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Abstract: In order to achieve high performance of sensorless direct torque controlled induction motor drive at medium and low speed regions 
in case of Gaussian-noised stator currents, extended Kalman filter is utilized. At first, sensorless control using rotor-flux-based model  
reference adaptive system is described. Then, extended Kalman filtering that uses full state-space model of the induction motor is employed 
to obtain estimated stator currents for the sensorless control. Unmeasured rotor fluxes in extended Kalman filtering are computed based  
on their relationship to estimated stator fluxes and measured stator currents. The estimated stator currents are utilized to compute input  
quantities for direct torque control. Simulations are deployed in case of both process and measurement noises of stator currents.  
Performance comparisons based on two indices: normalized integral of time multiplied by absolute value of speed difference and maximum 
value of absolute value of relative speed difference between two sensorless control methods with and without extended Kalman filter, are 
carried out. Through simulations in Simulink environment of Matlab software, theoretical assumptions are confirmed by the fact that the 
evaluation indices of the proposed method are decreased by at most 75% and 80% compared to the method without extended Kalman filter. 
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1. INTRODUCTION 

Direct torque control (DTC) strategies have been offering high 
efficiency in AC drive applications [1]-[5]. The DTC integrated pulse 
width modulation (PWM) was employed to enhance the energy pro-
duction for a wind turbine drive application using synchronous gen-
erator [1]. The PWM-DTC IM drive that contained start process, 
was presented to ensure favorable transient and constant switching 
frequency [2]. The DTC with only one PI speed controller and with-
out calculations of sector and rotating frame, was proposed to in-
crease computational speed [3]. The virtual vectors were deployed 
to lower the torque ripple in a wide speed range [4]. In order to de-
crease fluctuations flux and torque and to increase the drive stabil-
ity, the twelve-sector DTC were combined with IM parameter esti-
mation based on model reference adaptive system (MRAS) [5]. 
Methods of sensorless control and supervision for induction motor 
(IM) have been interesting topics [6]-[7]. In sensorless drives, 
MRAS techniques have been widely utilized [8]-[19]. Rotor-flux-
based MRAS (RF-MRAS) and stator-current-based MRAS (SC-
MRAS) were compared in cases of simultaneous uncertainties of 
IM parameters [8]. The MRAS was utilized to estimate parameters 
in sensorless permanent magnet synchronous motor (PMSM) drive 
[9]. The speed of synchronous reluctance motor (SRM) was esti-
mated by reactive-power-based MRAS [10]. Stator-flux based 
MRAS was integrated into phase opposition disposition based five-
level inverter to increase the parameter estimation accuracy and 
the IM drive performance [11]. The MRAS was modified to maxim-

ize power control and eliminate sensors for PMSM solar pump sys-
tem [12]. The MRAS estimator was adjusted to observe the flux 
linkage of an interior PMSM drive system [13]. 

In case of deterministic observers, various techniques such as 
fuzzy logic, sliding mode (SM), artificial neural network (ANN), were 
integrated into the MRAS to obtain higher drive performances [14]-
[19]. The MRAS was integrated the fuzzy logic into its adaptation 
mechanism for sensorless permanent magnet synchronous gener-
ator (PMSG) drive [14]. The ANN and particle swarm optimization 
were combined to improve the performance of the MRAS for sen-
sorless control of an induction generator [15]. The RF-MRAS  was 
enhanced by the integral SM control for sensorless IM drive [16]. In 
order to increase robustness and performance of sensorless IM 
drive, discrete SM observer was integrated into the MRAS [17]. The 
SM observer combined with the MRAS one, provided three types 
of observers that were enhanced by the sliding mode DTC for the 
high-performance IM control [18]. The ANN was employed with a 
variant of the Q-MRAS for sensorless IM drive [19]. For stochastic 
systems, Kalman filters (KFs) were deployed [20]-[30]. 

Various industrial applications such as health monitoring, robo-
tics, sensorless control, generation systems were analysed briefly 
[20]. The KF increased GPS accuracy and reduced magnetometer 
measurement noise for estimation of position and orientation [21]. 
Stator currents and their derivatives were smoothed by the KF for 
sensorless vector controlled IM drive using back-electromotive-
force-based MRAS [22]. The extended KF (EKF) provided estima-
ted feedback signal for suspension control system with spiral 
springs and magnetorheological dampers [23]. Rotor speed, rotor 
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position and machine parameters of the SRM were estimated by 
the KF [24]. Speed and rotor flux were computed by the EKF that 
approximated covariance matrices of noise process and measure-
ment vectors using genetic algorithm [25]. Noise covariance matri-
ces were also adapted for sensorless drive using the EKF that in-
tegrated the maximum likelihood criterion and weighting algorithm 
[26]. An ANN-based observer was trained by the KF to improve the 
speed response [27]. The EKF was combined with intelligent ma-
gnetic model for SRM drive [28]. An iterated EKF that used two IM 
models was utilized to obtain estimations of IM resistances and 
speed [29]. The current noise was compensated by the EKF to im-
prove the performance of sensorless PMSM drive using the MRAS 
[30]. Discretization methods were analyzed and selected for incre-
asing precision of the flux and speed estimations for induction ge-
nerator [31]. The extended KF that used the suboptimal principle 
enhanced the robustness in combination with the MRAS for sen-
sorless bearingless IM control [32]. Next section, in order to reduce 
influence of Gaussian noises of stator currents on sensorless 
PWM-DTC IM drive using the RF-MRAS and simultaneously im-
prove its estimation accuracy at medium and low speed areas [8], 
[16], the EKF that utilizes the IM model to obtain smoothed stator 
currents is presented. The filtered currents are employed for com-
putations of both estimated speed and important quantities of the 
DTC. The third section is simulations and discussions. Conclusions 
are carried out in final section.  

2. PROPOSED SENSORLESS CONTROL  

Figure 1 shows the sensorless DTC IM drive using EKF-based 
MRAS. Input quantities for the DTC drive are computed according 
to Eqs. (1)-(5): 

𝜓𝑠𝛼,𝑒𝑠𝑡 = ∫(𝑢𝑠𝛼 − 𝑅𝑠𝑖𝑠𝛼,𝐾𝐹)𝑑𝑡   (1) 

𝜓𝑠𝛽,𝑒𝑠𝑡 = ∫(𝑢𝑠𝛽 − 𝑅𝑠𝑖𝑠𝛽,𝐾𝐹)𝑑𝑡   (2) 

𝜓𝑠,𝑒𝑠𝑡 = √𝜓𝑠𝛼,𝑒𝑠𝑡
2 + 𝜓𝑠𝛽,𝑒𝑠𝑡

2    (3) 

𝛾𝑒𝑠𝑡 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜓𝑠𝛽,𝑒𝑠𝑡

𝜓𝑠,𝑒𝑠𝑡
)   (4) 

𝑇𝑒,𝑒𝑠𝑡 =
3𝑛𝑝(𝑖𝑠𝛽,𝐾𝐹𝜓𝑠𝛼,𝑒𝑠𝑡−𝑖𝑠𝛼,𝐾𝐹𝜓𝑠𝛽,𝑒𝑠𝑡)

2
   (5) 

where, us, us: stator voltages; s,est & s,est: estimated stator 

fluxes; est: estimated orienting angle; Te,est : estimated motor 

torque; Rs: stator resistance; np: number of pole pairs; is,KF & is,KF: 
stator currents filtered by Extended Kalman Filtering block. Discrete 
state-space IM model that is distorted by zero-mean, Gaussian pro-
cess & measurement noise vectors v & w, is described by Eqs.  
(6)-(7):  

𝑿(𝑘 + 1) = 𝐀̂𝑑𝑿(𝑘) + 𝐁𝑑𝑼(𝑘) + 𝒗(𝑘)   (6) 

𝒀(𝑘) = 𝐂𝑑𝑿(𝑘) + 𝒘(𝑘)   (7) 

where 

𝑿 = [𝑖𝑠𝛼 𝑖𝑠𝛽 𝜓𝑟𝛼 𝜓𝑟𝛽]𝑇   (8) 

𝑼 = [𝑢𝑠𝛼 𝑢𝑠𝛽]𝑇   (9) 

𝐀̂𝑑 = 𝐈 + 𝑡𝑑𝐀̂   (10) 

𝐀̂ =

[
 
 
 
 
 

𝑐1 0
0 𝑐1

𝑐2 𝑐3𝜔̂𝑟

−𝑐3𝜔̂𝑟 𝑐2
𝐿𝑚𝑅𝑟

𝐿𝑟
0

0
𝐿𝑚𝑅𝑟

𝐿𝑟

−
𝑅𝑟

𝐿𝑟
−𝜔̂𝑟

𝜔̂𝑟 −
𝑅𝑟

𝐿𝑟 ]
 
 
 
 
 

                       (11) 

𝐁𝑑 = 𝑡𝑑𝐁    (12) 

𝐁 =
1

𝜎𝐿𝑠
[
1 0
0 1

0 0
0 0

]
𝑇

     (13) 

𝐂𝑑 = [
1 0
0 1

0 0
0 0

]    (14) 

𝑐1 = −
𝐿𝑚
2 𝑅𝑟+𝐿𝑟

2𝑅𝑠

𝜎𝐿𝑠𝐿𝑟
2     (15) 

𝑐2 =
𝐿𝑚𝑅𝑟

𝜎𝐿𝑠𝐿𝑟
2    (16) 

𝑐3 =
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
    (17) 

𝜎 = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
    (18) 

td: discretization period; is & is: stator currents; r & r: rotor 
fluxes; Ls & Lm: stator & magnetizing inductances; Rr & Lr: rotor re-
sistance & rotor inductance. 

 
Fig. 1. Sensorless DTC IM drive using KF-based RF-MRAS 

The EKF block estimates state vector XKF that contains cur-

rents is,KF and is,KF according to Eqs. (19)-(25): 

𝑿̃(𝑘 + 1) = 𝐀̂𝑑𝑿𝐾𝐹(𝑘) + 𝐁𝑑𝑼(𝑘)    (19) 

𝐏̃(𝑘 + 1) = 𝐀̂𝑑𝐏𝐾𝐹(𝑘)𝐀̂𝑑
𝑇 (𝑘) + 𝐐    (20) 

𝐊(𝑘 + 1) =                                                               

𝐏̃(𝑘 + 1)𝐂𝑑,𝐾𝐹
𝑇 [𝐂𝑑,𝐾𝐹𝐏̃(𝑘 + 1)𝐂𝑑,𝐾𝐹

𝑇 + 𝐑]
−1

 
    (21) 

𝑿𝐾𝐹(𝑘 + 1) =                                                         

𝑿̃(𝑘 + 1) + 𝐊(𝑘 + 1)[𝒀𝑚(𝑘) − 𝒀̃(𝑘 + 1)]
    (22) 

𝐏𝐾𝐹(𝑘 + 1) = 𝐏̃(𝑘 + 1) − 𝐊(𝑘 + 1)𝐂𝑑,𝐾𝐹𝐏̃(𝑘 + 1)    (23) 

𝒀𝑚(𝑘) = 𝐂𝑑,𝐾𝐹 𝑿𝑚(𝑘)    (24) 

𝒀̃(𝑘) = 𝐂𝑑,𝐾𝐹 𝑿̃(𝑘)    (25) 

where 
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𝑿𝐾𝐹 = [𝑖𝑠𝛼,𝐾𝐹 𝑖𝑠𝛽,𝐾𝐹 𝜓𝑟𝛼,𝐾𝐹 𝜓𝑟𝛽,𝐾𝐹]𝑇    (26) 

𝐂𝑑,𝐾𝐹 = 𝐈   (27) 

𝑿𝑚 = 𝑿    (28) 

Because rotor fluxes in vector Xm are not measured, they are 
calculated according to Eqs. (29)-(30) [1]: 

𝜓𝑟𝛼 =
𝐿𝑟

𝐿𝑚
𝜓𝑠𝛼,𝑒𝑠𝑡 −

1

𝑐3
𝑖𝑠𝛼    (29) 

𝜓𝑟𝛽 =
𝐿𝑟

𝐿𝑚
𝜓𝑠𝛽,𝑒𝑠𝑡 −

1

𝑐3
𝑖𝑠𝛽    (30) 

Symbol  represents predicted quantities; letters “KF” denote 
for ones estimated using KF; Q & R– covariance matrices of v & w 
with, the matrix R is assumed to be known; P – state vector covar-
iance matrix; K – Kalman gain.  

For reference model or voltage model [8], rotor fluxes are com-
puted according to Eqs. (31)-(32):  

𝜓𝑟𝛼,𝑟 =
𝐿𝑟

𝐿𝑚
∫(𝑢𝑠𝛼 − 𝑅𝑠𝑖𝑠𝛼,𝐾𝐹)𝑑𝑡 −

1

𝑐3
𝑖𝑠𝛼,𝐾𝐹    (31) 

𝜓𝑟𝛽,𝑟 =
𝐿𝑟

𝐿𝑚
∫(𝑢𝑠𝛽 − 𝑅𝑠𝑖𝑠𝛽,𝐾𝐹)𝑑𝑡 −

1

𝑐3
𝑖𝑠𝛽,𝐾𝐹    (32) 

In case of adaptive model or current model that contains esti-
mated rotor speed 𝜔̂𝑟, rotor fluxes are calculated by Eqs. (33)-(34): 

𝜓𝑟𝛼,𝑎 = ∫(−
𝑅𝑟

𝐿𝑟
𝜓𝑟𝛼,𝑎 − 𝜔̂𝑟𝜓𝑟𝛽,𝑎 +

𝐿𝑚𝑅𝑟

𝐿𝑟
𝑖𝑠𝛼,𝐾𝐹) 𝑑𝑡    (33) 

𝜓𝑟𝛽,𝑎 = ∫(𝜔̂𝑟𝜓𝑟𝛼,𝑎 −
𝑅𝑟

𝐿𝑟
𝜓𝑟𝛽,𝑎 +

𝐿𝑚𝑅𝑟

𝐿𝑟
𝑖𝑠𝛽,𝐾𝐹) 𝑑𝑡    (34) 

Thanks to Popov’s theorem for minimizing adaptive signal  
[16], the estimated rotor speed is obtained by Eqs. (35)-(36): 

𝜉 = 𝜓𝑟𝛼,𝑎𝜓𝑟𝛽,𝑟 − 𝜓𝑟𝛽,𝑎𝜓𝑟𝛼,𝑎    (35) 

𝜔̂𝑟 = 𝐾𝑝𝜉 + 𝐾𝑖 ∫ 𝜉𝑑𝑡    (36) 

where,r,r & r,r: rotor fluxes of the reference model; r,a & r,a: 
rotor fluxes of the adaptive model; Kp & Ki: proportional & integral 
gains. 

3. SIMULATIONS AND DISCUSSIONS  

Parameters of the IM are given in Table 1. Simulations of two 
sensorless RF-MRAS-based DTC IM drives: the first one is without 
extended Kalman filtering and the second one is with extended Kal-
man filtering (abbreviated as NK and KF in the rest of the text), are 
implemented at variances of Gaussian system and measurement 

noises of stator currents p2 = {0.12, 0.52, 1.02} and m2 = {0.12, 0.52, 
1.02}. Proportional gains and integral time constants of the speed, 
flux, torque controllers & the rotor speed estimator are {1.5, 100, 5 
& 500} and {0.05s, 0.01s, 0.05s & 0.002s}. Diagram of load torque 
is identical to the one, and reference speed course is similar to one 

m,ref = {5/3 rad/s, 10 rad/s } [16]. The utilized PWM technique is 
space vector one with switching frequency of 20kHz, inverter DC 
link of 540Vdc. Normalized integral of time multiply by absolute 
value of speed difference (ITAEn) [16] is used to assess two sen-
sorless drives according to Eq. (37): 

𝐼𝑇𝐴𝐸𝑛 =
∫ 𝑡|𝑒𝜔(𝑡)|𝑑𝑡
2
0

𝑚𝑎𝑥|𝜔𝑚,𝑟𝑒𝑓|
    (37) 

Tab. 1. Induction motor parameters 

Symbol Quantity Value 

Rs Stator resistance 3.179 

np Number of pole pairs 2 

Ls = Lr Stator & rotor inductances 0.209H 

Lm Magnetizing inductance 0.192H 

Rr Rotor resistance 2.118 

Pn Rated power 2200W 

m,n Rated speed  142/3 rad/s 

Te,n Rated torque 14.8Nm 

Jm Moment of inertia 0.0047kgm2 

 
Figures 2-4, 5-7 respectively show motor speed responses in 

cases of p2 = m2 at m,ref = 5/3 rad/s, m,ref = 10 rad/s. The fig-
ures indicate that as the variance increases, the performance of the 
speed response is improved more. Tables 2 and 3 list the ITAEn at 

m,ref = 5/3 rad/s and m,ref = 10 rad/s in all cases of variances. 
The tables show that the ratio (ITAEn,KF/ITAEn,NF) is smallest when 

the ratio (m2/p2) is largest, and vice versa (see Figs. 8-9). The 
ratios (ITAEn,KF/ITAEn,NF) are in ranges of [24.2%; 98.9%], [24.6%; 

99.0%] for m,ref = 5/3 rad/s, m,ref = 10 rad/s, respectively. 

Time courses of relative speed difference RSD (e/max|m,ref|) 
for cases of the ratio (ITAEn,KF/ITAEn,NF) reach maximum & mini-

mum at m,ref = 5/3 rad/s and m,ref = 10 rad/s are respectively 
shown in Figs. 10 and 11.  Diagrams of stator currents are dis-

played in Figs. 12-13 and 14-15 for m,ref = 5/3 rad/s and m,ref = 

10 rad/s, respectively. The reason why the proposed EKF-based 
MRAS speed estimator is more efficient in the cases of larger ratio 

(m2/p2), is because the matrix R is assumed to be known. The 
covariance matrices Q and R can be estimated according to the 
methods in [25]-[26]. Quantities including stator fluxes, rotor fluxes 
of reference model, rotor fluxes of adaptive model, and adaptive 

signal at m,ref = 5/3 rad/s & m,ref = 10 rad/s, p2=0.12, m2=12 
are respectively presented in Figs. 16-17, 18-19, 20-21, and 22-23. 
Figures 22-23 indicate that ripple of the adaptive signal for the KF 
is much smaller than that for the NF. This results in significantly 
lower RSD for the KF. Tables 4-5 show maximum value of absolute 

of relative speed difference  (MARSD) at m,ref = 5/3 rad/s & m,ref 

= 10 rad/s for all variances. The MARSD is reduced by 80% and 

77% at most, corresponding to p2=0.12, m2=12, for m,ref = 5/3 

rad/s and m,ref = 10 rad/s, respectively. 

 

Fig. 2. Motor speeds at m,ref = 5/3 rad/s, p
2=m

2=0.12. 
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Fig. 3. Motor speeds at m,ref = 5/3 rad/s, p
2=m

2=0.52 

 

Fig. 4. Motor speeds at m,ref = 5/3 rad/s, p
2=m

2=12 

 

Fig. 5. Motor speeds at m,ref = 10 rad/s, p
2=m

2=0.12 

 

Fig. 6. Motor speeds at m,ref = 10 rad/s, p
2=m

2=0.52 

 

Fig. 7. Motor speeds at m,ref = 10 rad/s, p
2=m

2=12 

 

Fig. 8. Motor speeds at m,ref = 5/3 rad/s: case 1 (upper): p
2=0.12, 

m
2=12 and case 2 (lower): p

2=12, m
2=0.12 

 

Fig. 9. Motor speeds at m,ref = 10 rad/s: case 1 (upper): p
2=0.12, 

m
2=12 and case 2 (lower): p

2=12, m
2=0.12 

Tab. 2. ITAEn  10-2 [s2] at m,ref = 5/3 rad/s 

p
2 

 m
2 = 0.12 m

2 = 0.52 m
2 = 1.02 

NF KF NF KF NF KF 

0.12 3.13 2.46 47.0 16.0 185 44.7 

0.52 47.1 45.4 65.8 44.8 191 94.6 

1.02 185 183 191 160 262 175 

Tab. 3. ITAEn  10-2 [s2] at m,ref = 10 rad/s 

p
2 

 m
2 = 0.12 m

2 = 0.52 m
2 = 1.02 

NF KF NF KF NF KF 

0.12 0.59     0.49 7.84     2.78 30.6    7.53 

0.52 7.80     7.53 10.9     7.41 31.6    15.6 

1.02 30.6     30.3 31.5     26.5 43.3     28.9 
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Fig. 10. RSD at m,ref = 5/3 rad/s: case 1 (upper): p
2=0.12, m

2=12 and 

case 2 (lower): p
2=12, m

2=0.12 

 

Fig. 11. RSD at m,ref = 10 rad/s: case 1 (upper): p
2=0.12, m

2=12 and 

case 2 (lower): p
2=12, m

2=0.12 

 

Fig. 12. Stator currents at m,ref = 5/3 rad/s, p
2=0.12, m

2=12 

 

Fig. 13. Stator currents at m,ref = 5/3 rad/s, p
2=12, m

2=0.12 

 

Fig. 14. Stator currents at m,ref = 10 rad/s, p
2=0.12, m

2=12 

 

Fig. 15. Stator currents at m,ref = 10 rad/s, p
2=12, m

2=0.12 

 

Fig. 16. Stator fluxes at m,ref = 5/3 rad/s, p
2=0.12, m

2=12 

 

Fig. 17. Stator fluxes at m,ref = 10 rad/s, p
2=0.12, m

2=12 
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Fig. 18. Rotor fluxes of reference model at m,ref = 5/3 rad/s, p
2=0.12, 

m
2=12 

 

Fig. 19. Rotor fluxes of reference model at m,ref = 10 rad/s, p
2=0.12, 

m
2=12 

 

Fig. 20. Rotor fluxes of the adaptive model at m,ref = 5/3 rad/s, 

p
2=0.12, m

2=12 

 

Fig. 21. Rotor fluxes of the adaptive model at m,ref = 10 rad/s, p
2=0.12, 

m
2=12 

 

Fig. 22. Adaptive sginal at m,ref = 5/3 rad/s, p
2=0.12, m

2=12 

 

Fig. 23. Adaptive sginal at m,ref = 10 rad/s, p
2=0.12, m

2=12 

Tab. 4. MARSD at m,ref = 5/3 rad/s 

p
2 

 m
2 = 0.12 m

2 = 0.52 m
2 = 1.02 

NF KF NF KF NF KF 

0.12 0.18 0.17 1.54 0.47 6.30 1.26 

0.52 1.46 1.40 2.07 1.38 6.03 2.99 

1.02 5.81 5.75 5.85 4.78 7.85 5.54 

Tab. 5. MARSD at m,ref = 10 rad/s 

p
2 

 m
2 = 0.12 m

2 = 0.52 m
2 = 1.02 

NF KF NF KF NF KF 

0.12 0.03 0.03 0.27 0.08 1.02 0.23 

0.52 0.23 0.22 0.35 0.26 1.08 0.52 

1.02 0.93 0.92 0.94 0.79 1.36 0.91 

4. CONCLUSIONS  

Sensorless RF-MRAS drives without EKF and with EKF were 
presented and simulated in cases of process and measurement 
noises of stator currents. The sensorless drive utilizing the EKF, 
reduces the ITAEn and MARSD compared to the one without using 
EKF, especially up to 75% and 80% in cases where the ratio be-
tween measurement noise variance and process noise variances is 
maximum at simulated lower reference speed. In case of the sto-
chastic systems, the method can be employed for other MRAS-
based speed estimators that use stator current as inputs. For the 
SM-based MRASs such as [16]-[18], it can be integrated to esti-
mate components of stator flux and rotor flux vectors at the low and 
medium speed ranges of the time courses. Because the proposed 
sensorless control uses the full IM model in the EKF block, the cal-
culation process is slow. Other Kalman Filter versions or estimation 
techniques of covariance matrices can be deployed to enhance the 
sensorless drive performance and increase computation speed. 
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