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Abstract: This paper investigates the effect of ground end coils on axial stiffness, as well as the magnitude and direction of transverse 
reactions occurring during axial compression of a coil spring. As shown, conventional relationships for calculating axial stiffness can signifi-
cantly overestimate its value, especially for springs with a small number of active coils. Transverse reaction forces during axial compression 
of a spring can reach high values. The paper shows that these forces can exceed more than 30% of the axial force caused by the compression 
of the spring. There are no relations in the available literature to estimate the effect of spring geometry on the value and direction of the 
transverse reaction generated during axial compression of the spring. On the basis of experimental studies of axial compression of springs, 
a numerical model with high accuracy was developed - the average difference between the experimental results and the results of the 
numerical model was 2.7%. The model took into account friction between coils, large deformations and carefully studied material parameters. 
Using the developed numerical model, a total of 245 numerical analyses were carried out, based on which new relationships were developed 
to accurately calculate axial stiffness, lateral reaction force and its angle. The new relationship for calculating axial stiffness shows better 
agreement with the results of numerical analyses than all the relationships found in the literature to date. The average difference between 
the results of this relation and the results of the numerical analyses carried out did not exceed 2%. A new relation has been proposed for 
determining the value of the transverse reaction occurring in axial compression of springs. This relation also shows high agreement with the 
results of numerical analyses. In addition, a new relation has been proposed to determine the direction of the transverse reaction force.  
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1. INTRODUCTION 

Helical compression springs are widely used in mechanical en-

gineering. The primary functions of springs are absorbing energy 

and mitigating shocks, applying a definite force or torque, support-

ing moving masses, isolating vibrations, indicating or controlling 

load or torque and providing an elastic pivot or guide [1]. Conse-

quently, they find widespread application in vehicle suspensions, 

such as those in cars [2], railway bogies [3, 4], vibratory conveyors 

[5], internal combustion engine valves [6], and vibration absorbers 

[7]. Springs operate under static and dynamic conditions and are 

subject to buckling. In specialized applications, these performance 

characteristics must be determined with high precision. This neces-

sitates precise design, including a meticulously shaped coil config-

uration. In the paper [8] a method for modeling helical irregular pol-

ymer structures and determining their stiffness and stresses in a 

numerical and experimental way is presented, showing the possi-

bilities of numerical methods in geometry modeling. Most designers 

still rely on basic helical structures, which have not been thoroughly 

studied. One aspect of spring construction that remains insuffi-

ciently studied is the end coil, whose shape influences the spring's 

stiffness and the distribution of transverse forces resulting from ax-

ial compression [9]. However, the precise extent to which the shape 

of the end coil influences the spring's stiffness, and the distribution 

of transverse forces has not yet been thoroughly evaluated. The 

motivation for conducting research in this area arises from the oc-

currence of spring failure [10, 11, 12], especially damage in the form 

of coil fractures near the inactive coil [13, 14]. In paper [10], using 

FEM analysis of an automotive barrel spring, the stress distribution 

of on its surface was investigated in the area around a modelled 

failure in the form of a blind hole. In paper [11], a numerical analysis 

of a torsion spring made of round wire was carried out, indicating 

the locations of possible fatigue cracks initiated by defects created 

by machining. This is also related to both axial and transverse stiff-

ness, which significantly affects load transmission [15, 16], and is 

directly linked to the transverse forces generated by compression 

[17]. 

The inaccuracy in determining the stiffness of a spring arises 

from at least four factors, which include dimensional inaccuracies 

in the geometric parameters of the spring, such as the wire diame-

ter d, the mean coil diameter D, the number of active coils na (which 

decreases during compression), and errors in estimating the mod-

ulus of rigidity G [18]. Additionally, a smaller influence on the 

spring's characteristics is attributed to the helix angle γ, which can 

be neglected for springs with angles smaller than 10 degrees, or 

even 15 degrees (resulting in an error of only 2.5%) [1]. Wahl indi-

cates that the parameters mentioned earlier, as well as the shape 
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of the end coil, have a greater influence on stiffness than the helix 

angle. Therefore, deviations in the helix angle along the entire 

length of the spring have an even smaller effect. The paper [12] 

also highlights the problem of non-uniformity of pitch and wire di-

ameter, but also hardness, which affect the stiffness characteristics 

of the spring. Further factors mentioned in the literature include er-

rors in the perpendicularity of the spring axis to the support surfaces 

[18], the type of end coil used [19], and the transition between in-

active and active coils associated with it [20]. The latter factor can 

significantly contribute to nonlinearities, especially if the progres-

sive transition zone is large [21]. The way the spring is assembled 

also affects its characteristics, i.e., whether the spring ends are 

fixed or free to rotate [1], which also leads to variations in the de-

tailed formulas for axial stiffness [18]. The continuous change in 

structural parameters D, na, and γ during spring deformation results 

in the development of nonlinearities in the spring's characteristics 

[18]. During compression, nonlinearity initially arises from factors 

such as the non-parallelism of the spring ends, the lack of perpen-

dicularity between the spring axis and the support surfaces, load 

eccentricity, and errors in the contact of the inactive coils. In the 

final stage, nonlinearity is caused by the non-simultaneous blocking 

of active coils. For this reason, it is recommended to calculate the 

axial stiffness within the central range of the spring’s characteristics, 

i.e., for forces within 0.3 to 0.7 of the spring’s blocking force Fn [18]. 

Additionally, the process of loading and unloading a compressed 

spring exhibits hysteresis [22], which means that stiffness may not 

necessarily have the same value in both loading directions. 

Differences in the value of axial stiffness also result from the 

development of transverse forces during compression. In [9], the 

causes of transverse forces were presented, including spring asym-

metry, load misalignment, buckling, stresses, variable wire diame-

ter, and pitch variation. When these factors are significant, larger 

transverse forces are generated, which reduce the axial force and, 

consequently, the axial stiffness of the spring. The highest trans-

verse forces occur in conical springs [9]. The issue of axial force 

transfer is addressed by recommending the use of a fractional total 

number of coils. In this configuration, the ground ends of the spring 

are arranged in opposite directions, preventing load misalignment 

[18]. Springs typically have one inactive coil on each end, but for 

long springs and under variable loads, 2 or 2.5 inactive coils are 

used to improve spring stability [18, 23]. Conventionally, the bound-

ary between active and inactive coils is considered to be the point 

where coil contact begins in the unloaded state. However, this point 

is movable during compression, and it has been shown that part of 

the inactive coils primarily experiences torsional stresses [24]. For 

this reason, it cannot be assumed that the entire inactive coil does 

not contribute to the spring's stiffness. The EN 13906-2013 (E) 

standard [25] does not acknowledge this fact, adhering to the con-

ventional boundary principle. This applies to supported coils, as de-

fined in the ISO 2162-2:1993(E) standard [26]. For springs with 

open-ground ends, the inactive coil begins at the start of the ground 

surface, whereas open-unground springs lack an inactive coil. Such 

springs require specialized mounts using, for example, elastomer 

inserts [27]. In such cases, the boundary between inactive and ac-

tive coils may be where the spring exits the fixture, although this 

depends on the degrees of freedom provided by the fixture. Tran-

sitional coils, which lie between inactive and active coils, are also 

identified [20]. This distinction arises from a pitch difference com-

pared to the active section, which increases nonlinearly. It has been 

shown that the length of the transitional coil influences the magni-

tude of transverse forces and, consequently, axial stiffness [20]. 

The lack of standardized methods for defining the boundary be-

tween spring coils causes discrepancies in measurement results 

compared to the basic formula for the spring rate k provided in EN 

13906-2013 (E) [21]. The full formula, which accounts for the helix 

angle, is not widely used, as helix angles typically do not exceed 

10°, and spring indices greater than 10° result in minimal calcula-

tion errors [28]. One way to improve formula accuracy is by adding 

a correction factor to the number of active coils. The first proposal 

was made by Vogt [29], who suggested adding 0.5 to the number 

of active coils. Later, Paredes [30] proposed a correction of 0.35 

and introduced a version that adjusts both the number of coils and 

the spring height, achieving an error of less than 0.2 compared to 

experimental force measurements. Additionally, Paredes demon-

strated that the relationship in EN 13906-2013 (E) provides suffi-

cient accuracy for springs with more than five active coils. In [28], 

formulas were developed to calculate the axial deflection of springs 

with rectangular, square, circular, annular, and elliptical wire cross-

sections. The study analyzed stress contributions from axial force, 

shear force, bending, and torsional moments. It also presented for-

mulas proposed by Wahl, Timoshenko, Ancker, and Goodier. The 

results were compared with finite element analyses performed in 

ANSYS, showing that the Ancker and Goodier analytical formula 

yielded the most accurate results. The formulas by Yıldırım and Ti-

moshenko take the helix angle into account [31]. A similar assump-

tion is made in the Krużelecki and Życzkowski formula [32], which 

provides results comparable to those of Timoshenko. In [33], Hi-

royuki's formula was introduced, which incorporates material con-

stants E and G, as well as the tangent of the helix angle. In [31], a 

more accurate formula than those of Timoshenko and Hiroyuki was 

proposed, though it is highly complex, incorporating parameters 

such as wire inclination κ, spring wire length L0, and Poisson's ratio 

ν. Liu and Kim [24] proposed adding spiral ends to the active coils 

of helical springs, modeling the torsional stresses occurring in the 

end coil. They supported their findings with finite element simula-

tions. Using Castigliano's theorem, they derived a correction factor 

for the end coil, which should be multiplied by the classical formula 

to account for its effects. 

The aim of the study is to determine the effect of varying the 

contact length between coils on the axial stiffness and transverse 

force resulting from the axial compression of springs with ground 

and supported end coils, as specified in ISO 2162-2: 1993 (E) [26]. 

The research will be conducted using a tensile testing machine and 

numerical methods. Additionally, the results for axial stiffness will 

be compared with commonly used formulas, and empirical equa-

tions will be proposed to predict the axial stiffness and transverse 

reaction forces. This study's main novelty lies in its comprehensive 

quantification of how end‑coil geometry significantly affects not only 

axial stiffness but also the magnitude and direction of transverse 

reaction forces — areas previously lacking precise analytical rela-

tionships in the literature. From an industrial standpoint, the new 

relationships enable more reliable spring design, particularly in sus-

pension systems, vibration absorbers, and conveyor mechanisms 

— applications where unaccounted transverse reactions can lead 

to misalignment, fatigue fracture, or operational instability. Ulti-

mately, the improved predictive accuracy supports enhanced per-

formance, safety, and longevity of springs in automotive, rail, and 

industrial machinery contexts, enabling engineers to design with 
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tighter tolerances and fewer prototypes. 

2. ANALYTICAL METHODS 

In the literature, several formulas for determining axial stiffness 
are distinguished, some of which were mentioned in the introduc-
tion. The most commonly used formula for the axial stiffness kN is 
the equation (1) provided in the EN 13906-2013 (E) standard [25], 
which does not take the helix angle γ into account. 

𝑘𝑁 =
𝐺∙𝑑4

8∙𝐷3∙𝑛𝑎
                                    (1) 

where G represents the modulus of rigidity, d is the nominal diam-
eter of wire, D is the mean diameter of coil, na represents the num-
ber of active coils. 

Among the methods that increase the accuracy of axial stiff-
ness calculations for springs, the most popular and straightforward 
ones were selected, which, after preliminary analysis, yield results 
that differ from each other. 

As mentioned in the introduction, Vogt [29], in order to account 
for the influence of the inactive coils, proposed increasing the num-
ber of active coils by 0.5. On the other hand, Paredes [30] verified 
this and introduced an increase of 0.35 in the number of active coils. 
This value is named as correcting number of active coils ncor, which 
is used in formula (2), describing Vogt (V) or Paredes (P) method. 

𝑘𝑉,𝑃 =
𝐺∙𝑑4

8∙𝐷3∙(𝑛𝑎+𝑛𝑐𝑜𝑟)
                                 (2) 

A more accurate method compared to equation (1), which takes 
the helix angle γ into account, is the formula (3) proposed by 
Krużelecki and Życzkowski [32], which slightly changes the value 
of the axial stiffness compared to equation (1).  

𝑘𝐾 =
𝐶𝑡0

𝐻𝑎
=

𝐸∙𝐼∙𝑠𝑖𝑛(𝛾)

𝑅0
2∙(1+𝜈∙𝑐𝑜𝑠2(𝛾))∙𝐻𝑎

                         (3) 

where Ct0 represents the initial compression stiffness, R0 is the ini-
tial spring radius, ν represents Poisson’s ratio, E is the Young mod-
ulus, I represents axial moment of inertia of spring wire, γ repre-
sents helix angle and Ha is the height of unloaded active coils. 

In the publication [28] Yıldırım proposed equation (4), which 
takes into account the shear stiffness Cb, compression stiffness Ct, 
bending stiffness Db and torsion stiffness Dt, expressed by equa-
tions (5-8), respectively. 

𝑘𝑌 = (
1

4
𝐶𝑑𝑛𝜋 (cos(𝛾) (

4

𝐶𝑏
+

𝐶2𝑑2

𝐷𝑡
) + sin(𝛾) tan(𝛾) (

4

𝐶𝑡
+

𝐶2𝑑2

𝐷𝑏
)))

−1

                                         (4) 

𝐶𝑏 =
𝐺𝜋𝑑2

4𝜗
, 𝜗 = 1,1 𝑜𝑟 𝜗 =

7+6𝜈

6(1+𝜈)
                  (5) 

𝐶𝑡 = 2(1 + 𝜈) ∙
𝐺𝜋𝑑2

4
                                 (6) 

𝐷𝑏 = 2(1 + 𝜈) ∙
𝐺𝜋𝑑4

64
                                (7) 

𝐷𝑡 =
𝐺𝜋𝑑4

32
                                          (8) 

Another method accounting for the inactive coils was presented 
by Liu and Kim in their publication [24], where they introduced the 
concept of end coils above the ground surface. The number of 
these coils should be added to the active coils and placed in the 

denominator of the ratio, with the numerator being the number of 
active coils. This is represented by equation (9). 

𝑘𝐿𝐾 = 𝑘𝑁 ∙ (
𝑛𝑎

𝑥𝑛+𝑥𝑒𝑛𝑑
)                            (9) 

where xn is the number of coils from the bottom to a certain point of 
the spring and xend is the number of effective coils at the bottom [19].  

The presented formulas will be compared during the numerical 
analysis stage, aiming to find the smallest mean absolute percent-
age error (MAPE) in order to identify the methods that provide re-
sults closest to reality and to propose a new method. 

3. MECHANICAL TESTS 

3.1. Stiffness experimental tests settings 

The spring compression tests were carried out using an HT-

2402 testing machine from Hung Ta Instrument Co., Ltd., Taiwan, 

equipped with a CL16md 5kN load cell from ZEPWN, Poland, of the 

precision class 0.5 according to ISO 376 (Fig. 1) [15]. The results 

were recorded using dedicated software. The test sample consisted 

of 18 sets of springs with squared and ground end-coils, each con-

taining 3 identical springs in terms of their parameters. In total, this 

amounted to 54 springs. The spring sets (Fig. 2) differed in the 

spring index C, which was 5 or 7, the number of active coils na, 

which was 2.5, 2.75, or 3, and the contact length of the end coils s, 

which was 0 (point contact), 0.25, or 0.5. The contact length s was 

defined as the quotient of the length of the contact line between the 

end coils on one side of the spring and the length of one coil of wire. 

It was determined by inserting a 0.07 mm thick plate of feeler gauge 

until it locked in place. Then, using a protractor with a resolution of 

1 degree, the angle of the arc from the end of the spring to the 

locking point of the slotted gauge plate was measured. The pitch P 

of the springs equaled 10 mm for all springs. 

Fig. 1. The testing machine used to spring axial stiffness researches 

The springs were supplied by a company specializing in cus-

tom-made springs. They were manufactured in accordance with the 

EN 13906-1:2013 standard [25]. The springs were made from 

55CrSi FD Becrosi 26 spring steel, which complies with the EN-

10270-2 standard [25]. The wire diameter d was nominally 5 mm 

with upper and lower deviations equal to respectively: +0.008 mm 

and -0.010 mm. The main material properties of this steel include a 
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modulus of elasticity in tension E of 206 GPa, a modulus of elastic-

ity in shear G of 79.5 GPa, and an ultimate tensile strength Rm of 

1800 MPa. The first technological process involved coiling the 

springs. Next, the springs were tempered at 220°C for 15 minutes, 

after which the end coils were ground to ¾ of the circumference. 

Finally, the same heat treatment was applied again [15]. 

 

Fig. 2. Samples of springs (a) used to axial stiffness researches; (b) graphical 
representation of contact length for two example lengths s = 0 and s = 
0.25 

The springs were measured in terms of height using an elec-

tronic caliper and the number of coils in contact using a protractor 

with an accuracy of 1 degree. The reference point was the theoret-

ical height, calculated as the product of the pitch P and the number 

of coils n, while for the contacts, the measurement corresponded to 

the order specifications. The springs that were closest to the bench-

mark geometry were considered as reference specimens for vali-

dating the numerical model. These were precisely replicated, and 

their measured axial stiffness became the benchmark for calculat-

ing the accuracy of the numerical model. The axial stiffness k in the 

bench tests was calculated according to Eq. (10). The maximum 

deflection for each spring was half of the theoretical spring gap, and 

the minimum reading point was 20% of the maximum deflection. 

Therefore, the maximum deflections for the springs with 2.5, 2.75, 

and 3 coils were 6.25 mm, 6.875 mm and 7.5 mm, respectively. 

𝑘 =
𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛

𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛
                                 (10) 

where Fmax, Fmin – force, smax, smin – deflections for the maximum 

and minimum measuring point, respectively. 

3.2. Results and initial analyses 

The results of the axial stiffness tests are presented in the form 

of a scatter plot (Fig. 3), with error bars indicating the variability 

range of the 3 measured samples. The variability was minimal, in-

dicating repeatability of the results. When comparing the springs in 

terms of contact size, an increase in axial stiffness was observed 

for the 0.25 coil contact, which requires further investigation. These 

changes are particularly significant for the shortest spring with a 

spring index C = 5, where the ratio of the data spread to the mean 

was equal 11.2%. For the same number of coils but with a spring 

index C = 7, this ratio was 4.3%. A higher spring index also results 

in greater stiffness for point or quarter-coil contacts, although this 

effect is less apparent than for the springs with smaller index. It was 

decided to extend studies with a numerical model to highlight spe-

cific trends in the changes. 

Fig. 3.  Axial stiffness k for different numbers of active coils na depending 
on the contact length per one side of spring s for a) C = 5, b)  
C = 7 

4. NUMERICAL TESTS 

4.1. Material research 

To build a more accurate numerical model, measurements of 

Young’s modulus E, Kirchhoff’s modulus G, and the coefficient of 

friction for the material from which the spring wire was made were 

performed. The measurement of Young’s modulus E was con-

ducted for two samples of straight wire with a diameter of 5 mm, 

sourced from the same spring manufacturer. The tests were carried 

out on the same testing machine equipped with load cell CL16md 

5kN and a ZEPWN CL 25D-R B50 L30 extensometer, with resolu-

tion of 1 µm (Fig. 4). Tension was carried out under crosshead con-

trol at a speed of 1 mm/min, with the length of the entire specimen 

between the grips being approximately 180 mm. As a result of the 

measurement, elongations and stresses in the wire cross-section 

were obtained, as shown in Table 1. 

Tab. 1. Results of Young’s Modulus E measurement 
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1 60.23 0.031 0.207 120 720 205330 

2 60.82 0.031 0.211 120 720 202733 

Average Young's modulus E 204031 

Young's modulus was calculated according to the relationship 

given in ASTM E111 – 04, based on the values given in Tab.1. The 

increase in force divided by the original cross-section of the speci-

men corresponds to the difference in stress σ2 and σ1, while the 

increase in strain corresponds to the quotient of the difference in 
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elongation L2 and L1 and the original measurement length L0. Aver-

aged over the two measurements, the value of Young’s modulus 

was 204031 MPa. 

Fig. 4. Young's modulus measurement station 

The next stage involved measuring the shear modulus G. The 

measurement was conducted using the same testing machine, but 

with an extension for twisting rods (Fig. 5). To secure the rod in the 

extension, it was bent, leaving a section L equal to 112 mm. To 

avoid damaging the samples, the measurement was repeated 14 

times on the same rod, with the traverse displacement of the testing 

machine set to 20 mm. The first 3 results were excluded due to 

significant deviation, and the average force was calculated to be 

118.6 N, with a coefficient of variation of 0.6%. The calculations 

based on formula (11), resulted in a shear modulus G value of 

80,550 MPa. 

Fig. 5. Kirchhoff's transverse elasticity modulus G measurement station 

𝐺 =
32∙𝐹∙𝑅𝑔∙𝐿

𝜑∙𝜋∙𝑑4                                    (11) 

where: F – force measured by the sensor of the testing machine, 
Rg – radius of the gear wheel of the attachment, L – twisted wire 
length, 𝜑 – wire twist angle obtained by measuring the axial dis-
placement of the testing machine crosshead, d – wire diameter. 

The final key material property is the coefficient of friction μ. 

Two coefficients were distinguished - one larger for the ground sur-

face in contact with the machine supports and a smaller one for the 

contact between the wires. The friction coefficient between the con-

tacting wires was measured using a constructed bench based on 

an inclined plane (Fig. 6). There is currently no international stand-

ard that specifically addresses the measurement of the coefficient 

of friction between round steel bars. A straight spring wire was fixed, 

and the shortest spring was placed on it, with the measurement re-

peated 6 times for 3 samples of the same spring on two inner sides 

of the springs, giving 36 results. This way, point contact was 

achieved between 4 coils and the wire. The flat surface was raised 

until the spring began to slide. As a result of the data analysis, 6 

values significantly deviating from the average were discarded, re-

sulting in 30 values, which were used to calculate the average co-

efficient of friction. The range of variation of the friction angle spread 

from 0.153 to 0.186.  

Fig. 6. Measurement of the friction coefficient for steel-steel friction pair 

Using geometric relations, the friction coefficient was calculated 

as the tangent of the friction angle. Average value of measured fric-

tion coefficient was equal to approximately 0.18. The result was con-

sidered to be determined with sufficient accuracy, also confirmed by 

literature [34]. This parameter also depends on pressure force [34]. 

For the ground surfaces, it was assumed that the friction coefficient 

would be much higher than for smooth surfaces, and in the numer-

ical analyses, it was taken as 0.5. This value is also one of possible 

for steel to steel pair [34] and steel to aluminium pair [35]. Under 

actual operating conditions of helical compression springs, the friction 

forces between the spring's ends and the supports should be greater 

than the transverse reaction forces. Otherwise, there would be abra-

sion of the ground wire surface, which would increase the risk of wire 

fracture and could also result in a loss of support stability. If it is antic-

ipated that the transverse forces may be greater than the frictional 

forces, then the support of such a spring is strengthened by shaped 

end protection, e.g. in the form of pins or cylinders centering the spring 

end coils. Such solutions are used, for example, in vibrating machinery 

and in railway bogies. Therefore, the adopted value for the friction co-

efficient, ensuring no slippage between the analysed spring models 

and their supports, ensured at the same time a correct representation 

of the actual working conditions of this type of spring. 

4.2. Numerical model 

The numerical simulations were performed based on the finite 

element method using Ansys Workbench software, specifically the 

SpaceClaim, Design Modeler, and Static Structural modules. Each 

model was created using a script described in the publication [21]. 
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By transforming the formulas presented there, the radius of the arc 

aligning the pitch between the applied and active coils was calcu-

lated in Matlab. By inserting this radius, the spring helix angle γ, 

spring index C, and wire diameter d into the program’s algorithm, a 

code was generated that could be input into SpaceClaim. In this 

software, the spring ends were cut to ¾ of the circumference. Then, 

in the Design Modeler module, the spring was splitted along its axial 

planes, dividing each coil into four equal parts and creating the con-

tact surfaces needed for the next stage of model construction. Two 

supports in the form of rings, with a thickness of 0.2d and diameters 

slightly different from the inner and outer diameters of the spring, 

were also added. An example of a spring modeled in Design Mod-

eler is shown in Figure 7a.  

The mesh shown in Figure 7b was divided into several parts due 

to the geometric irregularities of the model. For the regular part of the 

spring, the sweep method was applied using quadratic elements, i.e., 

second-order hexahedron elements, with a size of 1 mm in the radial 

direction and 2 mm along the length. For the last ground coils, the tet-

rahedrons patch conforming quadratic method was used, i.e., second 

order tetrahedral elements, of 1 mm size. For the supports, the sweep 

method was applied with a single element along the length, of 2.5 mm 

size, and the face meshing option was used to align elements on the 

end surfaces. The applied finite element mesh has an average skew-

ness value of 0.237, orthogonal quality of 0.797 and aspect ratio of 

2.112 for the tested models. The values defining that the model is sat-

isfactory are skewness less than 0.25 - excellent, orthogonal quality 

more than 0.7 is very good, aspect ratio close to 1 is excellent [36, 37]. 

An attempt was made to refine the tetrahedrons patch conforming 

quadratic mesh with 0.75 mm size using contact sizing 0.4 mm be-

tween contacted coils, but for the spring with C = 5, na = 2.5, and s = 

0.5, the axial stiffness value differed by less than 0.04%. For this rea-

son, further refinement of the mesh was abandoned, as it was con-

cluded that the first mesh provides sufficiently accurate results for this 

study.  

Fig. 7. Spring with parameters C = 5, d = 5 mm, na = 2.5, s = 0.25 with supports 
a) modeled in the Design Modeler module of Ansys Workbench soft-
ware, b) mesh used to stiffness calculation modeled in Static Structural 
module 

It was necessary to standardize at least some of the contact pa-

rameters to ensure that the results did not rely on program-controlled 

parameters. The following contact properties were defined: 

− frictional, coefficient: 0.18 between coils and 0.5 between planed 

coils and supports,  

− behavior: symmetric, 

− trim contact: program controlled, 

− formulation: Augmented Lagrange, 

− small sliding: on, 

− detection method: on Gauss point, 

− penetration tolerance value: 0.01 mm, 

− elastic slip tolerance: program controlled, 

− normal stiffness factor: 1, 

− update stiffness: program controlled, 

− stabilization damping factor: 0, 

− pinball region radius: 0.2 mm, 

− interface treatment: adjust to touch between contacted parts and 

add offset ramped effect between uncontacted coils. 

The spring was loaded with axial displacement through the upper 

support in the same proportion as in the actual testing. Additionally, all 

its degrees of freedom were constrained, except for the axial displace-

ment. The lower support was fixed and served as the surface for 

measuring the reaction force. These settings were maintained for all 

numerical simulations. Numerical solid models of springs were devel-

oped based on measured dimensions of real samples. Springs with 

spring indices C = 5 and C = 7, active coils of 2.5 and 3, and all lengths 

of contacting coils were used. Material properties were assumed to be 

in accordance with the measurements taken. Table 2 presents a com-

parison of the stiffness of the idealized model springs, with geometries 

closest to the theoretical ideal, and the stiffness calculated using the 

finite element model. The relative error, its range, and the mean abso-

lute percentage error (MAPE) were determined. The data range 

shown in Tab. 2 is defined as the span between the minimum and the 

maximum values of the differences between experimental and numer-

ical results across all data points for specified number of active coils. 

It is a significant parameter, because it shows how much the numerical 

model deviates from experimental results across the dataset. 

Tab. 2. Comparison of experimental data with numerical results.¥ 
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5 

2.5 

0 140.8 143.6 -2.0 

8.7 3.6 0.25 155.9 148.5 6.7 

0.5 142.2 139.0 2.2 

3 

0 128.0 121.4 5.1 

2.2 3.7 0.25 130.0 126.0 3.1 

0.5 121.2 117.7 2.9 

7 

2.5 

0 51.4 51.8 -0.8 

6.1 2.3 0.25 51.6 49.9 3.3 

0.5 49.5 50.9 -2.8 

3 

0 45.2 44.3 1.9 

1.6 1.2 0.25 43.9 43.8 0.4 

0.5 45.0 44.3 1.4 

According to the comparison (Tab. 2), the average MAPE was 

around 2.7%, and the range of data did not exceed 9%. These are 

the values that were considered sufficient with regard to the com-
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patibility of the numerical model with experimental results, qualify-

ing the model as suitable for the target set of numerical simulations. 

It should be noted that larger discrepancies were observed in 

springs with 2.5 active coils, with the largest discrepancies occur-

ring in the spring with an index C = 5.  

In the next phase of the study, standard material data according 

to the EN 10270-2 standard were applied, i.e., E = 206 GPa, G = 

79.5 GPa [25]. It was decided that the springs would have a wire 

diameter of d = 1 mm and would differ in spring indices C = 4, 8, 12; 

spring angles γ = 5°, 10°, 15°; numbers of active coils na = 1, 1.25, 

1.75, 2.5, 3.5; and end coil contact lengths s = 0, 0.25, 0.5, 1. In 

total, 180 numerical models of springs were created. In the further 

part of the study, due to the need for additional data, the simulation 

test was expanded for springs with C = 8, using active coils na = 1.5, 

2, 2.25, 2.75, 3, 3.25, 3.75, 4, 4.25, 4.5, 4.75, 5, maintaining contact 

s = 0 and helix angle γ = 5°, 10°, 15° (for γ = 10° and na = 1.5, 2, 

2.75, tests were made for all contacts). These studies aimed to sup-

plement the distribution of transverse reaction forces occurring dur-

ing axial compression. To supplement the data when determining 

the value of the transverse reaction angle it was also added addi-

tional simulations for C = 8, γ = 10°, na = 1, 1.25, 1.5, 1.75 and s = 

0.125, 0.375, 0.625, 0.75, 0.875. The front surfaces of all springs 

were ground to a value of ¾ circumference as in the experimental 

tests. Including the extended simulation cases, a total of 245 simu-

lations were performed.  

The mesh and contact parameters were appropriately rescaled, 

in line with the reduction of wire diameter from 5 mm to 1 mm. In 

the case of determining the penetration contact, the value was set 

to 0.002 mm. However, in about half of the cases, this value pre-

vented calculations from being performed, so it was gradually in-

creased until the calculations were feasible, but no more than 0.3 

mm, with the program-controlled option applied in a few cases. 

4.3. Results and discussion of the experiments 

4.3.1. Axial stiffness 

An example plot of the force-displacement curve for a spring 

with C = 4, na = 1, γ = 10° and s = 0.5, obtained from numerical 

simulation is shown in Figure 8. It can be noticed that, nonlinearity 

of force-displacement curve is negligible. 

Fig. 8.  Force-displacement curve for a spring with C = 4, na = 1, γ = 10°    
for coil contact length s = 0.5 

The results of the axial stiffness tests were too extensive to be 

presented in full in this publication. Therefore, they were aggre-

gated, and the trends in stiffness changes were analyzed. Data 

analysis began by examining the correlation of the output variable, 

i.e., numerical axial stiffness k, with the input independent variables 

C, na, γ, and s, for the primary set of 180 springs. The results of the 

correlation analyses are presented in Figures 9–12 along with the 

correlation coefficients. 

Fig. 9.  Correlation plot of axial stiffness k versus spring index C with  
  coefficient r = -0.81 

Fig. 10.  Correlation plot of axial stiffness k versus number of active coils 
na with coefficient r = -0.29 

Fig. 11.  Correlation plot of axial stiffness k versus helix angle γ with  
coefficient r = -0.02  

Fig. 12.  Correlation plot of axial stiffness k versus contact length per one 
ending s with coefficient r = -0.0002 
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The analysis conducted on the given sample revealed that the 

axial stiffness is primarily influenced by the input variables used in 

the classical formula from the standard, namely the spring index C 

and the number of active coils na. The spring angle γ, included in 

many more precise formulas, has a significantly smaller effect, 

while the spring end coil contact length has practically no influence. 

However, this conclusion needs to be verified for specific spring ge-

ometries. To this end, the coefficient of variation was calculated for 

each of the contact configurations of the coils within the same num-

ber of active coils. The coefficient of variation, expressed as a per-

centage, represents the ratio of the standard deviation to the mean 

value of the sample. The results are presented in Table 3, with co-

efficients color-coded for clarity. 

Tab. 3. Coefficient of variation of springs axial stiffness depending on 
spring angle, number of active coils and spring index 

Spring  
index C 

Active coils  
na 

Helix angle γ 

5° 10° 15° 

4 

1 1.12% 0.25% 0.40% 

1.25 1.38% 0.62% 0.30% 

1.75 1.17% 0.30% 0.59% 

2.5 0.49% 0.51% 0.21% 

3.5 2.82% 0.20% 0.12% 

8 

1 0.23% 0.33% 0.13% 

1.25 0.81% 0.04% 0.22% 

1.75 0.64% 0.36% 0.31% 

2.5 0.34% 0.28% 0.10% 

3.5 0.14% 0.13% 0.17% 

12 

1 0.48% 0.42% 0.30% 

1.25 0.29% 0.33% 0.38% 

1.75 0.35% 0.17% 0.92% 

2.5 0.35% 0.20% 0.13% 

3.5 0.13% 0.22% 0.22% 

The highest coefficients of variation were obtained for C = 4 and 

γ = 5°. This aligns with the results from experimental studies for C 

= 5, where variations in stiffness due to changes in the terminal coil 

contact length were also evident. For C = 12 the stiffness variability 

coefficient did not surpass 1%. For C = 8, the coefficient exceeded 

0.5% only twice, to values of 0.81% and 0.64%. In general, it is 

accepted that a feature is statistically significant if the coefficient of 

variation exceeds 10%. This threshold was not reached. The vast 

majority of spring sets showed no change in stiffness due to 

changes in the spring end coil contact length, allowing the conclu-

sion that this factor is insignificant, except for small angles and 

small spring indices. Therefore, for further calculations, the stiffness 

value for point contact (s = 0) will be used. 

Figure 13 illustrates the change in axial stiffness for springs with 

point contact and a spring index of C = 8, depending on the number 

of coils and the spring angle. This confirms the minimal effect of the 

spring angle on axial stiffness. Additionally, all variability patterns 

exhibit the same trend: the greater the number of coils, the lower 

the stiffness. This reflects the fundamental relationship provided in 

EN 13906-1:2013(E). 

 

 
Fig. 13. Axial stiffness for index C = 8, point contact (s = 0) for spring angles 

of 5, 10 and 15 degrees 

 

A general overview of the results for point contact of the 

terminal coils is visualized in Figure 14, created using Matlab. The 

three axes represent the influence of the spring index C and the 

number of active coils na on axial stiffness k. The most significant 

changes in stiffness are observed for low spring indices and small 

numbers of active coils. 

  

 
Fig. 14. Axial stiffness distribution depending on the spring index C and 

the number of active coils na for the point contact of end coils 

Fitting functions to the data visualized in Figure 14 proved chal-

lenging. Consequently, the applicability of formulas described in 

Section 2 was analyzed, highlighting differences for the batch of 

springs with C = 8, γ = 5°, and s = 0. The plot given in Fig. 15 

indicates that the formulas by Paredes and Liu & Kim, which intro-

duce an equivalent number of active coils, most closely align with 

the simulation results. Similar results are provided by the formulas 

from EN 13906-1:2013(E), Yıldırım, and Krużelecki, though they 

deviate from the FEM results. The Vogt correction produced values 

close to the simulation outcomes for springs with more than 2.5 ac-

tive coils. The greater the number of active coils, the more accurate 

all formulas become. 

Fig. 15. Axial stiffness k for the index C = 8, angle γ = 5°, point contact  
(s = 0) in comparison with selected analytical methods 
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A decision was made to derive a new formula based on the 

most commonly used equation from EN 13906-1:2013(E). To ac-

complish this, the ratio 𝜒 (Equation 12) between the axial stiffness 

value obtained using FEM (kFEM) and the value calculated using the 

standard formula (kN) was computed.  

𝜒 =
𝑘𝐹𝐸𝑀

𝑘𝑁
                                     (12) 

Then, the average value of 𝜒 was calculated for each number 

of coils, i.e. for 4 measurements of axial stiffness depending on the 

contact length. Using the Curve Fitting Tool in Matlab, a power 

function (13) was fitted to the 𝜒 coefficient, which tends to 1. In 

this way, it was not avoided that the stiffness was significantly 

higher than the value obtained from the formula in spring norm [25]. 

This assumption was made because in the vast majority of FEM 

data, the axial stiffness was lower than the value calculated from 

the standard formula. The function was made dependent only on 

the number of active coils. The results of fitting the function (13) to 

the calculated 𝜒 coefficients are given in Table 4. 

𝜒 = 1 − (𝑎 ∙ 𝑛𝑎
𝑏)−1                             (13)  

Tab. 4. The values of coefficient a and b of equation (13) depending on the 
spring index C and helix angle γ together with the given R-square 
parameter 

C γ [°] a b R2 

4 

5 4.550 0.6462 0.8685 

10 4.328 0.5942 0.9889 

15 3.946 0.4576 0.9917 

8 

5 4.409 0.5350 0.9164 

10 4.168 0.4938 0.9726 

15 3.701 0.3970 0.9961 

12 

5 4.393 0.5183 0.9021 

10 4.055 0.4600 0.9751 

15 3.587 0.3937 0.9910 

Fitting with the function Eq. (13) appeared to be sufficiently ac-

curate obtaining the lowest R-square of 0.8685, and an average of 

about 0.956. All data was regular and therefore was used for deter-

mining the description of parameters a and b with respect to the 

spring angle γ. In Matlab, attempts were made to fit various forms 

of the function, for example, giving high accuracies (of the order of 

R-square equals 1) Gaussian or Power options, but it was difficult 

to produce a generalized form describing all the data with high ac-

curacy. The Rational form also gave good results, but contained 

three parameters. It was decided to use the linear form Eq. (14) and 

(15) with two parameters to keep the formula as simple as possible.  

The values of the parameters k1, k2, m1, m2 are given in Table 

5, and the finished formulas are described in equations (16) and 

(17). 

𝑎 = 𝑘1  ∙ 𝛾 + 𝑘2                                   (14) 

𝑏 = 𝑚1  ∙ 𝛾 + 𝑚2                                  (15) 

The average values of a and b were then approximated by 

equations (16) and (17) which parameters were the average value 

of k1 k2, m1, m2 in terms of spring index (Tab. 5), determining the R-

square of the model. The results of the approximation are recorded 

in Table 6. 

𝑎 = −0.071 ∙ 𝛾 + 4.833                        (16) 

𝑏 = −0.015 ∙ 𝛾 + 0.650                       (17) 

Tab. 5. The values of coefficient k1 k2, m1, m2 of equations (14) and (15) 
depending on the spring index with the given R-square parameter 

C k1 k2 R2 m1 m2 R2 

4 -0.060 4.879 0.9771 -0.019 0.755 0.9371 

8 -0.071 4.801 0.9672 -0.014 0.613 0.9487 

12 -0.081 4.818 0.9914 -0.012 0.582 0.9986 

Av. -0.071 4.833 0.9786 -0.015 0.650 0.9615 

Tab. 6. Comparison of parameters a and b calculated using equations (16) 
and (17) with the target values 

C γ [°] a a (16) b b (17) 

4 

5 4.550 4.478 0.6462 0.575 

10 4.328 4.123 0.5942 0.5 

15 3.946 3.768 0.4576 0.425 

8 

5 4.409 4.478 0.5350 0.575 

10 4.168 4.123 0.4938 0.5 

15 3.701 3.768 0.3970 0.425 

12 

5 4.393 4.478 0.5183 0.575 

10 4.055 4.123 0.4600 0.5 

15 3.587 3.768 0.3937 0.425 

 R2 0.9786 R2 0.9615 

The calculated R2 values mean that it is possible to approxi-

mate these values with the given formula. Other attempts have not 

yielded a better value in terms of R2. The final form of the formula 

for the axial stiffness kχ dependent on the kN formula (1) derived 

from [25] has the form Eq. (18).The developed correction factor re-

flects the effect of the number of active coils na and the helix angle 

γ given in degrees. 

𝑘𝜒 = 𝑘𝑁 ∙ (1 −
1

(4.83−0.071 ∙𝛾)∙𝑛𝑎
(0.65−0.015 ∙𝛾))              (18) 

The formula (18) allows to calculate with high accuracy (above 

90%) the axial stiffness of steel springs with an index from 4 to 20, 

number of active coils from 1 to 5 and helix angle from 5° to 20°. 

This was checked on a random selection of 6 springs with the men-

tioned sizes of these parameters obtaining MAPE equal to 2%. Ta-

ble 7 compares the determined formula (18) with those described 

in Chapter 2. The mean absolute percentage error (MAPE) was cal-

culated for a sample of 180 springs, which served as a measure for 

the comparison of results.  

It is showed that the most accurate method is the one with a 

correction calculated in a power-law manner (18), achieving a 

MAPE of 1.38%. The least accurate was the formula commonly 

used described by Eq. (1). Among the known methods, the Paredes 

method (2) is the most accurate, with a MAPE of 3.62%. 
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Tab. 7. Comparison of the accuracy of selected methods for calculating the 
axial stiffness of compression springs 

Axial stiffness formula 
Mean absolute  

percentage error (MAPE) 

EN 13906-1:2013(E) norm (1) 23.40% 

Vogt (1934) (2) 5.91% 

Paredes (2016) (2) 3.62% 

Krużelecki and Życzkowski (1990) (3) 22.17% 

Yıldırım (2016) (4) 18.95% 

Liu and Kim (2009) (5) 13.93% 

kχ (18) 1.38% 

 

Table 8 shows a comparison of the two most accurate methods 

and method (1) [25] with the actual axial stiffness values obtained 

from the experiment performed, described in Chapter 3.  

Tab. 8. Comparison of axial stiffness values calculated using the most  
accurate methods and the commonly used Eq. (1) with bench test  
results 

S
p

ri
n

g
 

in
d

ex
 

C
 

A
ct

iv
e 

co
ils

 
n

a
 

C
o

n
ta

ct
in

g
 

co
ils

 
 

p
er

 
en

d
in

g
 

s 

E
xp

er
im

en
ta

l 
m

ea
n

 

st
if

fn
es

s 
[N

/m
m

] 

k N
 

(1
) 

k χ
 

(1
8)

 

k P
 

(2
) 

Error to experimental  
value [%]  

5 

2.5 

0 139.9 -15 1 -1 

0.25 156.3 -3 12 10 

0.5 142.0 -13 3 1 

2.75 

0 138.4 -6 8 6 

0.25 140.5 -4 10 7 

0.5 130.8 -12 3 1 

3 

0 129.4 -4 10 7 

0.25 130.0 -3 10 8 

0.5 122.7 -9 5 2 

MAPE [%] 8 7 5 

Gap [%] 12 10 11 

7 

2.5 

0 51.2 -15 1 -1 

0.25 51.3 -14 1 0 

0.5 49.2 -19 -4 -5 

2.75 

0 48.1 -11 3 2 

0.25 47.3 -13 1 0 

0.5 47.1 -13 1 -1 

3 

0 45.5 -8 5 4 

0.25 44.1 -11 2 1 

0.5 45.0 -9 4 3 

MAPE [%] 13 2 2 

Gap [%] 12 9 8 

Table 8 indicates that the compared formulas are more accurate 

for larger spring index. Formula (18) achieved a MAPE for C = 5 of 7%, 

and 2% for C = 7. The smallest mean absolute percentage error 

(MAPE) was shown by the Paredes formula (2) – 5% and 2%, respec-

tively. For C = 5 and contact s = 0.25, the better accuracy of formula 

(1) is noted. Due to the fact that the new formulas proposed in the 

article are subject to numerical simulation error, their accuracy is com-

parable to commonly used methods. This means that they can be 

used alternatively. In addition, the real springs were not made with 

high precision. The methodology used to determine the correction to 

formula (1) can be successfully applied to determine more accurate 

formulas on the basis of extensive stand tests. This task is feasible, 

but the cost of implementation may exceed the expected result. These 

errors are based on various material and geometric deviations. There-

fore, extensive bench testing could only statistically determine an ac-

curate method. 

4.3.2. Transverse reaction value Influence of geometrical pa-

rameters on spring response in the transverse direc-

tion 

The numerical compression simulations conducted on the initial 

set of 180 spring models allowed conclusions to be drawn regard-

ing the influence of individual geometric parameters on the trans-

verse reaction force exerted by the spring on the support. Based on 

these analyses, the value of the relative transverse reaction Rrel 

was determined. This quantity was defined as the ratio of the trans-

verse reaction force of the spring to its axial reaction force during 

axial compression, under conditions where the displacements of 

the supports in transverse directions were constrained: 

𝑅𝑟𝑒𝑙 =
√𝑅𝑥

2+𝑅𝑦
2

|𝑅𝑧|
                                      (19) 

where Rx and Ry are the numerically determined components of the 

transverse reaction. The angle formed by the resultant vector of the 

transverse reaction with the X-axis, which marks the start of the 

spring wire, was also determined. The results of 180 simulations 

investigating the influence of geometric parameters on the relative 

transverse reaction value are illustrated by the surface plots shown 

in Fig. 16. 

The surface plots shown in Fig. 16 reveal a significant variation 

in relative transverse reactions Rrel, ranging from values close to 

zero to those exceeding 0.3. These plots also demonstrate the low 

degree of correlation between Rrel and the contact length s. This is 

consistent with the correlation analysis performed earlier, per-

formed analogously to point 4.3.1 for axial stiffness. This analysis 

showed that: the correlation coefficient r of the transverse reaction 

value generated during axial compression with the spring index C 

equals -0.52, with the number of active coils na equals -0.03, with 

the helix angle γ 0.56 and with the contact length s -0.02. Therefore, 

the reaction value depends most on the spring index and helix an-

gle. Additionally, the plots indicate that the maximum Rrel values 

occurred at an active coil count of na = 1.75, regardless of the spring 

index C. To determine the relationship between Rrel and the number 

of active coils na, further 45 analyses were conducted by extending 

the range of active coil counts to: 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 

2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5 and 5. Based on observations 

indicating a minor influence of the contact length s and the spring 

index C on the variation of Rrel, subsequent analyses were limited 

to springs with s = 0 and C = 8. The total number of numerical anal-

yses carried out was therefore 225. Fig. 17 presents the results of 

the relationship between relative transverse reaction Rrel and the 

number of active coils na for helix angle values γ: 5°, 10° and 15°. 
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Fig. 16. Plots of the 𝑅𝑟𝑒𝑙 dependency on the contact length and the helix 
pitch angle for springs with a given spring index C and number of 
active coils 𝑛𝑎 

 

Fig. 17. Plots of the 𝑅𝑟𝑒𝑙 dependency on the number of active coils 𝑛𝑎 for 
helix pitch angles γ: 5°, 10°, 15°, for springs with 𝐶 = 8  oraz  
𝑠 = 0 

 

The presented plots clearly show that the highest Rrel values 

occur for springs with partial coil numbers of 0.5 and 0.75, whereas 

the lowest relative transverse reaction values are observed for 

springs with fractional coil numbers of 0 and 0.25. This observation 

provides an important insight for the spring designers, as it enables 

the deliberate selection of the active number of coils, which should 

be chosen not only based on the required axial stiffness but also 

considering the desired transverse reaction value. 

The presented results were utilized to develop a generalized 

approximation model capable of estimating Rrel values depending 

on the number of active coils for springs with any spring index C 

and helix angle γ.  

Given the pattern of Rrel variations shown in Fig. 17, resembling 

a damped sinusoid, functions composed of the product of a decay-

ing nonlinear function representing the mean value trend and com-

binations of trigonometric functions were tested. Among all the 

tested functions, the best fit was achieved with the function of the 

form: 

𝑅𝑟𝑒𝑙 = 𝑐1𝑒𝑐2𝑛𝑎 ∙ (𝑐3 − 𝑐4 cos(2𝜋𝑛𝑎) − sin(2𝜋𝑛𝑎))    (20) 

Fig. 18 shows the preliminary approximation functions (contin-

uous lines) along with the input data (dots), while Table 9 provides 

the values of the obtained coefficients ci and the corresponding co-

efficients of determination. 

 

Fig. 18.  Preliminary approximation plots of 𝑅𝑟𝑒𝑙  as a function of the 
number of active coils 𝑛𝑎 for helix pitch angles of 5° 10° and 
15°, for springs with 𝐶 = 8 and 𝑠 = 0 

Tab. 9. The values of the function coefficients Eq. (20), along with the 
coefficients of determination 

γ [°] 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 R-square 

5 0.0685 -0.1508 2.7048 1.2563 0.9862 

10 0.1660 -0.3381 2.1928 0.8522 0.9853 

15 0.2731 -0.5805 2.1819 0.9409 0.9948 

 

To achieve a simple and easily applicable relationship, the val-

ues of coefficients c3 and c4 have been fixed. Each value was set 

to the average of all values for the different angles γ: c3 = 2.3598 

and c4 = 1.0165. Based on this assumption, another approximation 

was performed to determine the corresponding values of coeffi-

cients c1 and c2. The results are presented in Table 10. 

 
Tab. 10. The approximation results with fixed values of coefficients  

𝑐3 and 𝑐4 

γ [°] 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 R-square 

5 0.0787 -0.1529 

2.3598 1.0165 

0.9760 

10 0.1541 -0.3385 0.9796 

15 0.2502 -0.5745 0.9934 

The final step was to determine the approximation functions for 

the dependencies c1(γ) and c2(γ) based on the data presented in 

Table 10. The aim was to find the simplest possible functions that 

ensure a coefficient of determination not less than 0.99. Ultimately, 

the approximation of the dependency of coefficient c1 on the helix 

pitch angle γ was performed using a linear function, while c2 was 

approximated using a power function: 

𝑐1(𝛾) = 0.0162𝛾  (21a) 

𝑐2(𝛾) = −0.0199𝛾1.24                            (21b) 

The coefficients of determination for both approximations were 

0.9920 for c1 and 0.9988 for c2, respectively. A graphical represen-

tation of the correspondence between input data and approximation 

functions is shown in Fig.19. 
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By substituting equations (21a) and (21b) into Eq.(20), we ob-

tain, after transformations, the final relationship which allows to de-

termine the value of Rrel as a function of the number of active coils 

na and the helix angle γ: 

𝑅𝑟𝑒𝑙 =
0.0231𝛾

𝑒0.0199𝑛𝑎𝛾1.24 ∙ (1.66 − cos(2𝜋𝑛𝑎 − 0.777))    (22) 

 
Fig. 19.  Approximation plots of coefficients 𝑐1  and 𝑐2  along with the 

data for springs with 𝐶 = 8 and 𝑠 = 0 

 

The analysis of the compliance of Eq. (22) with the results of 

FEM analyses was performed for a full set of 225 geometric spring 

models. This analysis showed that: 

− Only in 6 cases out of 225, the absolute value of the difference 

between the Rrel determined from the FEM analyses (denoted 

hereafter as RrelF) and the result of Eq. (22) (denoted hereafter 

as RrelA) exceeded the value of 0.05; 

− In 75 cases out of 225, the absolute value of the difference 

between RrelF a RrelA  was within the range between 0.01 and 

0.05; 

− In the remaining 144 cases, the value of |𝑅𝑟𝑒𝑙𝐹 − 𝑅𝑟𝑒𝑙𝐴| did 

not exceed 0.01. 

A graphical interpretation of the results obtained is shown in 

Fig.19, where the vertical axis represents the number of cases with 

a given difference value 𝑅𝑟𝑒𝑙𝐹 − 𝑅𝑟𝑒𝑙𝐴, while the horizontal axis 

shows the values of the obtained differences rounded to two 

decimal places. 

 
Fig. 20. Distribution of the number of particular cases with specific values 

of difference 𝑅𝑟𝑒𝑙𝐹 − 𝑅𝑟𝑒𝑙𝐴 

It can be seen in Fig. 20 that the absolute value of 𝑅𝑟𝑒𝑙𝐹 −
𝑅𝑟𝑒𝑙𝐴 difference exceeded 0.06, only in 2 cases. All of them refer 

to springs with index C = 4 and helix angle γ = 5°. It should be noted 

that the average value of relative transverse reaction Rrel for the set 

of 225 tested spring models was equal to 0.16, while the average 

value of 𝑅𝑟𝑒𝑙𝐹 − 𝑅𝑟𝑒𝑙𝐴 difference was only 0.0095, thus it is only 

about 5.9% of the average Rrel value. The performed analysis 

indicates the high accuracy of the proposed Eq. (22) over a wide 

range of variation in the geometric parameters of springs. 

4.3.3. Transverse reaction angle 

As shown in section 4.3.2, the value of the transverse reaction 

generated by the spring during axial compression can reach signifi-

cant levels. These reactions may be substantial enough that ne-

glecting them during the design of the system in which the spring 

operates would lead to an oversimplification. One possible solution 

in such cases is to arrange the springs so that their transverse re-

actions cancel each other out. For this to be feasible, the designer 

must have knowledge of the direction of the transverse force to cor-

rectly determine the spring assembly. Precise determination of this 

direction may require simulations or experimental testing. However, 

the ability to approximate it using a simple relation at an early stage 

of the design process can be highly beneficial, potentially reducing 

the number of iterations during the design phase. Based on the 

analyses conducted, such a relation is presented in this section. 

To determine the direction of the transverse reaction, the angle 

ψ was defined as the angle between the mentioned direction and 

the X-axis. The reaction angle ψ was calculated relative to the X-

axis, as the arcus cosine of the reaction value on the X-axis to the 

resultant reaction value Rrel. Additionally, the sign of the transverse 

reaction was included to account for its orientation. For instance, 

angles of 135° and −45° represent the same direction but opposite 

orientations. The direction of the resultant reaction was determined 

based on the plus or minus signs of the reactions on the X and Y-

axes. This is illustrated in Fig. 21. The analysis was based on all 

225 conducted studies. Similarly to previous analyses, correlations 

between variables were first examined. The correlation coefficient 

r of angle with the spring index was −0.005, with the number of 

active coils −0.179, with the spring angle −0.004, and with end coil 

contact length −0.063. Thus, it is evident that the direction of the 

transverse reaction is independent of these parameters. 

The results are presented in Table 11. The values provided in 

the table are accurate to within +/-3°. For the parameters C = 4 and 

γ = 5°, which occur simultaneously, deviations from the general 

trend were observed. These cases were excluded, as previously 

noted, as challenging spring geometries whose behavior is best 

evaluated experimentally or numerically. 

Fig. 21. The coordinate system used to determine the transverse reaction 
angle Rrel. Top view of the spring 

Analyzing Table 11, it was found that the different configura-

tions of the partial number of coils and contact lengths yielded the 

same values of angle ψ, regardless of the number of coils, helix 

angle and spring index. In order to describe the course of changes 

in more detail, 20 additional analyses were carried out for spring 
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models with C = 8, γ = 10°, na = 1, 1.25, 1.5, 1.75 and contact 

lengths s = 0.125, 0.375, 0.625, 0.75, 0.875. All the values of angle 

ψ obtained from the FEM analyses are shown in Fig. 22, along with 

linear approximation functions. Based on these data, equation (23) 

was derived, describing the course of change of angle ψ as a func-

tion of contact length s and the partial number of active coils np. 

Tab. 11. Results of the transverse reaction angle ψ test due to axial compres-
sion – basic 225 results 

 

Fig. 22. Graph of functions describing the dependence of the transverse 
reaction angle ψ on the contact length s and the partial number of 
active coils np 

𝜓 = 𝜋 ∙ (2 ∙ 𝑠 + 𝑛𝑝 − 0.5)                                    (23) 

where: np – partial number of active coils. When the number of 

active coils is an integer, assume that np = 1. 

The relationship (23) is valid only for the values of the partial 

number of active coils listed in Fig. 22, since, as additional tests not 

included here have shown that in other cases this relationship may 

not give satisfactory results. 

5.  CONCLUSIONS 

This article presents an in depth analysis of the changes in axial 

stiffness, the transverse reaction from axial compression and the 

angle of this reaction. Also presented is a comprehensive modeling 

process of spring work in the Static Structural module of Ansys 

Workbench software, supported by bench tests. The prepared nu-

merical model achieved an accuracy of about 2.7% (MAPE), which 

allows us to unequivocally confirm the sufficient effectiveness of the 

use of the finite element method for modeling the basic character-

istics of the spring's work. 

As a result of numerical experiments of the axial stiffness, it was 

found that the size of the contact of the end coils does not signifi-

cantly affect the axial stiffness variance except for the index C = 4 

and the spring angle γ = 5° at the same time. A formula (18) was 

drawn up to calculate the axial stiffness with satisfactory accuracy 

with a mean absolute percentage error (MAPE) of less than 2% for 

numerical simulations and from 2 to 7% for real tests. The proposed 

equation (18) can be used to calculate the axial stiffness of typical 

coil springs encountered in industry, with an index between 4 and 

20 and a helix angle between 5° and 20°, as it gives the most ac-

curate results in this regard among all verified computational mod-

els available in the existing literature with respect to the numerical 

analyses performed. This is especially true for short springs with a 

small number of active coils. The consistency of formula (18) with 

the results of numerical analyses was verified only for springs with 

the number of active coils from 1 to 5. However, as the number of 

active coils increases, the value of the correction factor in paren-

theses in Eq. (18) approaches unity. It follows that relation (18) can 

be used for springs with any number of active coils, not less than 1. 

It was also pointed out that the Paredes method proposed in 2016 

achieves very good agreement at a similar MAPE level of 2 to 5%. 

The construction of an accurate formula can only be based on 

bench tests on a large sample of springs. 

Numerical studies have made it possible to address an issue 

not addressed in the previous literature, which is the occurrence of 

transverse reaction, generated during axial compression of the 

spring. The numerical studies carried out in this paper allowed to 

formulate new relations in this regard. The relation (22) proposed 

in Section 4.3.2 is easy to apply and allows to estimate the value of 

the transverse reaction force arising in axial compression of the 

spring. Numerical studies have shown that this force can exceed 

up to 30% of the value of the axial force. In engineering practice, it 

is important to know not only the values of transverse reaction 

forces when springs are axially loaded, but also the directions of 

their action. This allows for an informed selection of the orientation 

of springs in machine support systems, in order to achieve ade-

quate stability of a given system. In this paper, an analysis of the 

dependence of the direction of the transverse reaction on the shape 

of the end coils and on the number of active coils was carried out. 

This analysis made it possible to propose a new relation (23) to 

determine this angle. The values of the angle turned out to be re-

producible for all springs depending on the partial number of active 

coils and the number of contacting coils with an accuracy of +/-3°. 

This rule was not observed for small spring index C < 5 and simul-

taneously occurring spring angle γ < 10°, which is due to the large 

curvatures and the close position of the coils relative to each other. 

The map produced and the formula describing it are simple enough 

to give results with the same accuracy as the input data (+/-3°). 

These results are an important input for simplifying the design of 

compression springs and their installation, since they cover the 

most commonly used geometries, i.e. with faces ground to ¾ of the 

circumference, commonly occurring spring angles and spring in-

dexes. 
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1 0 90 2.25 0 315 

1 0.25 180 2.5 0 0 

1 0.5 270 2.5 0.25 90 

1 1 90 2.5 0.5 180 

1.25 0 315 2.5 1 0 

1.25 0.25 45 2.75 0 45 

1.25 0.5 135 3 0 90 

1.25 1 315 3.25 0 315 

1.5 0 0 3.5 0 0 

1.5 0.25 90 3.5 0.25 90 

1.5 0.5 180 3.5 0.5 180 

1.5 1 0 3.5 1 0 

1.75 0 45 3.75 0 45 

1.75 0.25 135 4 0 90 

1.75 0.5 225 4.25 0 315 

1.75 1 45 4.5 0 0 

2 0 90 4.75 0 45 
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