating principle of this system involves proper tuning of the 
eliminator [1]. The force in the eliminator spring (or spring system, in 
the case of a conveyor) reaches an amplitude and phase that coun-
teracts the excitation force. For conveyors, this excitation force is the 
resultant force from the vibrators. When tuned correctly, the protected 
system (the machine body) nearly stops vibrating. This means it no 
longer transmits dynamic forces to the ground. Meanwhile, vibrations 
of the eliminator (the trough) enable the vibratory transport process. 

Since this phenomenon occurs only in a narrow range of excitation 
frequencies [15] around the eliminator’s natural frequency (1) 

𝑓𝑛 =
1

2𝜋
√𝑘𝑒/𝑚𝑒                                                (1) 

(the so-called partial frequency, as it is not the vibration frequency of a 
combined system), wherein this frequency is closely surrounded by 
the resonant frequencies of the system on both sides. „The excitation 
and natural frequencies of the eliminator are subject to various 
interferences. Therefore, accurately determining these frequencies is 
essential for the machine's practical usability. These values 
significantly depend on precisely defined suspension parameters of 
the machine, including mass distribution, suspension stiffness and 
damping [1]. 
 

Fig. 2.  Diagram of the dynamic vibration eliminator: M – protected mass,   
me  – eliminator mass, K, C – constants of elasticity and damping of 
support elements of protected mass, ke, ce – constants of elasticity 
and damping of elastic elements of the eliminator, Po eivt – harmonic 
excitation force 

Let us denote the absolute displacements of the masses M and 
me in the vibrations of the direction of the system by x and y, 
respectively, while the amplitude and frequency of the excitation 
force by Po and ν (Fig. 2.) 

The dynamic equations of motion of both masses are described 

by the following relationships : 

𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 + 𝑐𝑒(𝑥̇ − 𝑦̇) + 𝑘𝑒(𝑥 − 𝑦) = 𝑃𝑜𝑒𝑖𝑣𝑡 

𝑚𝑒𝑦̈ − 𝑐𝑒(𝑥̇ − 𝑦̇) − 𝑘𝑒(𝑥 − 𝑦) = 0  (2) 

The solution to the system of equations is predicted to be :  

𝑥 = 𝐴𝑒𝑖𝑣𝑡 ,  𝑥̇ = 𝑖𝑣𝐴𝑒𝑖𝑣𝑡 ,   𝑥̈ = −𝑣2𝐴𝑒𝑖𝑣𝑡 

𝑦 = 𝐵𝑒𝑖𝑣𝑡 ,  𝑦̇ = 𝑖𝑣𝐵𝑒𝑖𝑣𝑡 ,   𝑦̈ = −𝑣2𝐵𝑒𝑖𝑣𝑡  (3) 
here A and B – vibrations amplitudes of the protected mass and the 
vibration eliminator and i – imaginary unit 

Substituting the expected forms of the solutions of (3) into (2) 
resulted in the following relations: 

𝑀(−𝑣2𝐴𝑒𝑖𝑣𝑡) + 𝐶𝑖𝑣𝐴𝑒𝑖𝑣𝑡 + 𝐾𝐴𝑒𝑖𝑣𝑡 + 𝑐𝑒(𝑖𝑣𝐴𝑒𝑖𝑣𝑡 −
𝑖𝑣𝐵𝑒𝑖𝑣𝑡) +  
+𝑘𝑒(𝐴𝑒𝑖𝑣𝑡 − 𝐵𝑒𝑖𝑣𝑡) = 𝑃𝑜𝑒𝑖𝑣𝑡  (4) 

𝑚𝑒(−𝑣2𝐵𝑒𝑖𝑣𝑡) − 𝑐𝑒(𝑖𝑣𝐴𝑒𝑖𝑣𝑡 − 𝑖𝑣𝐵𝑒𝑖𝑣𝑡) − 𝑘𝑒(𝐴𝑒𝑖𝑣𝑡 −
𝐵𝑒𝑖𝑣𝑡) = 0   

Equations (4) can be represented in matrix form 
(5).

[
−𝑀𝑣2 + (𝐶 + 𝑐𝑒)𝑖𝑣 + (𝐾 + 𝑘𝑒) −𝑐𝑒𝑖𝑣 − 𝑘𝑒

−𝑐𝑒𝑖𝑣 − 𝑘𝑒 −𝑚𝑒𝑣2 + 𝑐𝑒𝑖𝑣 + 𝑘𝑒

] ⋅ 

⋅ [𝐴𝑒𝑖𝑣𝑡

𝐵𝑒𝑖𝑣𝑡
] = [𝑃𝑜𝑒𝑖𝑣𝑡

0
]  (5) 

After solving the matrix system (5), absolute amplitudes of the 
form (6) and (7) were obtained for quasi-stationary values of ν. 

|𝐴|  =
√(𝑃𝑜𝑐𝑒𝑣)2+(−𝑃𝑜𝑚𝑒𝑣2+𝑃𝑜𝑘𝑒)2

√
(𝐾𝑚𝑒𝑣2−𝐾𝑘𝑒+𝑘𝑒𝑀𝑣2+𝑘𝑒𝑚𝑒𝑣2−𝑀𝑚𝑒𝑣4+𝐶𝑐𝑒𝑣2)2

+([𝐶𝑚𝑒+𝑐𝑒𝑀+𝑐𝑒𝑚𝑒]𝑣3−𝐶𝑘𝑒𝑣−𝑐𝑒𝐾𝑣)2

  (6) 

|𝐵| =
√(𝑃𝑜𝑐𝑒𝑣)2+(𝑃𝑜𝑘𝑒)2

√
(𝐾𝑚𝑒𝑣2−𝐾𝑘𝑒+𝑘𝑒𝑀𝑣2+𝑘𝑒𝑚𝑒𝑣2−𝑀𝑚𝑒𝑣4+𝐶𝑐𝑒𝑣2)2

+([𝐶𝑚𝑒+𝑐𝑒𝑀+𝑐𝑒𝑚𝑒]𝑣3−𝐶𝑘𝑒𝑣−𝑐𝑒𝐾𝑣)2

  (7) 

The partial frequency of the undamped vibrations of the protected 
system {M, K, C} is ωo (8) 

𝜔𝑜 = √𝐾/𝑀  (8) 

and of the eliminator is ωn (9) 

𝜔𝑛 = √𝑘𝑒/𝑚𝑒  (9) 

(Since the frequency ωn (9) is at the same time an antiresonant 
frequency ωa, i.e., one at which body vibrations in the undamped 
system disappear, therefore, both designations are equivalent). 
   After assuming the coefficient values (Tab.1), an amplitude-phase 
diagram of the type shown in Fig. 3 can be obtained, on which the 
vibration amplitudes of the basic system without eliminator are usually 
plotted for comparison. 

As can be seen in Fig. 3, the vibration amplitude A of the protected 
mass M will be close to zero (red curve) at the antiresonant frequency 
(10).  

𝜈 = 𝜔𝑛 ≝ 𝜔𝑎 = √𝑘𝑒/𝑚𝑒                          (10) 

This condition is a condition for dynamic elimination of vibrations 
by means of an additional attached mechanical system – the dynamic 
eliminator.  

Graphs such as these are common in the literature and reproduce 
the position of the resonance frequencies for weakly damped systems 
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quite faithfully, but they completely deform the vibration amplitudes, 
which results from the real excitation nature, depending on the square 
of the excitation frequency ν. To make them more realistic, one can, 
for example, substitute the force amplitude Po in equations (6), (7) with 
the expression Po·(ν/ωn)2. However, the route discussed below is 
much easier in order to determine the resonance frequencies of the 
system. 

 
Fig. 3.  Plot of dimensionless amplitudes z1 for absolute displacements of the 

protected system A, the vibration eliminator B, and the system with-
out the eliminator Ao, as a function of the ratio δ for the excitation 
frequency ν to the partial frequency of the eliminator ωn, equal to the 
antiresonant frequency (10) of the system, where z1 – the ratio of am-
plitudes to the value of static deflection of the protected mass 

Tab. 1. Parameters of the dynamic model from Fig. 2 

Parameter Value Unit 

M 600 kg 

me 450 kg 

K 719.387 N/m 

ke 4.963.770 N/m 

C 142 Ns/m 

ce 298 Ns/m 

P 14.450 N 

3. NOMOGRAMS FOR DETERMINATION  

OF RESONANCE FREQUENCIES 

Around the resonance frequency (10) on its left and right sides 
there is an antiresonance zone, i.e. a region of frequencies for which 
vibrations of the protected mass M are the lowest. The values of am-
plitudes increase as one moves away from the antiresonant frequency, 
towards the resonance frequency forming a peculiar zone (Fig. 3. red 
graph). The width of the interval between the resonance frequencies 
is important for the safety of the system operation. The wider it is, the 
higher the operational safety, and therefore the more resistant the me-
chanical system is to various interferences of its operation. To pre-
cisely determine the safe operating range — which is not the subject 
of this study — it is necessary not only to determine the width of the 
antiresonant zone, but also to define the acceptable vibration ampli-
tude limits, which requires a detailed analysis of each specific case 
and the corresponding identification of a safe operating frequency 
band. The primary objective for the designer of antiresonant machines 
should be to estimate the antiresonant frequency as accurately as 
possible and ensure that the system operates in its vicinity. 

To determine the distance on the axis between the values of the 
natural frequency in a simple way, based on the solution of the 
damped linear system, we assumed ce = C ≈ 0. When equating the 
denominator of the expression (6) or (7) to zero with the damping 

neglected yields the expression (11), which allows to determine the 
resonant frequencies of the system, limiting the antiresonant zone: 

(𝐾 + 𝑘𝑒 − 𝑀𝜈2)(𝑘𝑒 − 𝑚𝑒𝜈2) − 𝑘𝑒
2 = 0             (11) 

Dividing the above equation by ke, K, and making further transfor-
mations and simplifications, we finally obtain the form (12). 
   To solve this equation efficiently, the assumption of equality of 
the partial frequencies of the eliminator and the protected mass (13) 
is used in the literature [12]. 

(1 +
𝑘𝑒

𝐾
−

𝜈2

𝐾

𝑀

) (1 −
𝜈2

𝑘𝑒
𝑚𝑒

) −
𝑘𝑒

𝐾
= 0  (12) 

𝑘𝑒

𝑚𝑒
=

𝐾

𝑀
= 𝜔𝑛

2  or  
𝑘𝑒

𝐾
=

𝑚𝑒

𝑀
  (13) 

Using the notation (14) we obtain the final form of the foregoing 
equation for this case (15):  

𝑚𝑒

𝑀
= 𝜇                                          (14) 

(1 + 𝜇 −
𝜈2

𝜔𝑛
2) (1 −

𝜈2

𝜔𝑛
2) − 𝜇 = 0                     (15) 

The roots of this equation are the following values: 

(
𝜈

𝜔𝑛
)

2

= (1 +
𝜇

2
) ∓ √𝜇 +

𝜇2

4
  (16) 

The obtained dependence of the antiresonant zone width on 
the mass ratio only is shown in the graph in Fig. 4. The value of ν/ωn 
= 1 for me / M = μ = 0 in Fig. 4 indicates that no eliminator mass was 
applied (me = 0). In this case, the resonant frequency is singular and 
determined solely by the main suspension. Attaching an eliminator 
mass on an additional suspension with a partial frequency equal to the 
partial frequency of the main suspension results in the emergence of 
two resonant frequencies, which appear on the graph on either side of 
the antiresonant frequency. This antiresonant frequency corresponds 
simultaneously to the partial frequency of the eliminator and the main 
mass. As a result, two curves are formed, representing the natural fre-
quencies for a given μ value. When the eliminator mass increases, the 
mass ratio μ increases as well, leading to a greater separation be-
tween the antiresonant frequency and the two resonant frequencies. 
In case (13), the differences between the lower and upper resonances 
relative to the antiresonant frequency are practically identical.  

As can be seen in Fig. 4, the ratio of eliminator mass to main 
mass cannot be too low, as this reduces the antiresonant zone, and 
thus the system may be subjected to increased amplitudes when 
operating with a non-uniform load or other disturbances that may 
shift the operating point to a frequency close to the resonance fre-
quency. 

Fig. 4.  Graph showing the ratio of the resonance frequencies to the antireso-
nance frequency ν/ωn of the analysed system, compared to the ratio 
of masses me /M = μ in the equality of partial frequencies of the pro-
tected and eliminator masses 
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Unfortunately, this solution does not cover the case of antireso-
nant machines, since they do not satisfy the equality condition (13) of 
the partial frequencies of the object and the eliminator. Although a 
change in the support stiffness of the protected system K does not 
affect the existence and location of the antiresonant point, it does af-
fect the location of the target natural frequencies of the main mass-
eliminator system.) The aforementioned assumption (13) means only 
that a special case is considered when the protected mass is excited 
in its partial resonance. Having considered that, further conclusions 
based on this assumption would only apply to such a case, which ob-
viously does not occur in soft-based antiresonant conveyor systems. 
This fact will be considered further on, where dependencies on the 
position of the resonance frequencies of the main mass – eliminator 
system will be derived, useful for analysing the operation of antireso-
nant conveyors. 

4. EXTENSION OF THE METHOD FOR DETERMINING   

THE RESONANT FREQUENCIES PRESENTS THE CASE 

OF SYSTEMS IN WHICH THE MAIN MASS IS TUNED   

SUPER-RESONANTLY 

To derive relations that define the location of resonance frequen-
cies of the main mass–eliminator system in the general case involving 
the partial tuning of the main mass below the excitation force fre-
quency, we will make the following additional assumption: we assume 
that the ratio of the antiresonance frequency (10) to the frequency of 
body oscillation on its spring suspension system (8) is represented by 
(17). 

𝜔𝑛

𝜔𝑜
= 𝛥                                       (17) 

In this case, we get (18) 

𝑘𝑒

𝑚𝑒
= 𝛥2 𝐾

𝑀
                                     (18) 

therefore (19) and (20) 

𝑘𝑒

𝐾
= 𝛥2𝜇                                     (19) 

𝐾

𝑀
=

𝜔𝑛
2

𝛥2                                        (20) 

Inserting (18), (19), and (20) into (12), we obtain: 

(1 + 𝛥2𝜇 −
𝛥2𝜈2

𝜔𝑛
2 ) (1 −

𝜈2

𝜔𝑛
2) − 𝛥2𝜇 = 0             (21) 

Transforming this expression by extracting the ratio ν/ωn, we ob-
tain the equation to determine the resonance frequencies at any tun-
ing of the main system: 

((
𝜈

𝜔𝑛
)

2

)
2

𝛥2 − (
𝜈

𝜔𝑛
)

2
(1 + 𝛥2(1 + 𝜇)) + 1 = 0      (22) 

 The roots of this equation are as follows. 

𝜈

𝜔𝑛
= √[1+𝛥2(1+𝜇)]±√[1+𝛥2(1+𝜇)]2−4𝛥2

2𝛥2                (23) 

Graphs showing the ratios of the upper and lower frequencies 
of the system to the antiresonance frequency ωa = ωn are shown in 

Fig. 5 for a typical operating range of antiresonant machines and, 
comparatively, for Δ = 1. 

 

Fig. 5. Graphs showing the ratio of the upper and lower resonance frequency 
to ωn as a function of the mass ratio µ, depending on the value of the 
parameter Δ. Note: upper frequency graphs for Δ>>1 values (Δ = 4 to 
7) coincide approximately on the graph 

 

Comparison of the diagrams for Δ = 1 and those corresponding 

to typical super-resonant tunings of the protected system Δ = 4 to 

7, leads to the conclusion that the nature of the two relations is dif-

ferent, wherein the super-resonant tuning of the main mass causes 

a downward shift of the resonant frequencies surrounding the anti-

resonant zone, causing a significant approximation of the upper 

resonant frequency to the operating frequency ν = ωn, which in-

creases the danger of accidental entry of the system into the near-

resonant state. 

To provide a better illustration of the effect of the parameter Δ 

(17) on the ratio of the resonance frequency to the antiresonance 

frequency, a graph, shown in Fig. 6, was prepared presenting four 

values of the parameter µ (14). These diagrams prove that for ma-

chines with bodies operating in the typical super-resonance regime, 

the main effect on widening the antiresonance zone is to increase 

the eliminator-to-body mass ratio, and for a fixed value of this ratio, 

it is advantageous to increase the parameter Δ, which, however, 

almost exclusively decreases the lower resonance frequency, leav-

ing the upper resonance frequency, located relatively close to the 

excitation frequency, almost unchanged, much lower than the one 

resulting from the graphs for Δ = 1 (Fig. 4). 

Fig. 6.  Plots of the ratios of the upper and lower frequency of the system to 
the antiresonance frequency ωn as a function of Δ 
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5. THE EFFECT OF THE ACTUAL NUMBER OF DEGREES  

OF FREEDOM IN A SYSTEM ON ITS CHARACTERISTIC  

FREQUENCIES 

Although the theoretical analysis cited above allows the posi-

tion of resonant frequencies to be determined with respect to the 

antiresonant frequency, which is the intended operating frequency 

of the system, this analysis does not take into account the fact that 

the actual system of an antiresonant conveyor has a much greater 

number of degrees of freedom, as shown in Fig. 5 on the example 

of a machine with a flat layout [16].  

In particular, the actual system has the possibility and the spec-

ified frequency of the swinging motion α in the machine plane of 

symmetry, resulting in the actual lower limit of operating speed fluc-

tuation possibly not corresponding to the lower resonant frequency 

of the eliminator considered earlier. These phenomena will be in-

vestigated during the modal analysis using the simulation model 

shown in Fig. 7. 

 

5.1. Discrete dynamic model of an antiresonant  

conveyor  

 

To perform a dynamic and modal analysis of the antiresonant 

conveyor, its discrete model formulated in [16] was used, with 6 

degrees of freedom { x, y, α, f, 𝜑1, 𝜑2 }, as shown in Fig. 7. The 

model consists of two masses, i.e. the mass of the body Mk and the 

mass of the trough Mr, acting as a dynamic eliminator in this model, 

and two inertial vibrators with individual induction drive.  

The body was spring-supported on helical springs fixed to the 

ground, while the conveyor trough was supported on spring rails 

fixed to the body. Counter-rotating inertial vibrators are the source 

of the resultant excitation force acting on the body at an angle β to 

the horizontal. The vibrators were mounted in such a way that the 

symmetrical segment connecting the centers of the vibrator bear-

ings intersected the center of mass of the body and the trough. The 

following values of constants [SI] were assumed in the Tab. 2. and 

came from the literature [16]. 

 

Tab. 2. Parameters of the dynamic model from Fig. 7 

Parameter Value Unit 

Mr 1000 kg 

Mk 2500 kg 

Jk 12200 kgm2 

Jr 5000 kgm2 

ky 2328000 N/m 

kx 1164000 N/m 

kf 10962000 N/m 

by 0 * Ns/m 

bx 0 * Ns/m 

bf 0 * Ns/m 

L 2 m 

Lr 1.92 m 

H 0.48 m 

hr 1.1 m 

β 30 deg 

To analyse the motion of the system, in the static equilibrium 

state of the machine without a feed, an absolute central system was 

assumed in relation to the body of the machine, with the axes x, y, 

body rotation angle α, relative displacement of the trough relative 

to the body f and the absolute angles of rotation of the vibrators φ1 

and φ2. 

The set of equations describing the motion of the machine can 

be expressed in matrix form: 

𝑴 ⋅ 𝒒̈ = 𝑸                                      (24) 

where  

𝒒̈ =
𝑑2

𝑑𝑡2
[𝑥, 𝑦, 𝛼, 𝑓, 𝜙1, 𝜙2]𝑇                                                    

The form of the mass matrix M and the vector of free expres-

sions Q can be found in [2]. An approximate linearised form of these 

relations is used below to perform a modal analysis of the system.  

Fig. 7. Discrete model of an antiresonant vibratory conveyor shown in Fig. 2 
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5.2.  Linearisation of a Nonlinear System 

 

Due to the low energy dissipation in the springs, mainly from 

material and structural damping, it is possible to analyse the natural 

vibrations of the system as undamped. The remaining nonlineari-

ties of the machine model without feed are related to the effect of 

body vibrations on the vibrator motion and to the Coriolis accelera-

tion in the compound motion of the trough. The dimension-to-mass 

ratios in typical vibratory machine designs generally allow the mo-

tion of the vibrator to be neglected in the natural vibration analysis 

and its mass to be focused on the rotation axis [12]. Similarly, when 

analysing the Coriolis acceleration value, it can be neglected com-

pared to the other acceleration components for typical machine di-

mension ratios. 

By doing so, the dynamic equation (24) can be reduced to the 

form (25) 

𝑴 ⋅ 𝒒̈ + 𝑲 ⋅ 𝒒 = 𝟎                              (25) 

in which: 0 – zero vector, M – mass matrix, K – elasticity matrix, 

𝒒 = 𝒒𝟎 ⋅ 𝑠𝑖𝑛( 𝜔𝑡 + 𝛾)                           (26) 

where:  

q0 – vector of coordinate amplitudes: x, y, α, f, 

ω – natural frequency, 

γ – vibration phase angle. 

 

Therefore, we obtain the matrix equation (27). 

(𝑲 − 𝜔2 ⋅ 𝑴) ⋅ 𝒒 = 𝟎                           (27) 

The existence of a non-zero solution to this equation is possible 

if the matrix(𝑲 − 𝜔2 ⋅ 𝑴)is singular, i.e.  

𝑑𝑒𝑡(𝑲 − 𝜔2 ⋅ 𝑴) = 0                           (28) 

The relation (24) is a 4th degree equation on ω2 and leads to 

the determination of 4 natural frequencies (not necessarily differ-

ent). We reject negative frequencies as physically meaningless.   

After considering the form of the mass and elasticity matrices, 

we obtain: 

(𝑲 − 𝜔2 ⋅ 𝑴) = [

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

]              (29) 

where 

𝑎11 = 𝑘𝑥 − (𝑀𝑘 + 𝑀𝑟)𝜔2 

𝑎12 = 𝑎21 = 0 

𝑎13 = 𝑎31 = 𝑘𝑥𝐻 + ℎ𝑟𝑀𝑟𝜔2 

𝑎14 = 𝑎41 = −𝑀𝑟𝜔2 𝑐𝑜𝑠(𝛽) 

𝑎22 = 𝑘𝑦 − (𝑀𝑘 + 𝑀𝑟)𝜔2 

𝑎23 = 𝑎32 = −𝐿𝑟𝑀𝑟𝜔2 

𝑎24 = 𝑎42 = −𝑀𝑟𝜔2 𝑠𝑖𝑛(𝛽) 

𝑎33 = 𝑘𝑥𝐻2 + 𝑘𝑦𝐿2

− (𝐽𝑘 + 𝐽𝑟 + 𝑀𝑟𝐿𝑟
2 + 𝑀𝑟ℎ𝑟

2)𝜔2 

𝑎34 = 𝑎43 = [−𝑀𝑟𝐿𝑟 𝑠𝑖𝑛(𝛽) + 𝑀𝑟ℎ𝑟 𝑐𝑜𝑠(𝛽)]𝜔2 

𝑎44 = −𝑀𝑟𝜔2 + 𝑘𝑓   

 

After substituting the previously assumed numerical values and 

equating the determinant of the matrix (29) to zero, we obtain the 

following solution of equation (28) in the form of 4 natural frequen-

cies:  

f1 = 2.61 Hz,   f2 = 3.47 Hz,   f3 = 4.41 Hz,   f4 = 19.84 Hz.  

5.3.  Forms of natural vibrations 

Zeroing the principal matrix determinant means that the equa-

tions are linearly dependent, therefore it is not possible to obtain 

specific values of the amplitudes. By substituting a given natural 

frequency into the matrix, it is possible to determine the correspond-

ing vibration form, that is, the ratio of amplitudes of individual coor-

dinates. For specific values of vibration frequency, vibration forms 

were obtained in the form (30)  

𝒒𝟎 = [

𝐴
𝐵
𝐶
𝐷

]                                     (30) 

Calculation of the vibration form for a given natural frequency: 

(𝑲 − 𝜔2 ⋅ 𝑴) ⋅ 𝒒𝟎 = (𝑲 − 𝜔2 ⋅ 𝑴) ⋅ [

𝐴
𝐵
𝐶
𝐷

] = [

0
0
0
0

]      (31) 

The form of the vibration related to the relative displacement 

amplitude f was obtained using the LU matrix decomposition.  

For f1 = 2.61 Hz  

[

𝐴
𝐵
𝐶
𝐷

] = [

48.32
−4.43

−12.10
1

] ⋅ 𝐷                            (32) 

Proceeding similarly for the other frequencies, the following 

was obtained in Tab. 3. 

Tab. 3. The form of the vibration 

 f2 = 3.47 Hz f3 = 4.41 Hz f4 = 19.84 Hz 

[

𝐴
𝐵
𝐶
𝐷

] = [

18.22
12.51
8.80

1

] ⋅ 𝐷 [

−10.75
45.26

−11.10
1

] ⋅ 𝐷 [

−0.25
−0.15

−0.00014
1

] ⋅ 𝐷 

The form of the foregoing vibration forms indicates that the suc-

cessive frequencies correspond approximately, respectively, to: 

horizontal vibrations of the entire machine, co-phase vibrations 

close to vibrations with lower frequency of the machine as an elim-

inator, angular vibrations of the machine and reciprocating vibra-

tions of the trough and the body in the operating direction. The last 

form, which corresponds to the highest natural frequency, has the 

nature of an upper resonant frequency of the Frahm system. 
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If based on machine parameters we determine the value of the 

ratio of the trough mass to the body mass µ = 0.4 and based on the 

relations (23) derived for the Frahm’s model we calculate the value 

of the upper resonance frequency fu and the lower resonance fre-

quency fl. Using formulas (10), (18), (23) and values from Tab. 2.: 

𝛥2 =
𝑘𝑓𝑀𝑘

𝑀𝑟𝑘𝑥𝑦
   (33) 

where equivalent stiffness coefficient kxy is (34) 

𝑘𝑥𝑦 = √(𝑘𝑥 ⋅ 𝑐𝑜𝑠 𝛼)2 + (𝑘𝑦 ⋅ 𝑠𝑖𝑛 𝛼)
2
       (34) 

and finaly 

𝜈𝑢,𝑙 = √[1+𝛥2(1+𝜇)]±√[1+𝛥2(1+𝜇)]2−4𝛥2

2𝛥2
⋅

√
𝑘𝑓

𝑀𝑟
[

𝑟𝑎𝑑

𝑠
]                        (35) 

We obtain the following frequencies: fu = 19,83 Hz and fl = 3,32 

Hz, respectively. The higher value is in satisfactory agreement with 

f4 of the machine, while the lower value reproduces f2 of the ma-

chine with an error of 4,3%. More importantly, the lower limit of the 

antiresonant zone does not correspond to fl, since the resonant re-

gion f3 of the machine, corresponding in the real machine to its an-

gular vibration, is closer to the antiresonant frequency. 

6. SPRING WEIGHT REDUCED TO TROUGH 

In the case of antiresonant machines, the high stiffness of the 

spring system means that the mass of the springs is significant, ac-

counting for about 1/4 of the trough mass, and should not be ig-

nored when determining the antiresonant frequency. Since the 

spring is a deformable system, its mass "belonging" to the trough 

should be determined by determining the reduced mass. The lack 

of adequate values of reduction factors for springs in the literature 

makes it necessary to determine them. 

To do so, assuming in line with reality that the first bending fre-

quency of the spring positioned in its outermost points is many 

times higher than the operating frequency of the machine, to deter-

mine the deformation form f of the spring, we can assume that it is 

caused by the static application of force S in the operating direction 

– Fig. 8. 

Let us denote by mj the mass of the active part of the spring. 

Taking advantage of the symmetry of the system, which leads to 

zero bending moment for w=l/2 , let us write the equation of the 

deflection line of the lower half of the spring, i.e. for the range w=0 

to l/2 in the form (36): 

𝐸𝐽
𝑑2𝑓

𝑑𝑤2
= 𝑆(𝑙/2 − 𝑤) (36) 

The solution to this equation (36) with boundary conditions (37)   

is (38) 

𝑓(0) = 0,  
𝑑𝑓

𝑑𝑤
(0) = 0  (37) 

 𝑓(𝑤) =  
𝑆

𝐸𝐽
⋅ [(

𝑙

2
) ⋅

𝑤2

2
−

𝑤3

6
] (38) 

Therefore, (39) were obtained.                        

 𝑓 (
𝑙

2
) =  

𝐴

2
=

𝑆

3𝐸𝐽
(

𝑙

2
)

3

  (39) 

where A=f(l) denotes the total amplitude of the relative displace-

ment of both ends of the spring, equal to the vibration amplitude of 

the trough relative to the body in the direction f. 

Fig. 8. Continuous spring model (flat spring during deformation) 

 

By determining the S value from relation (39) and substituting it 

in equation (38) we obtain the deflection line of the lower half of the 

spring depending on A (40): 

 𝑓𝐼(𝑤) =  
3

(𝑙/2)3 ⋅ [(
𝑙

2
) ⋅

𝑤2

2
−

𝑤3

6
]

𝐴

2
,                  (40) 

for 

𝑤 = 0  to  𝑙/2 

Using the antisymmetry of the deformation form of the upper 

and lower spring halves, the displacements of the upper part can 

be written in the form (41). 

 𝑓𝐼𝐼(𝑤) =  {1 −
3

2(𝑙/2)3 ⋅ [(
𝑙

2
) ⋅

(𝑙−𝑤)2

2
−

 
(𝑙−𝑤)3

6
]} 𝐴,   for 𝑤 =

𝑙

2
  to  𝑙 

(41) 

Between the time course of deflection f(t) and the speed 

course𝑓̇(𝑡) for harmonic vibrations, there is a relation of the ve-

locity amplitude being equal to the displacement amplitude multi-

plied by the angular frequency of vibrations ω. 

Therefore, the square of the velocity amplitude of the point of 

the spring with deflection f is𝑓2𝜔2. This allows us to present the 

maximum kinetic energy of the mass reduced to the trough as (42) 

𝐸𝑚𝑧𝑟
=  

1

2
𝑚𝑧𝑟𝐴2𝜔2                             (42) 

And the spring: 

𝐸𝑚𝑧𝑟
=  

1

2
∫  𝑓(𝑤)2𝜔2 𝑚̄ 𝑑𝑤

𝑙

0
  (43) 

where 

𝑚̄ =
𝑚𝑖

𝑙
                                       (44) 



Jerzy Michalczyk, Marek Gajowy, Krzysztof Michalczyk                                                                     DOI 10.2478/ama-2025-0054 

Causes of Errors in Estimating the Characteristic Frequencies of Antiresonant Conveyors 

467 

By comparing the two expressions (42) and (43) for kinetic en-

ergy, the second of which is the sum of both parts of the spring, it 

is possible, after calculating the integral and dividing by A2ω2/2, to 

determine the reduced mass of the spring (45) which is connected 

with the trough and that produces the same inertial resistance at 

the attachment point as the tip of the spring. 

𝑚𝑧𝑟 =  
𝑚𝑖

𝐴2𝑙
{ ∫  [𝑓𝐼(𝑤)] 2 𝑑𝑤 + ∫  [𝑓𝐼𝐼(𝑤)] 2 𝑑𝑤 

 𝑙

 𝑙/2

 𝑙/2

 0

}    

    =   
13

35
𝑚𝑖                                     (45) 

Correct determination of the antiresonant frequency of the sys-

tem requires adding the determined fraction of the mass of the ac-

tive spring part to the mass of the trough (and, of course, the total 

mass of the grip parts associated with the trough). 

 

6.1. Experimental and numerical study of the frequency  

of bending vibrations 

 

6.1.1. An experimental model and Identification of system  

parameters and experimental determination of the  

first natural frequency 

To check the accuracy of the calculation model taking into ac-

count the mass of the flat springs (Equation (45)), an experiment 

was carried out to determine the first natural frequency of bending 

vibrations of the system shown in Fig. 9. This system reflects the 

typical method of attaching flat springs in vibrating conveyors, such 

as the one shown in Fig. 1. attached by screws E, washers F and 

nuts G and pressure plates D to distancing bodies B. Figure 9a 

shows the basic dimensions of the elements of the analysed sys-

tem. Figure 9b shows the system of Figure 9a attached by means 

of a vice to the anchored in the foundation. The vibrations of the 

free end of the system were induced by its deflection and release. 

Vibration recording was performed using a vibration analyzer KSD-

400 from SENSOR equipped with a miniature accelerometer 

352C22 from PCB PIEZOTRONICS with a mass of 0.5 g. The ac-

celerometer was glued to one of the flat springs, as shown in Fig. 

9b. The sampling frequency was 4.096 Hz. Due to analog integra-

tion, the vibration velocity was measured over time. 

Fig. 9. Scheme of the elastic support system, (a) A – flat spring, B – distancing 
mass, C – mounting washers in the vice jaws, D – pressure plates, E – 
screws M5x40, F – nuts, G – washers; (b) the system attached to the 
foundation with a vice 

 

The results of free vibration tests of the system are shown in 

Fig.10. The time course of the vibration velocity decay is shown in 

Fig.10a. The results of the FFT analysis are presented on Fig. 10b. 

The natural frequency obtained from the experiments was 85,3 Hz.            

In order to determine the actual elastic-inertial properties of the 

system, additional tests were carried out:  

− three-point bending flexural tests of each of both flat springs, in 

order to determine their individual bending stiffnesses EJsi ; 

− testing of the transverse stiffness kf of the entire system; 

− measurement of the masses of system elements. 
  

Fig. 10. Time course of vibration velocity (a), FFT analysis results (b) 

The values of the bending stiffness EJs1 and EJs2 of the used 

springs and the transverse stiffness kf of the entire system were 

experimentally tested using the MTS ACUMEN 3 testing machine, 

equipped with a 250 N force sensor. The traverse shift velocity in 

all tests was 0.5 mm/s. In the three-point bending flexural tests, the 

distance between the supports was 70 mm. Figure 11 shows a 

stand for three-point bending flexural tests and a graph of the lateral 

force versus the deflection arrow for one of the springs, along with 

a 1st degree polynomial approximating this course. Approximations 

of the experimental results were performed in the MATLAB soft-

ware environment. The values of the slope coefficients of the linear 

approximating functions were 48.7078 N/mm and 48.4407 N/mm 

respectively, while the coefficients of determination were 0.9991 R-

squared and 0.9992 R-squared respectively. Based on these val-

ues and the known relations, the bending stiffness values of the two 

springs were determined, which were EJs1 = 348058 Nmm2 and 

EJs2 = 346149 Nmm2 respectively. Figure 12 shows the entire sys-

tem subjected to transverse load (Fig. 12a) and the relationship be-

tween transverse force and stiffness kf of the system along with a 

function that approximates stiffness (Fig. 12b). The approximate 

stiffness value was 30.4068 N/mm, with a coefficient of determina-

tion of 0.9967.  
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Fig. 11. An experimental determination of the transverse stiffness of flat 
springs: (a) view of the station, (b) force-displacement diagram for 
one of the spring 

Fig. 12. Experimental determination of the stiffness of the entire system   
(a) before and after the load, (b) the relationship between the 
transverse force and the stiffness kf of the system  

 

The information contained in Tab. 4 with the following notations 

was obtained from the analysis.  

 

Tab. 4. Geometric and physical parameters of flat springs and other com-
ponents of the test system (Fig. 9) - mass values are given with 
an accuracy of 0.01 g 

Parameter Value Unit Meaning 

lc = 0.1 m total length of the spring 

l = 0.06 m active length of the spring 

b = 0.02  m spring width 

h = 0.001  m spring thickness 

mr = 0.00948 kg mass of the active part of a single spring 

mzr = 0.00352 kg reduced mass of a single spring (45) 

md = 0.09609 kg vibrating mass B + D + E 

mz = 0.10314 kg total weight reduced 

EJs1 = 348058  Nmm2 spring stiffness no. 1 

EJs2 = 346149 Nmm2 spring stiffness no. 2 

 

6.1.2. The 1st natural frequency – a continuous and discrete 

model 

The impulse excitation was used to perform a modal analysis, 

i.e. the appearance of a short-term high force acting across the 

springs. The appearance of this force causes the excitation of res-

onance vibrations. These vibrations also include the first form of 

natural vibrations, which is related to the deformation of the springs 

of mass mr and the oscillations of the mass md, which is the sum of 

the masses of the non-deformable parts (distancing mass (B), 

screws and washers (E)). The behaviour of the vibrating system 

with the first mode of natural vibrations from Fig. 9 shows not only 

the continuous model (Fig. 13a), but also the discrete model (Fig. 

13b), which simplifies the behaviour of the system for the transla-

tional movement of the mass mz (due to the identical displacement 

of the mounting points of the flat springs ). The mass mz is the re-

duced mass of the vibrating elements, i.e. masses of the deformed 

springs mr and the nondeformable vibrating parts md. Using formula 

(45), the reduced mass mz was obtained in the form (46). 

𝑚𝑧 =  𝑚𝑑 + 2 ⋅ 𝑚𝑧𝑟   =  𝑚𝑑 + 2 ⋅  
13

35
𝑚𝑟            (46) 

Fig. 13. Continuous model of the tested system showing the first natural 
frequency (a), discrete equivalent model of the tested system for 
the first natural frequency (b) 

 

In this case, the replacement suspension system was a spring 

and damper package with stiffness and damping coefficients kf and 

bf, respectively, attached to the support and the reduced mass mz 

parallel to the direction of vibration. 
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The elasticity of a single flat spring used in the experiment was 

calculated from the Eq. (47), which takes into account the constant 

moment of inertia (48) of the cross-section b x h of the spring bar 

shown in Fig. 9a and Tab. 4. 

𝑘𝑓 𝑖 =  
12𝐸𝐽𝑠𝑖

𝑙3   (47)  

where 

𝐽 =
𝑏ℎ3

12
 (48) 

The energy absorption coefficient ψ for flat steel springs is 

equal to 0.04 [17], which means that the viscous damping coeffi-

cient of the spring is so small that its impact on the vibration fre-

quency is negligible. After taking into account the parallel connec-

tion of flat springs and the discrete model, the doubled elasticity kf 

and the first natural frequency of undamped vibrations (doubled 

damping coefficient bf ≈ 0) in the form (49) were obtained. 

𝑓 =

√
∑ 𝑘𝑓 𝑖

2
𝑖=1

𝑚𝑧
−(

∑ 𝑏𝑓 𝑖
2
𝑖=1

2𝑚𝑧
)

2

2𝜋
 ≈

√
∑ 𝑘𝑓 𝑖

2
𝑖=1

𝑚𝑧

2𝜋
  ≈ 97.33 𝐻𝑧            (49) 

Frequency not taking into account the spring mass calculated 

from the Eq. (50) 

𝑓 =

√
∑ 𝑘𝑓 𝑖

2
𝑖=1

𝑚𝑑
−(

∑ 𝑏𝑓 𝑖
2
𝑖=1

2𝑚𝑑
)

2

2𝜋
 ≈

√
∑ 𝑘𝑓 𝑖

2
𝑖=1

𝑚𝑑

2𝜋
  ≈ 100.83 𝐻𝑧             (50) 

 
 

6.1.3. The 1st natural frequency – a numerical model 

FEM software is usually used as a tool to check the accuracy    

of analytical calculations carried out in the conveyor design pro-

cess. Modal analyses are most often used to determine the natural 

frequency of the system. The results of such an analysis, performed 

in the ANSYS software environment, are presented below. The in-

ertial and elastic parameters of the solid model were determined on 

the basis of experimental data presented in Tab. 4. Due to differ-

ences in the geometry of the real elements and the solid model (e.g. 

modelling the threaded part of the screws in the form of a cylinder, 

omitting chamfers, etc.), appropriate density values were assigned 

to individual elements in the solid model so that their masses were 

consistent with those measured experimentally. The Poisson num-

ber for all elements was assumed to be 0.3, and the Young's mod-

ulus of springs was assumed to be 208262.1 MPa, which is the 

average of the values determined on the basis of experiments. For 

the remaining elements, a value of Young's modulus representative 

for carbon steels was assumed, equal to 200000 MPa. In order to 

obtain a high-quality FE mesh, the selected elements were divided 

into smaller volumes and then the requirement for compliance of 

common nodes was imposed within these elements. All parts of the 

system have been discretised using higher-order finite elements 

exhibiting quadratic displacement behavior. Springs have been dis-

cretised using quadratic 20-node hexahedral elements, which gen-

erally give more accurate results than tetrahedral-shaped elements 

and are also more reliable in terms of the skewness parameter [18, 

19]. To obtain reliable results from the FEM analyses, in addition to 

analysing the quality of the FE mesh, an additional analysis of the 

influence of the density of the spring modelling mesh was per-

formed. Modal analyses were performed with three finite element 

mesh settings in the spring thickness direction b: with one, two, and 

three finite element layers. The models obtained in this way are 

shown in Fig. 14. In Figure 14, the boundary condition of the re-

straint on the surface of the mounting plate on the FEM model is 

additionally marked in yellow. Table 4 lists the number of nodes in 

individual system models, the results of the FE mesh quality analy-

sis (average skewness and average orthogonal quality), and the 

results of the impact of the FE mesh density on the natural fre-

quency value obtained in the modal analysis. 

Fig. 14.  The results of the modal analysis performed in the ANSYS    
environment - the first form of vibration from Fig. 8 and 9 - the 
simulation result is 97,74 Hz (Tab.4) for three finite element lay-
ers on flat springs 

 

The difference between the results (Tab. 5.) obtained for mod-

els with 3 and 2 layers was approximately 0.06%, indicating the 

high accuracy of the results. These results are in good agreement 

with the result of the formula (49) taking into account the mass of 

the spring (97.33 Hz). The difference between the pattern result and 

the 3-layer FEM result was approximately 0.4%. 

6.1.4. Comparison of analysis results 

In the comparative analysis, the reference value with which the 

remaining results were compared is the frequency of the first form 

of vibration obtained from the experimental analysis, which was  

85.3 Hz. As shown in Table 6, the result of the theoretical analysis 

of 97.33 Hz, taking into account the reduced mass of flat springs 

(49), is closest to the value obtained from the experimental test. 

The difference in values and the relative error of 14.10% may result 

from assembly errors and measurement errors when determining 

the active length of the flat spring. 

Tab. 5. Parameters of modal analysis  

Number of layers in  

thickness h 
1 2 3 

Total number of nodes / num-

ber of nodes of one spring 

379514/ 

15629 

397475/ 

24586 

415436/ 

33543 

Average Skewness  

parameter 
0.24776 0.23940 0.23175 

Average Orthogonal Quality 0.87048 0.87567 0.88043 

The 1st natural  

frequency 
98.01 Hz 97.80 Hz 97.74 Hz 
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Tab. 6.  Comparison of the frequency results of the first form of     
bending vibrations 

A type of modal analysis f [Hz] 𝜺 [%] * 

theoretical without taking into account 

the mass of flat springs 
100.83 18.21 

theoretical taking into account the 

mass of flat springs 
97.33 14.10 

numerical 97.74 14.58 

experimental 85.30 0 

* 𝜺 - the relative difference between a specific value and the value  
obtained from experiment 

 

The active length should be counted from the place where the 

spring is attached, taking into account the chamfers of the spacer 

mass (B) and the pressing washers (D) from Fig. 9. The theoretical 

method does not take into account their deformability, which could 

occur under real conditions. Failure to take into account the mass 

of the springs (50) with the result of 100.83 Hz leads to even greater 

errors in frequency estimation at the level of 18.21%. The numerical 

analysis gave a result very close to the theoretical value, taking into 

account the reduced spring mass. Both of these methods assume 

tight adhesion of the springs and spacer masses to each other, and 

hence the active length in both methods is identical. In fact, due to 

the slight deformability of the handles, the active length can be 

greater and the elasticity of the springs can decrease with the cube 

of the active length of the spring (45). 

7. CONCLUSIONS 

 

Achieving high mobility properties of conveyors operating on 

the basis of Frahm's principle of dynamic elimination requires high 

accuracy in determining both the position of the antiresonant point 

and the resonance frequency of the system. Relationships based 

on the classical Frahm damping theory lead to results that are far 

from real in this regard. This paper presents correct derived formu-

las and a nomogram built for designers based on them. The effect 

was shown that the actual number of degrees of freedom in ma-

chines constructed using the dynamic eliminator principle has on 

frequencies limiting the antiresonance zone. The effect of the 

spring mass on the antiresonance frequency was also pointed out, 

and correct relations for its consideration were derived. The issues 

discussed do not exhaust the possible causes of unsatisfactory run-

ning properties of antiresonance type conveyors. Many significant 

errors may also result from a simplified mathematical description of 

the vibrating system, not including the phenomenon of self-syn-

chronisation of vibrators [7] or even the construction of a system 

that does not guarantee the possibility of obtaining the exciting 

force along a straight line [20], which is the cause of the component 

of the direct transfer of the exciting force to the ground. 
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