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Abstract: In order to achieve high performance of sensorless direct torque controlled induction motor drive at medium and low speed regions
in case of Gaussian-noised stator currents, extended Kalman filter is utilized. At first, sensorless control using rotor-flux-based model
reference adaptive system is described. Then, extended Kalman filtering that uses full state-space model of the induction motor is employed
to obtain estimated stator currents for the sensorless control. Unmeasured rotor fluxes in extended Kalman filtering are computed based
on their relationship to estimated stator fluxes and measured stator currents. The estimated stator currents are utilized to compute input
quantities for direct torque control. Simulations are deployed in case of both process and measurement noises of stator currents.
Performance comparisons based on two indices: normalized integral of time multiplied by absolute value of speed difference and maximum
value of absolute value of relative speed difference between two sensorless control methods with and without extended Kalman filter, are
carried out. Through simulations in Simulink environment of Matlab software, theoretical assumptions are confirmed by the fact that the
evaluation indices of the proposed method are decreased by at most 75% and 80% compared to the method without extended Kalman filter.
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1. INTRODUCTION

Direct torque control (DTC) strategies have been offering high
efficiency in AC drive applications [1]-[5]. The DTC integrated pulse
width modulation (PWM) was employed to enhance the energy pro-
duction for a wind turbine drive application using synchronous gen-
erator [1]. The PWM-DTC IM drive that contained start process,
was presented to ensure favorable transient and constant switching
frequency [2]. The DTC with only one PI speed controller and with-
out calculations of sector and rotating frame, was proposed to in-
crease computational speed [3]. The virtual vectors were deployed
to lower the torque ripple in a wide speed range [4]. In order to de-
crease fluctuations flux and torque and to increase the drive stabil-
ity, the twelve-sector DTC were combined with IM parameter esti-
mation based on model reference adaptive system (MRAS) [5].
Methods of sensorless control and supervision for induction motor
(IM) have been interesting topics [6]-[7]. In sensorless drives,
MRAS techniques have been widely utilized [8]-[19]. Rotor-flux-
based MRAS (RF-MRAS) and stator-current-based MRAS (SC-
MRAS) were compared in cases of simultaneous uncertainties of
IM parameters [8]. The MRAS was utilized to estimate parameters
in sensorless permanent magnet synchronous motor (PMSM) drive
[9]. The speed of synchronous reluctance motor (SRM) was esti-
mated by reactive-power-based MRAS [10]. Stator-flux based
MRAS was integrated into phase opposition disposition based five-
level inverter to increase the parameter estimation accuracy and
the IM drive performance [11]. The MRAS was modified to maxim-
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ize power control and eliminate sensors for PMSM solar pump sys-
tem [12]. The MRAS estimator was adjusted to observe the flux
linkage of an interior PMSM drive system [13].

In case of deterministic observers, various techniques such as
fuzzy logic, sliding mode (SM), artificial neural network (ANN), were
integrated into the MRAS to obtain higher drive performances [14]-
[19]. The MRAS was integrated the fuzzy logic into its adaptation
mechanism for sensorless permanent magnet synchronous gener-
ator (PMSG) drive [14]. The ANN and particle swarm optimization
were combined to improve the performance of the MRAS for sen-
sorless control of an induction generator [15]. The RF-MRAS was
enhanced by the integral SM control for sensorless IM drive [16]. In
order to increase robustness and performance of sensorless IM
drive, discrete SM observer was integrated into the MRAS [17]. The
SM observer combined with the MRAS one, provided three types
of observers that were enhanced by the sliding mode DTC for the
high-performance IM control [18]. The ANN was employed with a
variant of the Q-MRAS for sensorless IM drive [19]. For stochastic
systems, Kalman filters (KFs) were deployed [20]-[30].

Various industrial applications such as health monitoring, robo-
tics, sensorless control, generation systems were analysed briefly
[20]. The KF increased GPS accuracy and reduced magnetometer
measurement noise for estimation of position and orientation [21].
Stator currents and their derivatives were smoothed by the KF for
sensorless vector controlled IM drive using back-electromotive-
force-based MRAS [22]. The extended KF (EKF) provided estima-
ted feedback signal for suspension control system with spiral
springs and magnetorheological dampers [23]. Rotor speed, rotor
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position and machine parameters of the SRM were estimated by
the KF [24]. Speed and rotor flux were computed by the EKF that
approximated covariance matrices of noise process and measure-
ment vectors using genetic algorithm [25]. Noise covariance matri-
ces were also adapted for sensorless drive using the EKF that in-
tegrated the maximum likelihood criterion and weighting algorithm
[26]. An ANN-based observer was trained by the KF to improve the
speed response [27]. The EKF was combined with intelligent ma-
gnetic model for SRM drive [28]. An iterated EKF that used two IM
models was utilized to obtain estimations of IM resistances and
speed [29]. The current noise was compensated by the EKF to im-
prove the performance of sensorless PMSM drive using the MRAS
[30]. Discretization methods were analyzed and selected for incre-
asing precision of the flux and speed estimations for induction ge-
nerator [31]. The extended KF that used the suboptimal principle
enhanced the robustness in combination with the MRAS for sen-
sorless bearingless IM control [32]. Next section, in order to reduce
influence of Gaussian noises of stator currents on sensorless
PWM-DTC IM drive using the RF-MRAS and simultaneously im-
prove its estimation accuracy at medium and low speed areas [8],
[16], the EKF that utilizes the IM model to obtain smoothed stator
currents is presented. The filtered currents are employed for com-
putations of both estimated speed and important quantities of the
DTC. The third section is simulations and discussions. Conclusions
are carried out in final section.

2. PROPOSED SENSORLESS CONTROL

Figure 1 shows the sensorless DTC IM drive using EKF-based
MRAS. Input quantities for the DTC drive are computed according
to Egs. (1)-(5):

Wsaest = [ (tsa = Rlsqir)dt (1)
Yspest = f(usﬁ - Rsisﬁ,KF)dt ()
1l)s,est: = /wsza,est + 1pszﬁ,est (3)
Vest = aresin (%) 4)
Ty oot = 3”p(isﬁ,KFIPsa,eszt—isa,KFll'sﬁ,est) (5)

where, Usq, Usp stator voltages; wsaest & wspest: estimated stator
fluxes; jest: estimated orienting angle; Teest : estimated motor
torque; Rs: stator resistance; np: number of pole pairs; isq kr & ispkF:
stator currents filtered by Extended Kalman Filtering block. Discrete
state-space IM model that is distorted by zero-mean, Gaussian pro-
cess & measurement noise vectors v & w, is described by Egs.

(6)-(7):

X(k+1) =A;X(k) +BaU(k) + v(k) (6)
Y (k) = C.X (k) + w(k) )
where

X=1[isa Isp Yra Yrpl" 8)
U=[Usa Usp]” )
As=1+t,A (10)
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ts: discretization period; iso & isg stator currents; wro & wig: rotor
fluxes; Ls & Lm: stator & magnetizing inductances; Rr & L rotor re-
sistance & rotor inductance.
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Fig. 1. Sensorless DTC IM drive using KF-based RF-MRAS

The EKF block estimates state vector Xxr that contains cur-
rents isq.kr and isgke according to Egs. (19)-(25):

X(k+1) =A, Xgr(k) + ByU(k) (19)
Pk + 1) = A Py (k)AL (k) +Q (20)
K(k+1) =
Pk + 1)CT o [CarrPk + 1)C] o +R] 1)
Xpp(k+1) =
(22)

X(k+ 1)+ Kk + D[V, (k) =Y (k + 1)]
Per(k+1) =Pk +1) —K(k + DCyxrP(k+1) (23

Ym(k) = Cd,KF Xm(k) (24)
Y(k) = Cypr X(k) (25)
where

549



Hau Huu Vo, Dung Quang Nguyen, Pavel Brandstetter

DOI 10.2478/ama-2025-0063

Sensorless Direct Torque Controlled Induction Motor Drive Utilizing Extended Kalman Filtered RF-MRAS

Xyr = lisakr  ispkr Wraxr Wrpxr]T (26)
Cd,KF =1 (27)
X, =X (28)

Because rotor fluxes in vector Xm are not measured, they are
calculated according to Egs. (29)-(30) [1]:

Yrg = f_;lpsa,est - lsa (29)

c3

Ly 1,
wrﬁ = mlpsﬁ,est - g Lsp (30)

Symbol ~ represents predicted quantities; letters “KF’ denote
for ones estimated using KF; Q & R-covariance matrices of v & w
with, the matrix R is assumed to be known; P — state vector covar-
iance matrix; K — Kalman gain.

For reference model or voltage model [8], rotor fluxes are com-
puted according to Egs. (31)-(32):

Ly ) 1,
wra,r = mf(usa - Rslsa,KF)dt - glsa,KF (31)

Ly . 1,
l»brﬁ‘,r = mf(usﬁ - RslsB,KF)dt - g Lsp KF (32)

In case of adaptive model or current model that contains esti-
mated rotor speed @,., rotor fluxes are calculated by Egs. (33)-(34):

Ry ~ LRy
Yraa = f (_ ;Ipra,a - wrlprﬁ,a + L lsa,KF) dt (33)
~ Ry LRy .
lprﬁ,a = f (wrlpra,a - lerﬁ,a + T lSB,KF) dt (34)

Thanks to Popov’s theorem for minimizing adaptive signal &
[16], the estimated rotor speed is obtained by Egs. (35)-(36):

¢ = lpra,alprﬁ,r - wrﬁ,alpra,a (35)
@y = K¢ + K; [ &dt (36)

where, wrar & sy rotor fluxes of the reference model; yraa & wiga:
rotor fluxes of the adaptive model; Ky, & Ki: proportional & integral
gains.

3. SIMULATIONS AND DISCUSSIONS

Parameters of the IM are given in Table 1. Simulations of two
sensorless RF-MRAS-based DTC IM drives: the first one is without
extended Kalman filtering and the second one is with extended Kal-
man filtering (abbreviated as NK and KF in the rest of the text), are
implemented at variances of Gaussian system and measurement
noises of stator currents g2={0.12, 0.52, 1.02} and om?={0.12, 0.5,
1.02}. Proportional gains and integral time constants of the speed,
flux, torque controllers & the rotor speed estimator are {1.5, 100, 5
& 500} and {0.05s, 0.01s, 0.05s & 0.002s}. Diagram of load torque
is identical to the one, and reference speed course is similar to one
myrer= {5t/3 rad/s, 10m rad/s } [16]. The utilized PWM technique is
space vector one with switching frequency of 20kHz, inverter DC
link of 540Vdc. Normalized integral of time multiply by absolute
value of speed difference (ITAE») [16] is used to assess two sen-
sorless drives according to Eq. (37):

_ JEtlew(lat

ITAE, = =% (37)

max|wmref|
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Tab. 1. Induction motor parameters

Symbol Quantity Value
Rs Stator resistance 3.179Q
Np Number of pole pairs 2
s=Lr Stator & rotor inductances 0.209H
Lm Magnetizing inductance 0.192H
Rr Rotor resistance 2.118Q
Pn Rated power 2200W
Wmyn Rated speed 142m/3 rad/s
Ten Rated torque 14.8N-m
Jm Moment of inertia 0.0047kg-m?

Figures 2-4, 5-7 respectively show motor speed responses in
cases of op?2= Om? at wm,rer= 5n/3 radls, wmrer= 10w rad/s. The fig-
ures indicate that as the variance increases, the performance of the
speed response is improved more. Tables 2 and 3 list the ITAE, at
myref= 5n/3 rad/s and wmrer= 107 rad/s in all cases of variances.
The tables show that the ratio (/TAEnxr/ITAEnnF) is smallest when
the ratio (om¥&?) is largest, and vice versa (see Figs. 8-9). The
ratios (ITAEnke/ITAEnnF) are in ranges of [24.2%; 98.9%)], [24.6%;
99.0%] for com,rer= 5n/3 radls, cm,er= 107 rad/s, respectively.

Time courses of relative speed difference RSD (e~/Max|wm,ref)
for cases of the ratio (ITAEnke/ITAEnnF) reach maximum & mini-
mum at @mrer = 5m/3 radls and wmrr= 107 rad/s are respectively
shown in Figs. 10 and 11. Diagrams of stator currents are dis-
played in Figs. 12-13 and 14-15 for wm,ret = 5n/3 rad/s and @m,rer=
10m rad/s, respectively. The reason why the proposed EKF-based
MRAS speed estimator is more efficient in the cases of larger ratio
(om?l5?), is because the matrix R is assumed to be known. The
covariance matrices Q and R can be estimated according to the
methods in [25]-[26]. Quantities including stator fluxes, rotor fluxes
of reference model, rotor fluxes of adaptive model, and adaptive
signal at wmyrer = 57/3 rad/s & wmrer= 107 rad/s, 9p?=0.12, om?=12
are respectively presented in Figs. 16-17, 18-19, 20-21, and 22-23.
Figures 22-23 indicate that ripple of the adaptive signal for the KF
is much smaller than that for the NF. This results in significantly
lower RSD for the KF. Tables 4-5 show maximum value of absolute
of relative speed difference (MARSD) at com,rer = 57t/3 rad/s & cwm,ret
= 10x rad/s for all variances. The MARSD is reduced by 80% and
77% at most, corresponding to &?=0.12, om?=12, for cmrer = 51/3
rad/s and wmrer= 107 rad/s, respectively.
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Fig. 2. Motor speeds at wm,rer= 5n/3 rad/s, &p?=dm*=0.12.
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Fig. 9. Motor speeds at wmrer= 107 rad/s: case 1 (upper): &?=0.12,
om*=12and case 2 (lower): 52=12, m?=0.12

Tab. 2. ITAE, x 102 [s2] at wm,rer= 5n/3 rad/s

52 om?=0.12 Oom? =0.52 Om? =1.02
NF KF NF KF NF KF

012 | 313 | 246 | 470 | 16.0 | 185 | 447

052 | 471 | 454 | 658 | 448 | 191 | 94.6

1.02 | 185 | 183 | 191 160 | 262 | 175

Tab. 3. ITAE, x 102 [s2] at com,er= 10 rad/s

5 Om? =0.12 Om? = 0.52 Om? =1.02
NF KF NF KF NF KF

012 | 059 | 049 | 7.84 | 278 | 306 | 7.53

052 | 780 | 753 | 109 | 741 | 316 | 156

1.02 | 306 | 303 | 315 | 265 | 433 | 289
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Fig. 12. Stator currents at wmer= 5n/3 rad/s, 3?=0.12, =12
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Om?=12 Tab. 4. MARSD at cwm,rer= 5n/3 rad/s
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1 NF | KF | NF | KF | NF | KF
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Fig. 20. Rotor fluxes of the adaptive model at @m,rer= 57/3 rad/s,
&?=0.12, om?=12

4. CONCLUSIONS

Sensorless RF-MRAS drives without EKF and with EKF were
presented and simulated in cases of process and measurement
. . noises of stator currents. The sensorless drive utilizing the EKF,
1 reduces the ITAEn and MARSD compared to the one without using

f \ f m J—‘Vm,a,m: Vg o KE EKF, especially up to 75% and 80% in cases where the ratio be-

//\f \/\ \/ /\/ \ [T tween measurement noise variance and process noise variances is

\ \ \/ \/ \J V AT maximum at simulated lower reference speed. In case of the sto-
-1 05 | 13 3 chastic systems, the method can be employed for other MRAS-
Time [s] based speed estimators that use stator current as inputs. For the
Fig. 21. Rotor fluxes of the adaptive model at wm,rer= 107 rad/s, 62=0.12, SM-based MRASs such as [16]-[18], it can be integrated to esti-
=12 mate components of stator flux and rotor flux vectors at the low and
medium speed ranges of the time courses. Because the proposed
sensorless control uses the full IM model in the EKF block, the cal-
culation process is slow. Other Kalman Filter versions or estimation
techniques of covariance matrices can be deployed to enhance the
sensorless drive performance and increase computation speed.
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